JPS63200131A - Optical logic element - Google Patents

Optical logic element

Info

Publication number
JPS63200131A
JPS63200131A JP3241187A JP3241187A JPS63200131A JP S63200131 A JPS63200131 A JP S63200131A JP 3241187 A JP3241187 A JP 3241187A JP 3241187 A JP3241187 A JP 3241187A JP S63200131 A JPS63200131 A JP S63200131A
Authority
JP
Japan
Prior art keywords
fabry
wavelength
perot resonator
voltage
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3241187A
Other languages
Japanese (ja)
Inventor
Akihisa Tomita
章久 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3241187A priority Critical patent/JPS63200131A/en
Publication of JPS63200131A publication Critical patent/JPS63200131A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/218Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference using semi-conducting materials

Abstract

PURPOSE:To electrically control a logic function by inserting an electrooptical effect layer having an electrode for applying the voltage within Fabry-Perot resonator contg. multiple quantum well. CONSTITUTION:The electrooptical effect layer 13 having the electrode for applying the voltage is inserted within the Fabry-Perot resonator contg. the multiple quantum well 15. Namely, a substance having the electrooptical effect changes refractive index depending on magnitude of the applied electric field. Therefore, the resonance wavelength of the substance having the electrooptical effect can be controlled depending on the voltage applied to said substance by inserting said substance within the Fabry-Perot resonator. Thus, even in case that the wavelength of a signal light is constant, the resonance characteristic of the Fabry-Perot resonator is changed by controlling the voltage, thereby obtaining the various kinds of the logic function.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光論理素子、特に実現する論理関数を電気的に
制御できる光論理素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical logic element, and particularly to an optical logic element in which the realized logic function can be electrically controlled.

〔従来の技術〕[Conventional technology]

近年、光による並列大容量の情報処理への関心が高まっ
ている。特にディジタル信号を用いたディジタル光情報
処理は従来の電子的な情報処理では実現できない高速、
並列処理が高精度に行える可能性があり盛んに研究がな
されている。ディジタル光情報処理には光論理素子が必
要であるが、シュウエル(Jewell、 J、 L、
)らは、第2図に示すように、多重量子井戸層15が誘
電体多層膜16と19との間に形成された、すなわち多
重量子井戸を共振器内部に含むファプリ・ペロ共振器を
アプライド フィジックス レターズ(Applied
 Physics Letters) 44巻、172
頁(1984年)において報告し、信号光2030波長
とファブリ・ペロ共振器の共振波長を制御することに劣
り、入射光201と202の間で出射光204を出力と
するAND、NOR等の論理関数が実現できることを示
した。
In recent years, there has been increasing interest in parallel, large-capacity information processing using light. In particular, digital optical information processing using digital signals can achieve high speeds and speeds that cannot be achieved with conventional electronic information processing.
It has the potential to perform parallel processing with high accuracy, and is being actively researched. Optical logic elements are necessary for digital optical information processing, and Jewell (J., L.
) et al. applied a Fabry-Perot resonator in which a multiple quantum well layer 15 is formed between dielectric multilayer films 16 and 19, that is, a multiple quantum well is included inside the resonator, as shown in FIG. Physics Letters (Applied)
Physics Letters) Volume 44, 172
(1984), it is inferior to controlling the signal light 2030 wavelength and the resonance wavelength of the Fabry-Perot resonator, and logic such as AND and NOR that outputs the output light 204 between the input lights 201 and 202. We showed that the function can be realized.

この素子の原理を、第3図に基づいて説明する。The principle of this element will be explained based on FIG.

第3図は第2図のファブリ・ペロ共振器の共振特性を示
すものであり、縦軸は透過率を、横軸は共振波長からの
ずれ/半値全幅を表している0図中、曲線300は入射
光強度Iが0のときの共振特性、曲線301は入射光強
度Iが1のときの共振特性、曲線302は入射光強度■
が2のときの共振特性、310は信号光の波長の位置の
一例を示したものである。入射光の強度Iが0.1.2
と変化するにつれて、共振器内の多重量子井戸の励起子
吸収が飽和し、屈折率が変化するためファブリ・ペロ共
振器の共振特性も300.301.302と変化する。
Figure 3 shows the resonance characteristics of the Fabry-Perot resonator in Figure 2, where the vertical axis represents the transmittance and the horizontal axis represents the deviation from the resonance wavelength/full width at half maximum. is the resonance characteristic when the incident light intensity I is 0, the curve 301 is the resonance characteristic when the incident light intensity I is 1, and the curve 302 is the incident light intensity ■
310 shows an example of the position of the wavelength of the signal light. The intensity I of the incident light is 0.1.2
As the value changes, the exciton absorption of the multiple quantum well in the resonator becomes saturated and the refractive index changes, so the resonance characteristics of the Fabry-Perot resonator also change to 300.301.302.

信号光の波長を例えば第3図の位!310におくと、入
射光強度IがI=Oのとき透過率は1/2.1−1のと
き透過率は1/2.I=2のとき透過率は0となる。こ
れからNANDの働きをしていることがわかる。信号光
の波長を変えることで種々の論理関数を実現できる。こ
の関係を第1表に示した。
For example, set the wavelength of the signal light to the order shown in Figure 3! 310, when the incident light intensity I is I=O, the transmittance is 1/2.1-1, the transmittance is 1/2. When I=2, the transmittance becomes 0. From this we can see that it works as a NAND. Various logical functions can be realized by changing the wavelength of the signal light. This relationship is shown in Table 1.

第1表 〔発明が解決しようとする問題点〕 しかしながら、以上に述べた従来の光論理素子では、実
現する論理関数を選択するためには、信号光の波長ある
いはファブリ・ベロ共振器の共振波長を変える必要があ
る。このことは、各々の論理関数に対して、波長の異な
る光源や寸法の異なる素子が必要であることを意味し、
系の構成が複雑となる欠点がある。
Table 1 [Problems to be Solved by the Invention] However, in the conventional optical logic elements described above, in order to select the logic function to be realized, the wavelength of the signal light or the resonant wavelength of the Fabry-Béro resonator must be need to change. This means that for each logic function, light sources with different wavelengths and elements with different dimensions are required.
The disadvantage is that the system configuration is complicated.

本発明の目的は、以上の欠点を除去し、実現する論理関
数を電気的に制御できる光論理素子を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an optical logic element in which the realized logic functions can be electrically controlled.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光論理素子は、多重量子井戸を含むファブリ・
ペロ共振器の内部に、電圧印加用電極をもつ電気光学効
果層が挿入されていることを特徴とする。
The optical logic device of the present invention includes a Fabry logic device including multiple quantum wells.
It is characterized in that an electro-optic effect layer having a voltage applying electrode is inserted inside the Perot resonator.

〔作用〕[Effect]

電気光学効果をもつ物質は、それに印加される電場の大
きさによって屈折率が変化する。このため、ファブリ・
ベロ共振器内に挿入すると、電気光学効果をもつ物質に
印加する電圧によって共振波長を制御することができる
0本発明では信号光の波長が一定であっても電圧の制御
によってファブリ・ペロ共振器の共振特性が変化でき、
種々の論理関数を得ることができる。
A substance with an electro-optic effect changes its refractive index depending on the magnitude of the electric field applied to it. For this reason, Fabry
When inserted into a Bero resonator, the resonant wavelength can be controlled by applying a voltage to a substance that has an electro-optic effect.In the present invention, even if the wavelength of the signal light is constant, the Fabry-Perot resonator can be The resonance characteristics of can be changed,
Various logical functions can be obtained.

〔実施例〕〔Example〕

第1図は本発明の光論理素子の一実施例の断面図である
。この光論理素子の製造方法を述べながらその構成を説
明する。Snドープのn型のGaAs基板ll上に厚さ
1000人、不純物濃度lXl0”elf−’のn型A
j!Asからなるn型コンタクト層12、厚さ1μmの
アンドープAj!Asからなる電気光学効果層13、厚
さ1000人のp型An!Asからなる不純物濃度5 
XIO”ca+−”のp型コンタクト層14を順次積層
し、さらにその上に厚さ140人のアンドープA ’ 
o、 hG a *、 aA sからなるバリア層15
1と厚さ60人のアンドープGaAsからなるウェル層
152を交互に50層ずつ積層した多重量子井戸層15
を形成する。多重量子井戸層15は、直径20μmの′
部分を残して化学エツチングで除去される。多重量子井
戸層15の表面は、Ti0gとSiO□からなり波長0
.8μ園の光に対して96%の反射率をもつ誘電体多層
膜16でコーティングされ、入射面17を形成する。多
重量子井戸層15が除去された部分のp型コンタクト層
14上にA n / S n合金からなるp型電極18
を形成する。基板11の裏面は、多重量子井戸層15に
対応する部分を直径40μmの円形に化学エツチングで
除去し、T i OtとSin。
FIG. 1 is a sectional view of one embodiment of the optical logic element of the present invention. The structure of this optical logic element will be explained while describing the method of manufacturing it. An n-type A layer with a thickness of 1000 nm and an impurity concentration of lXl0"elf-' is formed on a Sn-doped n-type GaAs substrate 11.
j! N-type contact layer 12 made of As, undoped Aj! with a thickness of 1 μm! Electro-optic effect layer 13 made of As, p-type An! with a thickness of 1000 people! Impurity concentration consisting of As 5
A p-type contact layer 14 of
Barrier layer 15 consisting of o, hG a *, aA s
A multi-quantum well layer 15 in which 50 well layers 152 made of undoped GaAs with a thickness of 1 and 60 are laminated alternately.
form. The multiple quantum well layer 15 has a diameter of 20 μm.
It is removed by chemical etching, leaving only a portion intact. The surface of the multiple quantum well layer 15 is made of Ti0g and SiO□ and has a wavelength of 0.
.. It is coated with a dielectric multilayer film 16 having a reflectance of 96% for light of 8 μm to form an incident surface 17 . A p-type electrode 18 made of an A n /S n alloy is formed on the p-type contact layer 14 in the portion where the multiple quantum well layer 15 has been removed.
form. On the back surface of the substrate 11, a portion corresponding to the multiple quantum well layer 15 was removed by chemical etching into a circular shape with a diameter of 40 μm, and etched with TiOt and Sin.

からなる誘電体多層膜19でコーティングし、出射面2
0を形成する。誘電体多層WA19の反射率は、波長0
.8μ蒙の光に対して96%である。基板11の裏面上
の誘電体多層膜19を除去し、AuGeNi合金のn型
電極21を形成する。
The output surface 2 is coated with a dielectric multilayer film 19 consisting of
form 0. The reflectance of dielectric multilayer WA19 is at wavelength 0.
.. It is 96% for 8 μm of light. The dielectric multilayer film 19 on the back surface of the substrate 11 is removed, and an n-type electrode 21 of AuGeNi alloy is formed.

以上のような構成の光論理素子において、その入射面1
7には入射光201.202と信号光203が入射する
。入射光201.202の波長は、多重量子井戸層15
の励起子吸収のピーク波長より短い820nmである。
In the optical logic element having the above configuration, the entrance surface 1
Incident light 201, 202 and signal light 203 are incident on 7. The wavelength of the incident light 201 and 202 is the same as that of the multiple quantum well layer 15.
The wavelength is 820 nm, which is shorter than the peak wavelength of exciton absorption.

信号光203の波長は、励起子吸収のピーク波長よりわ
ずかに長い850nmである。出射面から出射する出射
光204を波長850nmの光とする。
The wavelength of the signal light 203 is 850 nm, which is slightly longer than the peak wavelength of exciton absorption. The emitted light 204 emitted from the emitting surface has a wavelength of 850 nm.

入射光201.202によって多重量子井戸層15の励
起子吸収が飽和して、屈折率が変化するため誘電体多層
膜16.19の間に形成されるファブ、す・ペロ共振器
の信号光203に対する透過率が変化し、入射201と
202の間で出射光204を出力とする論理演算が実現
される。このとき、p型電極18とn型電極21の間の
電圧をOvから−1,6vに変化すると電気光学効果層
13の屈折率がlXl0−’だけ増加する。このためフ
ァブリ・ペロ共振器の共振波長は共振曲線の半値全幅に
等しい分だけ長波長側に移動する。p型電極18とn型
電極21の間の電圧がOvのとき信号光203の波長と
ファプリ・ペロ共振器の共振波長を一致させておくと、
電圧を一〇、8V、  −1,6V、  −2,4V、
  −3,6Vと変化させることにより、信号光203
の波長と共振波長とのずれを、共振曲線の半値全幅を単
位として1/2.1 。
The exciton absorption of the multiple quantum well layer 15 is saturated by the incident light 201 and 202, and the refractive index changes, so that the signal light 203 of the Fab S-Perot resonator formed between the dielectric multilayer films 16 and 19 is generated. The transmittance changes, and a logical operation is realized between the incident light 201 and 202 with the output light 204 as the output. At this time, when the voltage between the p-type electrode 18 and the n-type electrode 21 is changed from Ov to -1.6V, the refractive index of the electro-optic effect layer 13 increases by lXl0-'. Therefore, the resonant wavelength of the Fabry-Perot resonator shifts toward the long wavelength side by an amount equal to the full width at half maximum of the resonance curve. When the voltage between the p-type electrode 18 and the n-type electrode 21 is Ov, if the wavelength of the signal light 203 and the resonant wavelength of the Fapry-Perot resonator are made to match,
Voltage 10.8V, -1.6V, -2.4V,
By changing it to -3,6V, the signal light 203
The difference between the wavelength of

3/2.2と変化させることができ、信号光203の波
長を一定としたままで、電圧制御で種々の論理関数を選
択できる。
3/2.2, and various logic functions can be selected by voltage control while keeping the wavelength of the signal light 203 constant.

以上本発明の一実施例について説明したが、本発明は励
起子の存在する多重量子井戸が形成できればInP/I
nGaAs系などいかなる半導体材料にも適用できる。
Although one embodiment of the present invention has been described above, the present invention is applicable to InP/I
It can be applied to any semiconductor material such as nGaAs.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、電圧によって論理
関数を選択できる光論理素子を得ることができる。
As described in detail above, according to the present invention, it is possible to obtain an optical logic element whose logic function can be selected depending on the voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、 第2図は従来のファブリ・ペロ共振器を示す構成図、 第3図は第2図のファプリ・ペロ共振器の原理を説明す
るための共振特性を示す図である。 11・・・・・基板 12・・・・・n型コンタクト層 13・・・・・電気光学効果層 14・・・・・p型コンタクト層 15・・・・・多重量子井戸層 151  ・・・・バリア層 152 ・・・・ウェル層 16、19・・・誘電体多層膜 17・・・・・入射面 18・・・・・p型電極 20・・・・・出射面 21・・・・・n型電極 201.202 ・・入射光 203 ・・・・信号光 204  ・・・・出射光
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional Fabry-Perot resonator, and Fig. 3 is a diagram for explaining the principle of the Fabry-Perot resonator shown in Fig. 2. FIG. 3 is a diagram showing resonance characteristics. 11... Substrate 12... N-type contact layer 13... Electro-optic effect layer 14... P-type contact layer 15... Multiple quantum well layer 151... ... Barrier layer 152 ... Well layers 16, 19 ... Dielectric multilayer film 17 ... Incident surface 18 ... P-type electrode 20 ... Output surface 21 ... ...N-type electrode 201,202 ...Incoming light 203 ...Signal light 204 ...Outgoing light

Claims (1)

【特許請求の範囲】[Claims] (1)多重量子井戸を含むファブリ・ペロ共振器の内部
に、電圧印加用電極をもつ電気光学効果層が挿入されて
いることを特徴とする光論理素子。
(1) An optical logic element characterized in that an electro-optic effect layer having a voltage applying electrode is inserted inside a Fabry-Perot resonator including a multiple quantum well.
JP3241187A 1987-02-17 1987-02-17 Optical logic element Pending JPS63200131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3241187A JPS63200131A (en) 1987-02-17 1987-02-17 Optical logic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3241187A JPS63200131A (en) 1987-02-17 1987-02-17 Optical logic element

Publications (1)

Publication Number Publication Date
JPS63200131A true JPS63200131A (en) 1988-08-18

Family

ID=12358206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3241187A Pending JPS63200131A (en) 1987-02-17 1987-02-17 Optical logic element

Country Status (1)

Country Link
JP (1) JPS63200131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157537A (en) * 1991-02-01 1992-10-20 Yeda Research And Development Co., Ltd. Distributed resonant cavity light beam modulator
US5340998A (en) * 1991-02-28 1994-08-23 Nec Corporation Semiconductor surface light emitting and receiving heterojunction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157537A (en) * 1991-02-01 1992-10-20 Yeda Research And Development Co., Ltd. Distributed resonant cavity light beam modulator
US5340998A (en) * 1991-02-28 1994-08-23 Nec Corporation Semiconductor surface light emitting and receiving heterojunction device

Similar Documents

Publication Publication Date Title
US5301201A (en) Article comprising a tunable semiconductor laser
US5157537A (en) Distributed resonant cavity light beam modulator
US5424559A (en) Surface emitting photonic switching structure
JPH02103021A (en) Quantum well optical device
EP0562173A1 (en) Semiconductor optical device
JPH03106094A (en) Arrangement consisting of quantum well device
JPH02503838A (en) Polarization switch in active device
JPS63200131A (en) Optical logic element
JP2563991B2 (en) Optical filter
JPH0467119A (en) Semiconductor optical modulator
US7238412B2 (en) Thermally and electrically conducting high index contrast multi-layer mirrors and devices
JPS63269594A (en) Surface emission type bistable semiconductor laser
JPH01204018A (en) Optical modulator
JPH04241487A (en) Semiconductor laser
JPH0758311A (en) Nonlinear light transistor
US5023673A (en) Semiconductor mesa structured optical processing devices, with added side-surface recombination centers to improve the speed of operation
JPS63136580A (en) Optical bistable element
JPS62270927A (en) Optical bistable element
JPS6297386A (en) Distributed feedback type bistable semiconductor laser
JP3139774B2 (en) Semiconductor laser device
JPH0496381A (en) Light-emitting element
KR0141343B1 (en) Impedance mismatched non-biased optical bistable logic device
JPH0358015A (en) Photosemiconductor device
JPH05308173A (en) Semiconductor laser
JPH0667126A (en) Semiconductor wavelength filter and semiconductor laser