JPS63193064A - Method and apparatus for measuring oxygen utilizing speed - Google Patents

Method and apparatus for measuring oxygen utilizing speed

Info

Publication number
JPS63193064A
JPS63193064A JP62025953A JP2595387A JPS63193064A JP S63193064 A JPS63193064 A JP S63193064A JP 62025953 A JP62025953 A JP 62025953A JP 2595387 A JP2595387 A JP 2595387A JP S63193064 A JPS63193064 A JP S63193064A
Authority
JP
Japan
Prior art keywords
aeration
column
water
value
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62025953A
Other languages
Japanese (ja)
Inventor
Shotaro Urushibara
漆原 正太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP62025953A priority Critical patent/JPS63193064A/en
Publication of JPS63193064A publication Critical patent/JPS63193064A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To continuously perform highly accurate measurement undergoing little error, by immersing one end of an aeration column in specimen water to make the immersion ratio thereof constant. CONSTITUTION:An aeration column 1 and a measuring column 2 are integrally constituted and demarcated by a partition wall 3. Dissolved oxygen (DO) meters 5, 6 are provided to the measuring column 2 and floats 7 are mounted to the arbitrary positions of the integrally formed columns 1, 2. Since the columns 1, 2 are floating in an aeration tank by the floats 7, the immersion ratio of the column 1 becomes constant even when a water level varies. Further, since the capacity of an air lift pump 8 is determined by an air flow rate and the immersion ratio, by properly selecting the air flow rate and the immersion ratio, water pumping-up amount is determined. The specimen water pumped up by this method passes through the DO meters 5, 6 to measure the DO value of the specimen water. The difference between the measured values of the DO meters 5, 6 is divided by a passing time to make it possible to measure an oxygen utilizing speed.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、排水全活性汚泥法によって処理するときに行
なわれる酸素利用速度(rr)の測定方法とその装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method and apparatus for measuring the oxygen utilization rate (rr) carried out when wastewater is treated by the total activated sludge method.

B1発明の概要 本発明は、エアレーシヨン力ラムに検水に4人してr、
 k測定するものにおいて、浸漬率を一定にして検水中
にエアレーショyカラムの一端全浸漬し、このエアレー
シヨンカラムに導入された検水全エアレーシヨンした後
に第1および第2の溶存酸素(DO)計にてD04!を
測定する。そして検水が第1のDO計から第2のDO計
に達する時間音Δtとしたとき、第2のDO計よりの出
力値と第1のDO計の出力値との差を求め、この差音△
tにて除してrr値を求めることによって高精度に連続
的にr、 [k測定するようにしたものである。
B1 Overview of the Invention The present invention provides an aeration force ram for water testing by four people.
In the device to be measured, one end of the aeration column is completely immersed in the test water at a constant immersion rate, and after the entire test water introduced into the aeration column is aerated, the first and second dissolved oxygen (DO) are measured. D04 in total! Measure. Then, when the time sound Δt is the time the sample water reaches from the first DO meter to the second DO meter, find the difference between the output value from the second DO meter and the output value from the first DO meter, and calculate this difference. Sound△
By dividing by t to find the rr value, r and [k can be measured continuously and with high precision.

C1従来の技術 都市下水や食品工場廃水などのように、有機質を多量に
含む廃水ケ処理する手法として用いられるia汚泥法に
おいては、エアレーシヨンタンクにおけるエアレーシヨ
ンが過剰になると、汚泥が細分化するばかシでなく電力
消費の増大七招く。
C1 Conventional technology In the IA sludge method, which is used as a method to treat wastewater containing large amounts of organic matter, such as urban sewage and food factory wastewater, if the aeration in the aeration tank becomes excessive, the sludge becomes fragmented. This is not stupid and will lead to an increase in power consumption.

また逆にエアレーシヨンが不足すると活性汚泥の腐敗、
タンク底部への堆積が起こり処理水質が態化する。し念
がってエアレーシヨンタンクヲ最適に管理するためには
、活性汚泥の酸素利用速度(呼吸速度)に等しいか、あ
るいはそれ以上の速度で酸素?供給しなければならない
Conversely, if there is insufficient aeration, activated sludge will rot.
Deposition occurs at the bottom of the tank and the quality of the treated water deteriorates. In order to optimally manage the aeration tank, it is necessary to maintain oxygen at a rate equal to or greater than the oxygen utilization rate (respiration rate) of activated sludge. must be supplied.

エアレーシヨンタンク内混合液のrrは、単位時間(時
間)内に単位容量・(t)の混合液によって利用される
酸素量(mg/4・時」で示される。また、活性汚泥の
酸素利用速度係数(Kr)は、単位時間(時間)内に単
位重量(g)の活性汚泥に利用される酸素量(mg/g
・時)で示され、このKrは活性汚泥の活性度vI−表
わす指標となる。これらr、、Krは共に毒吻(活性汚
泥の活性を抑制する物質)の流入をモニタする指標でも
める。
The rr of the mixed liquid in the aeration tank is expressed as the amount of oxygen (mg/4·hr) utilized by a unit volume·(t) of the mixed liquid within a unit time (hour). The utilization rate coefficient (Kr) is the amount of oxygen (mg/g) utilized by unit weight (g) of activated sludge within unit time (hour).
・hours), and this Kr is an index representing the activity level vI of activated sludge. These r, , and Kr are both measured as indicators for monitoring the inflow of poison proboscis (a substance that suppresses the activity of activated sludge).

下水試験方法による#RX利用速度の測定法は、エアレ
ーシヨンタンク内の5に合gk採取し10〜20分間静
止し友後、その上溌水七サイホンで分離し、その上澄水
の溶存酸素(DO)が約5mg71以上になるように5
〜lO分間激しくエアレーシヨン七行って分離時におい
て沈殿し次汚泥とよく攪拌する。この混合液上三角フラ
スコ300mtK満たして空気か入らないようにDO肘
の七ンサ部を挿入し%直ちにマグネチックスターラで攪
拌しながらDOの経時変化t−測測定る。(但し、エア
レーシヨンタンク内混合液のDO値が約5mg/を以上
の場合には直ちに測定を行なってもよい)記録され九減
少曲線から次式rcよシエアレーシヨンタンク内混合液
のr、値を求める。
The method for measuring the #RX utilization rate using the sewage test method is to collect 5 gk in the aeration tank, let it stand still for 10 to 20 minutes, then separate the upper fresh water with a 7-siphon siphon, and measure the dissolved oxygen in the supernatant water. (DO) is approximately 5mg71 or more.
Aerate vigorously for ~10 minutes to allow sedimentation during separation, then stir well with the sludge. Fill an upper Erlenmeyer flask with this mixture to 300 mtK, insert the DO elbow joint to prevent air from entering, and immediately stir with a magnetic stirrer to measure the change in DO over time. (However, if the DO value of the mixed liquid in the aeration tank is about 5 mg/or more, the measurement may be performed immediately.) , find the value.

r、(mg/l・時)=酸素利用!(mg/L )/経
時時間(時間)D1発明が解決しようとする問題点 上記のようにしてrrt−測定する方法は、手分析で娶
る丸め、連続測定ができないはかりか、その操作が繁雑
であるためr、またはKr上用いた最適制御を困難とし
ている。また、試料のm度変化は測定値に大きく影響す
るが、エアレーシヨンタンク内の温度と同程度に採取し
、且つ手分析操作で全工程を行うことは不可能でるるた
め測定結果に誤差が生ずることになる。更には測定操作
のうち。
r, (mg/l・hr) = oxygen utilization! (mg/L)/Elapsed time (hours) D1 Problems to be solved by the invention The method of measuring rrt as described above requires rounding by manual analysis, a scale that cannot perform continuous measurement, or a complicated operation. This makes optimal control using r or Kr difficult. In addition, a m degree change in the sample greatly affects the measured value, but it is impossible to collect the sample at the same temperature as the aeration tank and perform the entire process manually, so there may be errors in the measurement results. will occur. Furthermore, among measurement operations.

試料の固液分siv行なわずにエアレーシヨンを行なっ
てDo値を上昇させても、そのデータの差は認められず
、分離操作はめまり意味のない操作でちゃ、また測定開
始前のエアレーシヨンの時間が測定結果に影響を与える
。などの報告もめ9、何れにしても有効なrr測定法と
はなっていない。
Even if you increase the Do value by performing aeration without performing siv for the solid-liquid content of the sample, no difference in the data will be observed, and the separation operation will be a meaningless operation, and the time required for aeration before starting the measurement will increase. Affect measurement results. There are also reports such as 9, but in any case, it is not an effective method for measuring rr.

そこで、これらの問題点を解決しようとする試みも徨々
なされているが、その中での一手法として、 Jour
nal WPCP、 Vol 56. No 4. P
319 。
Therefore, many attempts have been made to solve these problems, and one method among them is Jour.
nal WPCP, Vol 56. No. 4. P
319.

1984にはDO値會計測し、総括酸素移動容量係数(
KLa)値から次のようにして算出する方法が示されて
いる。エアレーシヨンタンクにおける酸素移動に関する
式は次のように示される。(流水のない場合) a 石=KLa(Ca−c)−r、  −+m+++(1)
但しC8はエアレーシヨンタンク内混合液の飽和美[(
mg/l)、 Cはエアレーシヨンタンク内混合液OD
O値(mg/! )、 KL aはエアレーシヨンタン
ク円における酸素供給能力を示すもので、タンク構造や
散気装置q!!有の値でるる。KLaの測定方法は、櫨
々検討されているが1例えばエアレーシヨンタンクへの
流入、流出を停止し、エアレーシヨンの空気量を数段v
/#に変化させ、各段階の定常となつ九ときのDO値、
rr値(空気を一足にして(K L a一定数)CIZ
)変化からr1値會求めておく)からKLak求める。
In 1984, DO values were measured and the overall oxygen transfer capacity coefficient (
A method of calculating from the KLa) value as follows is shown. The equation for oxygen transfer in the aeration tank is shown below. (When there is no running water) a stone = KLa (Ca-c) - r, -+m+++ (1)
However, for C8, the saturated beauty of the mixed liquid in the aeration tank [(
mg/l), C is the mixed liquid OD in the aeration tank
O value (mg/!), KL a indicates the oxygen supply capacity in the aeration tank circle, and the tank structure and air diffuser q! ! The value of existence comes out. The method for measuring KLa has been extensively studied.1 For example, by stopping the inflow and outflow to the aeration tank, and increasing the amount of air in the aeration tank in several stages.
/#, and the DO value at 9 when each stage becomes steady,
rr value (one pair of air (K L a constant number) CIZ
) Find the r1 value from the change).

KL、は実際rcは水温や活性・汚泥浮遊vJ′X濃度
(MLSS)にも影響されるが空気量の影響が一番大き
い。したがって、この方法でKL、と空気流量の関係を
求めておく。エアレーシヨンタンク稼動時には、空気流
量からKL、を算出し、また、Do@[j?!びその変
化の測定値から次式によりrrmk推定する。
KL and rc are actually influenced by water temperature and activated/sludge suspended vJ'X concentration (MLSS), but the biggest influence is the amount of air. Therefore, use this method to find the relationship between KL and the air flow rate. When the aeration tank is in operation, KL is calculated from the air flow rate, and Do@[j? ! rrmk is estimated from the measured values of the change in the value and the change thereof using the following equation.

F              da rr”  (Ci  C)+KLa(Cs  C)  
、、・・・・・・・・・(2)■ なお(2)式は連続的に流入水が供給されてるときの式
で、 Ciは流入水DO値(mg/l)、pは流入量(
流入水+返送汚泥)、vはエアレーシヨンタンク容量で
ある。
F da rr” (Ci C) + KLa (Cs C)
,,・・・・・・・・・(2) ■ Equation (2) is the equation when inflow water is continuously supplied, where Ci is the inflow water DO value (mg/l) and p is the inflow amount(
(inflow water + return sludge), v is the aeration tank capacity.

この方法は連続的にr、値が得られる利点は有するが、
KLaがエア流量以外の要因によって変化した場合には
、r、値に誤差が生ずる問題点を有している。
Although this method has the advantage of continuously obtaining r values,
If KLa changes due to factors other than the air flow rate, there is a problem in that an error occurs in the value of r.

そこで本発811が目的とするところ#2、連続的に誤
差の少ないこの物測定方法とその装置を提供せんとする
ものである。
Therefore, purpose #2 of the present invention 811 is to provide a method and apparatus for measuring objects continuously with few errors.

E6間照点km決するための手段 第1の本発明は、エアレーシヨンヵラムに導入された検
°水をエアレーシヨンした後のDO値を用いてr、値t
#l定するものにおいて、エアレーシヨンカラムの一端
【検水中に浸漬してその浸漬率を一定とする。浸漬率一
定のエアレーショ7カラムに導入され比検出をエアレー
シヨンし次後、第1のDO計配投位置より第2のDO討
配役位置に流すが、そのときの時間tΔtとしたとき、
第2の加計の出力値と第1のDo計の出力値との差を求
め。
Means for Determining E6 Spot Point Km First of the present invention, the DO value after aerating the test water introduced into the aeration column is used to determine r and value t.
#l In a test, one end of the aeration column is immersed in the test water to maintain a constant immersion rate. It is introduced into the aeration column 7 with a constant immersion rate, and after aeration is carried out to detect the ratio, it is flowed from the first DO meter distribution position to the second DO distribution position, and when the time at that time is tΔt,
Find the difference between the output value of the second adder and the output value of the first Do meter.

この差をΔtにて除することによってrア値を求める。The r value is determined by dividing this difference by Δt.

また、第2の発明は、浸漬率會一定とする手段トしてエ
アレーシヨンカラムにフロー)’を取付け、エアリフト
ポンプの特性を利用して検水を汲みあげる。エアレーシ
ヨンカラムに越流壁を設け、越流した検水は%@1.第
1.Do針が配設される測定カラムに流れ込むよう艮m
底される。
Further, in the second invention, as a means for keeping the immersion rate constant, a flow) is attached to the aeration column, and the characteristics of the air lift pump are used to pump up the sample water. An overflow wall is installed in the aeration column, and the overflow sample water is %@1. 1st. Arrange the needle so that it flows into the measuring column where the Do needle is placed.
bottomed out.

F0作用 エアレーシヨンカラムは、フロートによって検水中に浮
いているので、エアレーシヨンタンクの水位変動が生じ
ても浸漬率は一定となる。エアリフトポンプの性能はエ
ア流蓋と浸漬率によって決まるので、このエア@tと浸
漬率さえ適量に選ぶことによって揚水量が定まる。この
ようにして揚水された検水は第1.第2のDOftt−
通過したときのDo値が測定され、各Do計との測定器
上通過時間Δtにて除することによってr、値が測定で
きる。
Since the F0 action aeration column is suspended in the test water by a float, the immersion rate remains constant even if the water level in the aeration tank fluctuates. The performance of an air lift pump is determined by the air flow lid and immersion rate, so the amount of water pumped is determined by selecting the appropriate amount of air @t and immersion rate. The test water pumped in this way was the first sample. Second DOftt-
The Do value at the time of passing is measured, and the r value can be measured by dividing it by the time Δt of passing on the measuring device with each Do meter.

G、実施例 以下図に基いて本発明の一実施例2I−評述する。G. Example Embodiment 2I of the present invention will be described below based on the figures.

先ず本発明の説明に先立ってその測定の基本原理を第3
図に基いて説明する、 サンプリングポンプk[動して試料(検水)?エアレー
シヨンカラム20に注入し、このカラム20内にエアを
適量に吹き込んでエアレーシヨン−jる。エアレーシヨ
ン後の検水は、第1のDO測定セル21に送られ、?g
に測定力ラム22會通つて第2のDO測定セル23に流
人する。この間エアレーシヨンは行なわれていないが、
各測定セル21.26では夫々DO値が測定される。第
1のDO測定セル21にて測定され次DO値[:DOI
Aと、第2のDo測定セル23にて測定され次DO値(
Do]nとは、夫々減算器24に出され(Do)B−(
DOIAの引算が行なわれる。今、第1のDO測定セル
21と第2のDo測定セル26間において、その途中で
の攪拌が無視できる状態で流れているとすると、(1)
式においてKL、=0とおくと、da =− dt    ’ となる。流雪が流量調li器25により制御されて一定
とし、且つ測定カラム22t−通過する時間tΔtとす
ると。
First, before explaining the present invention, the basic principles of its measurement will be explained in the third section.
Explain based on the diagram: How to operate the sampling pump k [to sample (test water)?] The mixture is injected into an aeration column 20, and an appropriate amount of air is blown into the column 20 for aeration. The sample water after aeration is sent to the first DO measuring cell 21, g
The measuring force ram 22 is then transferred to the second DO measuring cell 23. Although no aeration was performed during this time,
A DO value is measured in each measuring cell 21.26. The next DO value measured by the first DO measurement cell 21 [:DOI
A and the next DO value (
(Do)B−(
A subtraction of DOIA is performed. Now, assuming that the flow is flowing between the first DO measuring cell 21 and the second Do measuring cell 26 with stirring in the middle being negligible, (1)
If KL = 0 in the equation, then da = - dt'. Assume that the drifting snow is controlled by the flow rate regulator 25 to be constant, and the time for passing through the measurement column 22t is tΔt.

となり、減′X器24の出力tΔtにて除すると、r。When divided by the output tΔt of the subtractor 24, r is obtained.

値が連続的に算出することが可能となる。It becomes possible to calculate values continuously.

なお26は恒温槽で、r、値の測定は温度に影響される
ため測定装置七恒湛槽に入れ、調整器27゜制御部28
t−介して!i度調整される。第1図は第3図の原理に
基き、実用化された本発明の一実施例を示したものであ
る。
Note that 26 is a constant temperature bath, and since the measurement of the r value is affected by temperature, the measuring device is placed in a constant temperature bath, and the regulator 27 and the control section 28
t-via! Adjusted by i degree. FIG. 1 shows an embodiment of the present invention put into practical use based on the principle shown in FIG.

同図において、1はエアレーシヨンカラム、2は測定カ
ラムで、これら各カラム1.2の外壁は一体的に構成さ
れているが、その中間位置に設けられた隔壁(越流壁)
6によって両者は区隔されている。そして、エアレーシ
ヨンカラム1の上部は拡大されて脱泡部1aが形成され
、ま友下部に一方測定カラム2には、第1のDO計5と
、このDO計5とは一定距離を有して第2のDo計6が
取付けられている。7はフロートで、このフロート7は
一体的に形成されたエアレーシヨンカラム1と測定カラ
ム2の任意位置に取付けられ、ctLら1.2と共に検
水檜(エアレーシヨンタンク)円に入れられてエアレー
シヨンカラム1のNff軍を一定に保持している。8は
エアポンプ、9.10は増幅器で夫々は第1および第2
のDO計5.6によって測定されたDO値ttjlI幅
する。11は演算器でるる。
In the figure, 1 is an aeration column, 2 is a measurement column, and the outer walls of each column 1.2 are integrally constructed, but a partition wall (overflow wall) is provided at an intermediate position.
The two are separated by 6. The upper part of the aeration column 1 is enlarged to form a defoaming part 1a, and in the lower part of the measurement column 2, there is a first DO meter 5 and a certain distance between this DO meter 5. A second Do meter 6 is attached. 7 is a float, and this float 7 is attached to any position of the integrally formed aeration column 1 and measurement column 2, and is placed in the test water tank (aeration tank) circle together with ctL et al. 1.2. The Nff force in aeration column 1 is held constant. 8 is an air pump, 9.10 is an amplifier, and the first and second
The DO value measured by a DO meter of 5.6 ttjlI width. 11 is a computing unit.

なお、こ\における浸漬率σは で規定する。In addition, the immersion rate σ in this is stipulated by.

第2図はエアレーシヨンカラム1の浸漬率σtパラメー
タとした揚水量Qw(t/min )と大気圧換算空気
流量QA(t/win )との関係を示したエアリフト
ポンプ機能の特性を示したものでろる。すなわち、浸漬
率σをある値にとれは、空気流量QAさえ一定に制御す
れば揚水量Qwは一定となる。
Figure 2 shows the characteristics of the air lift pump function, showing the relationship between the water pumping amount Qw (t/min) and the air flow rate QA (t/win) converted to atmospheric pressure, which is the immersion rate σt parameter of aeration column 1. It's a thing. That is, if the immersion rate σ is set to a certain value, the pumped water amount Qw will be constant as long as the air flow rate QA is controlled to be constant.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

フロート7に装着されたエアレーシヨンカラム1をエア
レーシヨンタンク内に浸漬すると、(実際には測定カラ
ム2も同時)カラム1はその一部をthだけ水面上に出
した形で浮いている。このthはエアレーシヨンタンク
の水位が変動してもフロートの取付位置及びカラム長に
LIIるため一定で69.浸漬率σは例えは第2図にお
けるσ=0.7となっている。このような状態でエアポ
ンプ8L−[動すると、エアは配管全通してエアインジ
ェクタ4に送られ、このインジェクタ4よりエアレーシ
ヨンカラム1内に送出される。この九め空気がカラム1
内を上昇することによって、このカラム1はエアリフト
ポンプ機能となり、検水11F人口1bより汲み上げで
越流壁3の上部よシ越流さぜる。このとき、エアレーシ
ヨンカラム1に吸い込7′Lfc検水は、エアインジェ
クタ4より吹き込れたエアによってエアレーシヨンされ
なから脱泡部1aに至り、この脱泡部1all?−おい
て脱泡されて流入量に応じた量がQwとして越流するが
、エアポンプ8において、その吐出空気量QA t−例
えは20 t/min Kなるよう一足制御されること
によって揚水量Qwは略9.517 min (a w
 Q、7 ) チ一定となっている。すなわち、エアリ
フトポンプに@能化したエアレーシヨンカラム1の性能
は、空気流入貢QAと浸漬率σに工つて決まシ、QA 
およびσを適当に遺らぶことによってカラム1内での流
入量およびエアレーシヨン条件を得ることができる。越
流したQwの検水は、測定カラム2において、その初期
のDo値がM17)DO1t5によって測定され、その
測定値DOムは増幅器9により増幅されて演算611に
出力される。さらに検水は測定カラム2の終端側に配設
されたDOO40よって最終のDo値が測定され、その
値DOBは増−610に増幅された後演算器11に出力
される。
When the aeration column 1 attached to the float 7 is immersed in the aeration tank (actually, the measurement column 2 is also included at the same time), the column 1 floats with a portion of it th above the water surface. . This th remains constant even if the water level in the aeration tank fluctuates because it depends on the float installation position and column length.69. The immersion rate σ is, for example, σ=0.7 in FIG. When the air pump 8L is operated in this state, air is sent to the air injector 4 through the entire pipe, and is sent into the aeration column 1 from the injector 4. This ninth air is column 1
By rising inside the column 1, this column 1 becomes an air lift pump function, pumping up water from the test water 11F population 1b and overflowing it to the upper part of the overflow wall 3. At this time, the sample water 7'Lfc sucked into the aeration column 1 is not aerated by the air blown from the air injector 4 and reaches the defoaming section 1a, where the degassing section 1all? - The air pump 8 is defoamed and an amount corresponding to the inflow amount overflows as Qw, but in the air pump 8, the discharged air amount QA t-For example, by controlling it so that it becomes 20 t/min K, the pumped water amount Qw is approximately 9.517 min (a w
Q, 7) Q is constant. In other words, the performance of the aeration column 1 equipped with an air lift pump is determined by the air inflow contribution QA and the immersion rate σ.
By appropriately setting and σ, the inflow amount and aeration conditions within the column 1 can be obtained. The initial Do value of the overflowing Qw test water is measured by M17)DO1t5 in the measurement column 2, and the measured value DOm is amplified by the amplifier 9 and output to the calculation 611. Further, the final Do value of the sample water is measured by a DOO 40 disposed at the terminal end of the measurement column 2, and the value DOB is amplified by -610 and then output to the computing unit 11.

測定カラム2會流れる検水は、第2図の特性により一定
であるため、検水が第1のDO計5近辺から第2のDO
O40達する時間上Δtとすると、演算器11は。
The sample water flowing through the measurement column 2 is constant due to the characteristics shown in Figure 2, so the sample water flows from near the first DO total 5 to the second DO
Assuming that the time required to reach O40 is Δt, the computing unit 11 is as follows.

の(3)式の演)l−行うことにより rr値を其出し
出力する。こ\で、測定カラム2内での検水の攪拌は無
視でき、また測定カラム2は測定可能なりOBとDOA
の差が得られるような管長、管径に選ばれることは勿論
である。
The rr value is determined and output by performing the operation of equation (3). In this way, the stirring of the sample water in the measurement column 2 can be ignored, and the measurement column 2 can be measured and the OB and DOA
Of course, the pipe length and diameter should be selected so that a difference in the amount of water can be obtained.

H1発明の効果 以上本発明によれは次のような効果が得られる。Effect of H1 invention According to the present invention, the following effects can be obtained.

(1)  エアレーシヨンカラムでは検水のサンプリン
グ時にエアリフト効果を用いてサンプリングとエアレー
シヨンとt同時に行なっているので、検水をエアレーシ
ヨンカラムに注入し、しかる後にエアレーシヨンt″施
すような測定の九めの切換え操作上行うことなく連続的
にrrmk測定することができる。
(1) When sampling sample water with an aeration column, sampling and aeration are performed at the same time using the air lift effect, so it is possible to perform measurements in which the sample water is injected into the aeration column and then aeration is performed. It is possible to continuously measure rrmk without performing a ninth switching operation.

(2) エアレーシヨンカラムへのサンプル流入量およ
びエアレーシヨン効果の程度はエアリフトポンプの特性
から容易に設計できる。すなわち、浸漬率σを小さくと
ればサンプル流入量が減少し、エアレーショ7カラム内
でエアレーシヨンヲ受ケる時間が長くなるなどそのポン
プ特性によって容易に設計できる。
(2) The amount of sample flowing into the aeration column and the degree of the aeration effect can be easily designed from the characteristics of the air lift pump. That is, if the immersion rate σ is set small, the amount of sample flowing in decreases, and the time required to receive aeration in the aeration column 7 becomes longer.This can be easily designed depending on the pump characteristics.

(3)  エアレーシヨンカラムはフロートによって常
に一定の浸漬率を保つことができるので、空気流量さえ
一定にすればエアレーショyタンクの水位変動があって
もサンプル流量を一定にすることができ、したがって(
3)式のΔtは一定としてrr値が容易に、しかも高精
度−計算′できる。
(3) Since the aeration column can always maintain a constant immersion rate using a float, as long as the air flow rate remains constant, the sample flow rate can be kept constant even if the water level in the aeration tank fluctuates. (
3) Assuming that Δt in the equation is constant, the rr value can be calculated easily and with high precision.

(4)  検水の流路であるエアレーショ7カラムと測
定カラムは、その大部分がエアレーシヨンタンクに水没
している几め!i度変化による影響が少なく恒漏槽など
を用いなくとも安定した測定が可能となる。
(4) Most of the aeration 7 column and measurement column, which are the flow paths for the test water, are submerged in water in the aeration tank! There is little influence from changes in degree, and stable measurement is possible without using a constant leakage tank or the like.

(5)浸漬式で配管などの機械的なサンプリング装置全
必要としない簡単な構造となっているため、タンク内の
夾雑物によるトラブル発生の生じない装置が得られる。
(5) Since it is an immersion type and has a simple structure that does not require any mechanical sampling equipment such as piping, it is possible to obtain a device that does not cause trouble due to foreign matter in the tank.

(6)測定が連続であるため制御の次めの信号および毒
物流入の監視モニタとして優れた効果七有する。
(6) Since the measurement is continuous, it has an excellent effect as a signal for control and as a monitor for the inflow of toxic substances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例七本す構成図、第2図は説明
の次めのQW−QA関係脣性図、第3図はrrljl1
1定の九めの原理説明図である。 1はエアレーシヨンカラム、2は測定カラム、5Fi隔
壁(越流壁)4はエアインジェクタ、5゜6はDo!t
t、7はフロート、8はエアポンプ、9゜10は増II
Ia器、11は演算器。 第1図 第2図 大荒圧換算!覧凍量Qa(17m1n)−第3図 手続補正書(。え。 昭和62年6月、2日
Fig. 1 is a seven-wire configuration diagram of an embodiment of the present invention, Fig. 2 is a QW-QA relationship diagram that will be explained next, and Fig. 3 is a diagram showing the relationship between QW and QA.
It is an explanatory diagram of the ninth principle of one constant. 1 is the aeration column, 2 is the measurement column, 5Fi bulkhead (overflow wall) 4 is the air injector, 5゜6 is Do! t
t, 7 is float, 8 is air pump, 9゜10 is increase II
Ia unit, 11 is an arithmetic unit. Figure 1 Figure 2 Large rough pressure conversion! Frozen volume Qa (17 m1n) - Figure 3 procedural amendment (.e. June 2, 1988

Claims (5)

【特許請求の範囲】[Claims] (1)エアレーシヨンカラムに検水を導入し、この導入
された検水をエアレーシヨンした後の溶存酸素値を用い
て酸素利用速度を測定するものに於て、前記エアレーシ
ヨンカラムの一端側を検水中に浸漬してその浸漬率を一
定とすると共に、エアレーシヨン後の検水が第1の溶存
酸素計近辺より第2の溶存酸素計近辺に達する時間をΔ
tとしたとき、前記第2の溶存酸素計の検出出力値と第
1の溶存酸素計の検出出力値との差をΔtにて除して測
定することを特徴とする酸素利用速度の測定方法。
(1) In a system in which a test water is introduced into an aeration column and the oxygen utilization rate is measured using the dissolved oxygen value after aeration of the introduced test water, one end of the aeration column is is immersed in the test water to keep the immersion rate constant, and the time required for the test water after aeration to reach the vicinity of the second dissolved oxygen meter from the vicinity of the first dissolved oxygen meter is determined by Δ.
A method for measuring the oxygen utilization rate, characterized in that the measurement is carried out by dividing the difference between the detected output value of the second dissolved oxygen meter and the detected output value of the first dissolved oxygen meter, where t is Δt. .
(2)エアレーシヨンと検水のサンプリングとを同時に
行うことを特徴とする特許請求の範囲第1項記載の酸素
利用速度の測定方法。
(2) The method for measuring oxygen utilization rate according to claim 1, characterized in that aeration and water sampling are performed simultaneously.
(3)エアレーシヨンカラムに検水を導入し、この導入
された検水をエアレーシヨンした後の溶存酸素値を用い
て酸素利用速度を測定するものに於て、一端が検水中に
浸漬されたエアレーシヨンカラムを支持手段によつて浸
漬率一定に保持し、この保持されたエアレーシヨンカラ
ムの浸漬側下部にエアポンプより送出された空気を吐出
するエアインジェクタを設け、更に前記検水の水面上側
に突出したエアレーシヨンカラムの一側に越流壁を設け
ると共に、この越流壁を越流した検水を導入する測定カ
ラムを設け、この測定カラムに所定間隔を有して第1と
第2の溶存酸素計を設けたことを特徴とする酸素利用速
度の測定装置。
(3) When measuring the oxygen utilization rate using the dissolved oxygen value after introducing test water into an aeration column and aerating the introduced test water, one end is immersed in the test water. The aeration column is held at a constant immersion rate by a support means, and an air injector is provided at the lower part of the immersion side of the held aeration column for discharging air sent out from an air pump, and furthermore, the water level of the sample water is An overflow wall is provided on one side of the aeration column projecting upward, and a measurement column is provided to introduce the test water that has overflowed the overflow wall. An apparatus for measuring oxygen utilization rate, characterized in that a second dissolved oxygen meter is provided.
(4)エアレーシヨンカラムの支持手段はフロートであ
ることを特徴とする特許請求の範囲第3項記載の酸素利
用速度の測定装置。
(4) The oxygen utilization rate measuring device according to claim 3, wherein the supporting means for the aeration column is a float.
(5)検水の水面上側に突出した部位のエアレーシヨン
カラムに脱胞部を設けたことを特徴とする特許請求の範
囲第3項又は第4項記載の酸素利用速度の測定装置。
(5) The oxygen utilization rate measuring device according to claim 3 or 4, characterized in that an aeration column protruding above the water surface of the test sample is provided with a desulfurization section.
JP62025953A 1987-02-06 1987-02-06 Method and apparatus for measuring oxygen utilizing speed Pending JPS63193064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62025953A JPS63193064A (en) 1987-02-06 1987-02-06 Method and apparatus for measuring oxygen utilizing speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62025953A JPS63193064A (en) 1987-02-06 1987-02-06 Method and apparatus for measuring oxygen utilizing speed

Publications (1)

Publication Number Publication Date
JPS63193064A true JPS63193064A (en) 1988-08-10

Family

ID=12180122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62025953A Pending JPS63193064A (en) 1987-02-06 1987-02-06 Method and apparatus for measuring oxygen utilizing speed

Country Status (1)

Country Link
JP (1) JPS63193064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471603B1 (en) 1996-10-23 2002-10-29 Callaway Golf Company Contoured golf club face
KR100975983B1 (en) 2008-01-31 2010-08-13 김현욱 Method for watching at the real time inflow of materials obstructing of nitration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6471603B1 (en) 1996-10-23 2002-10-29 Callaway Golf Company Contoured golf club face
KR100975983B1 (en) 2008-01-31 2010-08-13 김현욱 Method for watching at the real time inflow of materials obstructing of nitration

Similar Documents

Publication Publication Date Title
US3942792A (en) Process and apparatus for measuring dissolved gas
Al-Ahmady Mathematical Model for Calculating Oxygen Mass Transfer Coefficient in Diffused Air Systems.
JP2013152146A (en) Water quality inspection device and water quality inspection method
Stukenberg et al. Experiences in evaluating and specifying aeration equipment
Burris et al. Bubble dynamics and oxygen transfer in a hypolimnetic aerator
JPS63193064A (en) Method and apparatus for measuring oxygen utilizing speed
NL8600396A (en) METHOD FOR DETERMINING THE RESPIRATION RATE OF A RESPIRATORY MATERIAL IN A CONTINUOUS PROCESS FLOW AND AN APPARATUS SUITABLE FOR SUCH APPLICATION.
JP3289522B2 (en) BOD measuring device
CN114323120B (en) Sludge discharge amount measuring method, control method, treatment system, equipment and medium
CN204389145U (en) To paddle Flow around Building resistance measurement device
CA2171473C (en) Quick biochemical oxygen demand test and apparatus for the same
CN114485864B (en) Electromagnetic flowmeter precision detection device and detection method
CN220583522U (en) Measurement system for sewage treatment system gas emission flux
JPS5815032B2 (en) Sample collection and measurement equipment for activated sludge method
JPS59171861A (en) Breathing speed measuring apparatus
JPS6298256A (en) Method for measuring respiration speed
JPH08313513A (en) Method for measuring respiration speed
JPS54127154A (en) Automatic control system for activated sludge process
RU36893U1 (en) INSTALLATION FOR TESTING OIL AND OIL PRODUCT HYDROGEN
AU665907B2 (en) Device for measuring dissolved oxygen demand
SU1101733A1 (en) Measuring device for determination of biological oxygen demand of sewage
SU1169575A1 (en) Method and apparatus for consumption of oxygen by water organisms
JPH0141111B2 (en)
KR100193784B1 (en) Oxygen Transfer Coefficient Measurement in Pure Oxygen Activated Sludge Process
JPH0130421B2 (en)