JPS63183278A - Compressor - Google Patents

Compressor

Info

Publication number
JPS63183278A
JPS63183278A JP1551587A JP1551587A JPS63183278A JP S63183278 A JPS63183278 A JP S63183278A JP 1551587 A JP1551587 A JP 1551587A JP 1551587 A JP1551587 A JP 1551587A JP S63183278 A JPS63183278 A JP S63183278A
Authority
JP
Japan
Prior art keywords
piston
chamber
compression chamber
container
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1551587A
Other languages
Japanese (ja)
Inventor
Kenichi Inota
猪田 憲一
Terumaru Harada
照丸 原田
Tatsuo Fujita
龍夫 藤田
Kinichi Adachi
足立 欣一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1551587A priority Critical patent/JPS63183278A/en
Publication of JPS63183278A publication Critical patent/JPS63183278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To improve the adiabatic efficiency of a compressor and reduce the power consumption by providing an intake valve located in a container in a flow path affording communication between an intake chamber and a compression chamber, while enabling the flow path to be interruped by the slide surfaces between a piston and the inner wall of container. CONSTITUTION:A piston 2 coupled with an armature 3 of a linear motor is fitted slidably in a container 1 so that a compression chamber 7 is defined on the lower end face side of piston 2. When pressure in the compression chamber 7 is reduced by the upward movement of piston 2, an intake valve 10 provided on the lower portion of container 1 is opened so that refrigerant having low temperature and pressure in the intake chamber 8 flows into the compression chamber 7. Also, the refrigerant in the compression chamber 7 is compressed by the succeeding downward movement of piston 2 to push open a discharge valve 11 and send the high temperature and pressure refrigerant into the discharge chamber 13. When the piston 2 ascends again through the lower dead point, the discharge valve 11 is closed and the intake valve 10 is opened to take in the refrigerant again.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は圧縮機に関するものである。その中でも特に
フリーピストン型圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to compressors. Among these, it particularly relates to free piston type compressors.

従来の技術 従来のフリーピストン型圧縮機は第2図のような構成に
なっていた。
Prior Art A conventional free piston compressor has a configuration as shown in FIG.

すなわち、27はその中に冷媒が封入されている容器、
28は容器の内壁に摺動自在に上下に運動するピストン
、29はピストンに結合されているリニアモータの電機
子、30はリニアモータの界磁、31は端子、32は電
源である。
That is, 27 is a container in which a refrigerant is sealed;
28 is a piston that moves up and down slidably on the inner wall of the container, 29 is an armature of a linear motor coupled to the piston, 30 is a field of the linear motor, 31 is a terminal, and 32 is a power source.

33は圧縮室、34は吸入室、36はピストン28の壁
に設けられた環状のみそ、36.37はみぞ35と吸入
弁38とを連通ずる流路である。39は吐出弁、4oは
吐出弁39に設けられた吐出ガスの流路、41は吐出室
、42は吐出弁を上方に押付けるための圧縮コイルばね
である。
33 is a compression chamber, 34 is a suction chamber, 36 is an annular groove provided on the wall of the piston 28, and 36.37 is a flow path that communicates the groove 35 with the suction valve 38. 39 is a discharge valve, 4o is a discharge gas flow path provided in the discharge valve 39, 41 is a discharge chamber, and 42 is a compression coil spring for pressing the discharge valve upward.

43は凝縮器、44は膨張弁、45は蒸発器、46は吸
入ガス温度を検知する感温筒である。
43 is a condenser, 44 is an expansion valve, 45 is an evaporator, and 46 is a temperature sensing cylinder for detecting the temperature of the intake gas.

このような構成に於てピストン28はリニアモータ29
,30の、駆動力によって上下に運動しており、その結
果ピストン28が上昇して圧縮室33の圧力が吸入室3
4の圧力より低下すると吸入弁38が開いて吸入室34
の低温低圧の冷媒は圧縮室33へ流入する。そしてピス
トン28がさらに上がって上死点をへて下降すると圧縮
室33の冷媒は高温高圧になる、そして吐出室41の圧
力より高くなると吐出弁39が開いて流路4oを通って
吐出室41へ流出する。そしてピストン28がさらに下
降し、下死点をへて逆に上昇すると圧縮室33の圧力は
吐出室41の圧力より低くなり吐出弁39は閉じる。そ
してピストン28がさらに上昇して圧縮室33の圧力が
吸入室34の圧力より低下すると吸入弁38が開いて吸
入室34の低温低圧の冷媒は圧縮室33へ流入する。
In such a configuration, the piston 28 is connected to the linear motor 29.
, 30 are moved up and down by the driving force, and as a result, the piston 28 rises and the pressure in the compression chamber 33 increases to the suction chamber 3.
When the pressure drops below 4, the suction valve 38 opens and the suction chamber 34
The low-temperature, low-pressure refrigerant flows into the compression chamber 33. When the piston 28 further rises, passes through the top dead center and descends, the refrigerant in the compression chamber 33 becomes high temperature and high pressure, and when the pressure becomes higher than the pressure in the discharge chamber 41, the discharge valve 39 opens and passes through the flow path 4o to the discharge chamber 41. leaks to. Then, when the piston 28 further descends, passes the bottom dead center, and reversely rises, the pressure in the compression chamber 33 becomes lower than the pressure in the discharge chamber 41, and the discharge valve 39 closes. Then, when the piston 28 further rises and the pressure in the compression chamber 33 becomes lower than the pressure in the suction chamber 34, the suction valve 38 opens and the low temperature, low pressure refrigerant in the suction chamber 34 flows into the compression chamber 33.

以上のようにしてピストン28の上下運動によって吸入
室38の低温低圧の冷媒は圧縮室33へ流入し圧縮され
、高温高圧となって吐出室41へ流出する。
As described above, due to the vertical movement of the piston 28, the low temperature, low pressure refrigerant in the suction chamber 38 flows into the compression chamber 33, is compressed, becomes high temperature and high pressure, and flows out into the discharge chamber 41.

吐出室41の高温高圧の冷媒は凝縮器43に入り、ここ
で冷却されて液化し膨張弁44に入る、膨張弁44で膨
張した冷媒は低温低圧となる。そして蒸発器46に入る
、ここで冷媒は加熱されて低温低圧の気体となり吸入室
34へ流入する。
The high-temperature, high-pressure refrigerant in the discharge chamber 41 enters the condenser 43, where it is cooled and liquefied, and enters the expansion valve 44. The refrigerant expanded in the expansion valve 44 becomes low-temperature and low-pressure. The refrigerant then enters the evaporator 46, where it is heated to become a low-temperature, low-pressure gas and flows into the suction chamber 34.

以上のようにして蒸発器46で吸収した熱と圧縮機によ
って冷媒に対してなされた仕事は凝縮器43で放熱され
、冷凍機の作用を行うのである。
The heat absorbed by the evaporator 46 and the work done on the refrigerant by the compressor as described above are radiated by the condenser 43, thereby performing the function of a refrigerator.

発明が解決しようとする問題点 しかし、このような構造のものでは吸入室34から吸入
弁38に至るまでの流路に於て吸入室34からみぞ35
に至るまでに1ケ所の急拡大、みぞ36から流路36に
至るまでに1ケ所の急縮小、流路36から流路37に至
るまでに1ケ所の曲がり部があり、冷媒が吸入室34か
ら吸入弁38に至るまでに圧力降下を生じる箇所が多く
あった。
Problems to be Solved by the Invention However, with such a structure, there is a gap between the suction chamber 34 and the groove 35 in the flow path from the suction chamber 34 to the suction valve 38.
There is one sudden expansion from the groove 36 to the flow path 36, one sudden contraction from the groove 36 to the flow path 36, and one bend between the flow path 36 and the flow path 37. There were many places where pressure drop occurred from the to the suction valve 38.

その結果、圧縮機の断熱効率が下がり、同一の圧縮仕事
をするのにより多くの電力を必要とするという問題点が
あった。
As a result, there was a problem in that the adiabatic efficiency of the compressor decreased and more power was required to perform the same compression work.

そこで本発明は吸入室から吸入弁に至る流路での圧力降
下を低減し、断熱効率の高い、そして消費電力の少い圧
縮機を提供しようとするものである。
Therefore, the present invention aims to provide a compressor that reduces the pressure drop in the flow path from the suction chamber to the suction valve, has high adiabatic efficiency, and has low power consumption.

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な手段は、
圧縮される流体の存在する吸入室と圧縮室とを連通ずる
流路Aに設けられた吸入弁と、吸入弁から容器の壁内を
通って圧縮室へ連通ししかもピストンの容器内壁との摺
動面によって圧縮室への連通がしゃ断され得るように構
成されたところの流路Aの一部を構成する流路A′であ
る。
Means for solving the problems and technical means of the present invention for solving the above problems are as follows:
A suction valve provided in the flow path A that communicates the suction chamber in which the fluid to be compressed exists and the compression chamber, and a suction valve that communicates with the compression chamber through the inside of the container wall, and a sliding contact between the piston and the inner wall of the container. This is a flow path A' that constitutes a part of the flow path A that is configured such that communication with the compression chamber can be cut off by a dynamic surface.

作  用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

すなわち、吸入弁は容器に設けられており、吸入室から
吸入弁に至る流路は従来例にくらべより圧力降下が小さ
い流路となる。
That is, the suction valve is provided in the container, and the flow path from the suction chamber to the suction valve is a flow path with a smaller pressure drop than in the conventional example.

実施例 以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Embodiment Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図に於いて1は容器でその中に冷媒が封入されてい
る。2は容器1の内壁に摺動自在に上下に運動するピス
トン、3はピストンに結合されているリニアモータの電
機子、4はリニアモータの界磁、6は端子、6は電機子
3の位置を検出する為の位置検出器である。
In FIG. 1, 1 is a container in which a refrigerant is sealed. 2 is a piston that slides up and down on the inner wall of the container 1, 3 is an armature of a linear motor coupled to the piston, 4 is a field of the linear motor, 6 is a terminal, and 6 is a position of armature 3. This is a position detector for detecting.

7は圧縮室。8は吸入室、9は吸入ポート、1゜は吸入
弁、11は吐出弁、12は吐出ガスの通る流路、13は
吐出室である。
7 is a compression chamber. 8 is a suction chamber, 9 is a suction port, 1° is a suction valve, 11 is a discharge valve, 12 is a passage through which discharge gas passes, and 13 is a discharge chamber.

14は凝縮器、16は膨張弁、14蒸発器、17は吸入
ガスの温度を検出する感温筒である。
14 is a condenser, 16 is an expansion valve, 14 is an evaporator, and 17 is a temperature sensing cylinder for detecting the temperature of the intake gas.

また18は制御装置、19 、20は弁である。Further, 18 is a control device, and 19 and 20 are valves.

また26は空間23と空間24とを連通ずる流路である
Further, 26 is a flow path that communicates the space 23 and the space 24.

また21はピストン2に設けられた突起、22は吐出弁
に設けられた環状のみそで、ピストン2と吐出弁11と
が所定の距離近づくと、突起21とみぞ22とで一つの
閉空間が形成される。
Further, 21 is a protrusion provided on the piston 2, and 22 is an annular miso provided on the discharge valve. When the piston 2 and the discharge valve 11 approach a predetermined distance, the protrusion 21 and the groove 22 form a closed space. It is formed.

次に、この一実施例の構成における作用を説明する。先
ずピストン2はリニアモータ3,4の駆動力によって上
下に運動しており、その結果ピストン2が上昇して圧縮
室7の圧力が吸入室8の圧力より低下すると吸入弁1o
が開いて吸入室8の低温低圧の冷媒は圧縮室7へ流入す
る。そしてピストン2がさらに上がって上死点をへて下
降すると圧縮室7の冷媒は高温高圧になる、そして吐出
室13の圧力より高くなると吐出弁11が開いて吐出室
13へ流出する。そしてピストン2がさらに下降し、下
死点をへて逆に上昇すると圧縮室7の圧力は吐出室13
の圧力より低くなり吐出弁11は閉じる。そしてピスト
ン2がさらに上昇して圧縮室7の圧力が吸入室8の圧力
より低下すると吸入弁1oが開いて吸入室8の低温低圧
の冷媒は圧縮室7へ流入する。
Next, the operation of the configuration of this embodiment will be explained. First, the piston 2 is moving up and down by the driving force of the linear motors 3 and 4. As a result, the piston 2 rises and the pressure in the compression chamber 7 becomes lower than the pressure in the suction chamber 8.
is opened, and the low-temperature, low-pressure refrigerant in the suction chamber 8 flows into the compression chamber 7. When the piston 2 further rises, passes the top dead center and descends, the refrigerant in the compression chamber 7 becomes high temperature and high pressure, and when the pressure becomes higher than the pressure in the discharge chamber 13, the discharge valve 11 opens and flows out into the discharge chamber 13. Then, when the piston 2 further descends, passes the bottom dead center and rises in the opposite direction, the pressure in the compression chamber 7 decreases to the discharge chamber 13.
The pressure becomes lower than , and the discharge valve 11 closes. When the piston 2 further rises and the pressure in the compression chamber 7 becomes lower than the pressure in the suction chamber 8, the suction valve 1o opens and the low temperature, low pressure refrigerant in the suction chamber 8 flows into the compression chamber 7.

以上のようにしてピストン2の上下運動によって吸入室
8の低温低圧の冷媒は圧縮室7へ流入し圧縮され、高温
高圧となって吐出室13へ流出する。
As described above, due to the vertical movement of the piston 2, the low temperature, low pressure refrigerant in the suction chamber 8 flows into the compression chamber 7, is compressed, becomes high temperature and high pressure, and flows out into the discharge chamber 13.

吐出室13の高温高圧の冷媒は凝縮器14に入り、ここ
で冷却されて液化し膨張弁16に入る、膨張弁16で膨
張した冷媒は低温低圧となる。そして蒸発器16に入る
。ここで冷媒は加熱されて低温低圧の気体となり吸入室
8へ流入する。
The high-temperature, high-pressure refrigerant in the discharge chamber 13 enters the condenser 14, where it is cooled and liquefied, and enters the expansion valve 16. The refrigerant expanded in the expansion valve 16 becomes low-temperature and low-pressure. Then, it enters the evaporator 16. Here, the refrigerant is heated to become a low temperature, low pressure gas and flows into the suction chamber 8.

以上のようにして蒸発器16で吸収した熱と圧縮機によ
って冷媒に対してなされた仕事は凝縮器14で放熱され
、冷凍機の作用を行うのである。
The heat absorbed by the evaporator 16 and the work done on the refrigerant by the compressor as described above are radiated in the condenser 14, thereby performing the function of a refrigerator.

一方ピストン2の下死点の位置は吐出弁11に衝突しな
い範囲でできるだけ吐出弁11に近づくように制御され
ている。それによってピストン2が下死点に来たときに
、ピストン2と吐出弁11との間に残された冷媒が次に
ピストン2が上昇するときに再膨張し体積効率減少させ
ない為である。
On the other hand, the position of the bottom dead center of the piston 2 is controlled so as to be as close to the discharge valve 11 as possible without colliding with the discharge valve 11. This prevents the refrigerant remaining between the piston 2 and the discharge valve 11 when the piston 2 reaches the bottom dead center from expanding again when the piston 2 moves up next time, thereby preventing the volumetric efficiency from decreasing.

具体的に言うと、制御装置18は位置検出器6によって
検出されるピストン2の位置からピストン2の下死点の
位置を計算している。そして下死点の位置が設定値より
低いときは、弁19に信号を送って閉める。これによっ
て空間23と連通している空間24の圧力を下げてピス
トン2の平均位置を上昇させ下死点を上げるのである。
Specifically, the control device 18 calculates the position of the bottom dead center of the piston 2 from the position of the piston 2 detected by the position detector 6. When the bottom dead center position is lower than the set value, a signal is sent to the valve 19 to close it. This lowers the pressure in the space 24 communicating with the space 23, raises the average position of the piston 2, and raises the bottom dead center.

また弁19が全閉になっても未だ下死点の位置が設定値
より低いときは弁2oを開ける。
Further, even if the valve 19 is fully closed, if the bottom dead center position is still lower than the set value, the valve 2o is opened.

逆にピストン2の下死点の位置が設定値より高いときは
、弁2oに信号を送って弁20を閉める。
Conversely, when the bottom dead center position of the piston 2 is higher than the set value, a signal is sent to the valve 2o to close the valve 20.

そして弁2oを全閉にしてもまだ高いときは弁19を開
ける。このようにして制御装置8はピストン2の下死点
の位置を常に適当な位置になるようにし、ピストン2が
吐出弁11に衝突せず、しかも体積効率が高くなるよう
にしているのである。
If the temperature is still high even after fully closing valve 2o, valve 19 is opened. In this way, the control device 8 keeps the bottom dead center of the piston 2 at an appropriate position so that the piston 2 does not collide with the discharge valve 11 and the volumetric efficiency is increased.

なお、停電等で制御装置18が働かなくなった場合ピス
トン2が吐出弁11に衝突することがあるが、ピストン
2が吐出弁11に衝突すると吐出弁11はばね25を押
縮めて下降するので、衝突時に働く衝撃力は小さくなる
Note that if the control device 18 stops working due to a power outage or the like, the piston 2 may collide with the discharge valve 11, but when the piston 2 collides with the discharge valve 11, the discharge valve 11 compresses the spring 25 and descends. The impact force acting upon a collision becomes smaller.

ところで本実施例に於いては吸入室8の冷媒は吸入ボー
ト9を通り、吸入弁1oと容器1とのすきまを通って圧
縮室7へ流入する。
In this embodiment, the refrigerant in the suction chamber 8 passes through the suction boat 9, passes through the gap between the suction valve 1o and the container 1, and flows into the compression chamber 7.

したがって従来例にくらべて、吸入室8から吸入弁10
に至る流路に於いて圧力降下が小さくなる。
Therefore, compared to the conventional example, the suction valve 10 from the suction chamber 8
The pressure drop in the flow path leading to is small.

その為断熱効率が増加し、しだがって消費電力も減少す
るという効果を奏する。
This has the effect of increasing heat insulation efficiency and, accordingly, reducing power consumption.

発明の効果 本発明は、圧縮される流体の存在する吸入室と圧縮室と
を連通ずる流路Aに設けられた吸入弁と、吸入弁から容
器の壁内を通って圧縮室へ連通ししかもピストンの容器
内壁との摺動面によって圧縮室への連通がしゃ断され得
るように構成されたところの流路Aの一部を構成する流
路A′を有している圧縮機であるから、吸入弁はピスト
ン内ではなく容器に設けられており、吸入室から吸入弁
に至る流路は従来例にくらべ、より圧力降下が小さい流
路となる。その結果、圧縮機の断熱効率が増加し、した
がって消費電力が減少するという効果がある。
Effects of the Invention The present invention provides a suction valve provided in a flow path A that communicates a suction chamber in which a fluid to be compressed exists and a compression chamber, and a suction valve that communicates with the compression chamber through the wall of the container. Since this is a compressor that has a flow path A′ that constitutes a part of flow path A that is configured such that communication to the compression chamber can be cut off by the sliding surface of the piston with the inner wall of the container, The suction valve is provided in the container rather than in the piston, and the flow path from the suction chamber to the suction valve has a smaller pressure drop than in the conventional example. As a result, the adiabatic efficiency of the compressor is increased and therefore power consumption is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の圧縮機の縦断面図、第2図
は従来例の圧縮機を示す縦断面図である。 1・・・−・容器、2・・・・・・ピストン、3・・・
・・・電機子、4・・・・・・界磁、6・・・・・・位
置検出器、7・・・・・・圧縮室、1o・・・・・・吸
入弁、11・・・・・・吐出弁、14・・・・・・凝縮
器、15・・・・・・膨張弁、16・・・・・・蒸発器
、19 、20・・・・・・弁、18・・・・・・制御
装置、27・・・・・・容器、28・・・・・・ピスト
ン、29・・・・・・電機子、30・・・・・・界磁、
38・・・・・・吸入弁、39・・・・・・吐出弁、4
0・・・・・・流路、43・・・・・・凝縮器、44・
・・・・・膨張弁、45・・・・・・蒸発器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
図 第2図
FIG. 1 is a longitudinal sectional view of a compressor according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional compressor. 1...--Container, 2... Piston, 3...
... Armature, 4 ... Field, 6 ... Position detector, 7 ... Compression chamber, 1o ... Suction valve, 11 ... ...Discharge valve, 14... Condenser, 15... Expansion valve, 16... Evaporator, 19, 20... Valve, 18... ... Control device, 27 ... Container, 28 ... Piston, 29 ... Armature, 30 ... Field,
38...Suction valve, 39...Discharge valve, 4
0...Flow path, 43...Condenser, 44.
...Expansion valve, 45...Evaporator. Name of agent: Patent attorney Toshio Nakao and 1 other person11
Figure 2

Claims (1)

【特許請求の範囲】[Claims]  容器と前記容器の内壁に摺動自在に設けられたピスト
ンと、前記容器とピストンとで囲まれ前記ピストンの容
器に対する運動によって体積が変化する圧縮室と圧縮さ
れる流体の存在する吸入室と前記圧縮室とを連通する流
路Aに設けられた吸入弁と、圧縮された流体の存在する
吐出室と前記圧縮室とを連通する流路Bに設けられた吐
出弁と、前記吸入弁から容器の壁内を通って前記圧縮室
へ連通し、前記ピストンの容器内壁との摺動面によって
前記圧縮室への連通がしゃ断され得るように構成された
流路A′とを有し、前記流路A′は前記流路Aの一部を
構成する圧縮機。
a container, a piston slidably provided on an inner wall of the container, a compression chamber surrounded by the container and the piston and whose volume changes due to movement of the piston with respect to the container, and a suction chamber in which a fluid to be compressed exists; A suction valve provided in a flow path A that communicates with the compression chamber, a discharge valve provided in a flow path B that communicates the compression chamber with a discharge chamber in which compressed fluid exists, and a container from the suction valve. a flow path A' that passes through a wall and communicates with the compression chamber, and is configured such that communication with the compression chamber can be cut off by a sliding surface of the piston with the inner wall of the container; Path A' is a compressor that constitutes a part of the flow path A.
JP1551587A 1987-01-26 1987-01-26 Compressor Pending JPS63183278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1551587A JPS63183278A (en) 1987-01-26 1987-01-26 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1551587A JPS63183278A (en) 1987-01-26 1987-01-26 Compressor

Publications (1)

Publication Number Publication Date
JPS63183278A true JPS63183278A (en) 1988-07-28

Family

ID=11890954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1551587A Pending JPS63183278A (en) 1987-01-26 1987-01-26 Compressor

Country Status (1)

Country Link
JP (1) JPS63183278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092722A1 (en) * 2000-05-29 2001-12-06 Lg Electronics Inc. Discharge valve apparatus for reciprocating compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092722A1 (en) * 2000-05-29 2001-12-06 Lg Electronics Inc. Discharge valve apparatus for reciprocating compressor
US7056106B2 (en) 2000-05-29 2006-06-06 Lg Electronics Inc. Discharge valve apparatus for reciprocating compressor

Similar Documents

Publication Publication Date Title
US4727725A (en) Gas injection system for screw compressor
US20010026762A1 (en) Variable displacement compressor capable of reducing generation of a noise
JPH0349031B2 (en)
US20020178741A1 (en) Pressure equalization system and method
JP2006316852A (en) Pilot operated solenoid valve and heat exchange system using the same
JPS63183278A (en) Compressor
US4954053A (en) Free-piston compressor with gas spring control
JPS63183281A (en) Compressor
US4471625A (en) Gas cycle refrigerator
CN113550801B (en) CO with turbine expansion mechanism 2 Refrigerating piston compressor
US6733257B2 (en) Dual cylinder apparatus for reciprocal hermetic compressor
CN100359167C (en) Free piston type expansion-compression unit
JPS6158672B2 (en)
JPH01159473A (en) Free piston type compressor
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JPS63259357A (en) Cryogenic refrigerator
JPS6342289Y2 (en)
JPH0212351B2 (en)
JPS5919256Y2 (en) refrigeration cycle
JPH05312422A (en) Cryogenic freezer machine
JPS61291789A (en) Cooling or heat pump device
JPS61165555A (en) Refrigerating air-cooling device
JPS611888A (en) Refrigerant compressor
CN117703754A (en) Back pressure adjusting device, scroll compressor, refrigerating system and back pressure adjusting method
JPS6361582B2 (en)