JPS631818B2 - - Google Patents

Info

Publication number
JPS631818B2
JPS631818B2 JP54107461A JP10746179A JPS631818B2 JP S631818 B2 JPS631818 B2 JP S631818B2 JP 54107461 A JP54107461 A JP 54107461A JP 10746179 A JP10746179 A JP 10746179A JP S631818 B2 JPS631818 B2 JP S631818B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
charging
battery
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54107461A
Other languages
Japanese (ja)
Other versions
JPS5630272A (en
Inventor
Katsuo Fukui
Takeshi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10746179A priority Critical patent/JPS5630272A/en
Publication of JPS5630272A publication Critical patent/JPS5630272A/en
Publication of JPS631818B2 publication Critical patent/JPS631818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は個々の電池ブロツクを順次個別に充電
するようにした電池の充電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery charging device for sequentially and individually charging individual battery blocks.

従来複数の電池ブロツクを充電する方式とし
て、複数の電池ブロツクを直列接続した直列充電
方式と、複数の電池を並列接続した並列充電方式
とがある。直列充電方式は個々の電池ブロツクに
よつて残存電気量が異なる場合にも、全ての電池
ブロツクに同一の充電電流が流れるので、電池ブ
ロツクによつて過充電になつたり充電不足になる
欠点がある。また並列充電方式においては、急速
充電の場合電池ブロツクの充電枝路毎に充電制御
装置を設けねばならず、全体の装置が大型化する
欠点がある。
Conventional methods for charging a plurality of battery blocks include a series charging method in which a plurality of battery blocks are connected in series, and a parallel charging method in which a plurality of batteries are connected in parallel. In the series charging method, the same charging current flows through all battery blocks even if the amount of remaining electricity varies depending on the individual battery blocks, so there is a drawback that some battery blocks may become overcharged or undercharged. . Furthermore, in the parallel charging method, in the case of rapid charging, a charging control device must be provided for each charging branch of the battery block, which has the disadvantage that the overall device becomes larger.

本発明は基本的にはかかる点に鑑み発明された
ものであるが、さらに各電池ブロツクの充電量を
可及的に大にせんとするものであり、以下本発明
の具体化例を図面に基いて説明する。第1図は本
発明による充電装置の概略図である。この図面に
おいて1は充電電源回路にして交流入力eを降圧
する降圧回路2及びその降圧出力を整流する整流
回路3からなる。充電電源回路1には個々の電池
ブロツク(たとえば1個のNiCd電池)4を個別
に充電する複数の充電枝路51〜5oが並列接続さ
れている。各充電枝路は夫々電池ブロツク4の接
続端子6,6と電子スイツチ7を備えており、各
電子スイツチは自動切換回路8の出力により順次
開閉制御される。
The present invention was basically invented in view of these points, but it is also intended to increase the amount of charge of each battery block as much as possible. I will explain based on this. FIG. 1 is a schematic diagram of a charging device according to the invention. In this drawing, reference numeral 1 serves as a charging power supply circuit, and includes a step-down circuit 2 that steps down an AC input e, and a rectifier circuit 3 that rectifies its step-down output. A plurality of charging branches 5 1 to 5 o are connected in parallel to the charging power supply circuit 1 for individually charging each battery block 4 (for example, one NiCd battery). Each charging branch is provided with connection terminals 6, 6 of the battery block 4 and an electronic switch 7, and each electronic switch is sequentially controlled to open and close by the output of an automatic switching circuit 8.

9は充電中の電池ブロツク4の充電状態を検出
して電池ブロツク4の充電を制御する制御回路に
して、次のように構成されている。即ち充電中の
電池ブロツク4に並列接続される分圧回路10
と、該分圧回路にスイツチ回路11を介して接続
される検出回路12及び記憶回路13と、検出回
路12の出力と記憶回路13の記憶電圧の所定の
差電圧を検出する比較回路14とからなる。スイ
ツチ回路11はたとえば交流入力eの一サイクル
に1個のタイミングパルスにより間欠的に閉成す
るものであり、スイツチ回路11の閉成により検
出回路12にて電池ブロツク4の比例電圧を検出
すると共に記憶回路13にて前記比例電圧の最大
電圧より所定電圧V低い電圧を記憶する。
Reference numeral 9 denotes a control circuit for detecting the state of charge of the battery block 4 during charging and controlling the charging of the battery block 4, which is constructed as follows. That is, the voltage dividing circuit 10 is connected in parallel to the battery block 4 that is being charged.
, a detection circuit 12 and a storage circuit 13 connected to the voltage dividing circuit via a switch circuit 11, and a comparison circuit 14 that detects a predetermined difference voltage between the output of the detection circuit 12 and the storage voltage of the storage circuit 13. Become. The switch circuit 11 is intermittently closed by, for example, one timing pulse per cycle of the AC input e, and when the switch circuit 11 is closed, the detection circuit 12 detects the proportional voltage of the battery block 4 and also The storage circuit 13 stores a voltage that is a predetermined voltage V lower than the maximum voltage of the proportional voltages.

而して電池ブロツクの充電電圧特性は第2図で
Aで示されるピーク点aを有しその後低下する。
この低下領域において充電量特性Bは満充電とな
る。
The charging voltage characteristic of the battery block has a peak point a indicated by A in FIG. 2, and then decreases.
In this decreasing region, the charge amount characteristic B becomes fully charged.

前記検出回路12の検出比例電圧は特性Cとな
り、また記憶回路13の記憶電圧は特性Dとな
る。従つて記憶回路13の記憶電圧はピーク時点
t1の電圧Vcとなる。また特性Cから明らかなよ
うにピーク時点t1後検出回路12の出力が低下
し、この低下する検出回路出力と記憶電圧Vcと
の所定の差電圧たとえば零電圧になる時点t2で比
較回路14が出力を生ずる。特性Eは特性C,D
の差電圧特性である。
The detected proportional voltage of the detection circuit 12 has a characteristic C, and the storage voltage of the memory circuit 13 has a characteristic D. Therefore, the storage voltage of the storage circuit 13 is at the peak point.
The voltage becomes Vc at t 1 . Further, as is clear from the characteristic C, the output of the detection circuit 12 decreases after the peak time t 1 , and at the time t 2 when the predetermined difference voltage between the decreasing detection circuit output and the storage voltage Vc becomes zero voltage, the comparison circuit 14 produces an output. Characteristic E is characteristic C, D
This is the differential voltage characteristic of

次に制御回路9の詳細を第3図に基いて説明す
る。分圧回路10は抵抗R1〜R4の直列列回路か
らなり、分圧端子P1〜P3を有する。スイツチ回
路11は3個のスイツチ回路S1〜S3からなる。検
出回路12は第1電位記憶素子M1からなり、第
2スイツチ回路S2を介して分圧端子P2に接続さ
れる。記憶回路13は第2第3の電位記憶素子
M2,M3及び第1演算増巾器A1からなり、第2電
位記憶素子M2は第3第4スイツチ回路S3,S4
介して分圧端子P3に接続され、第3電位記憶素
子M3は第1スイツチ回路S1を介して分圧端子P1
に接続される。第1演算増巾器A1は第2第3電
位記憶素子M2,M3の出力を入力とし、第2電位
記憶素子M2の出力が第3電位記憶素子M3の出力
に一致すると出力を生じ、第4スイツチ回路S4
開成する。このため第2電位記憶素子M2の記憶
電圧はピーク時点t1に至る迄第3電位記憶素子
M3の電圧に追従する。比較回路14は第1第2
電位記憶素子M1,M2の出力を入力とする第2演
算増巾器A2からなる。
Next, details of the control circuit 9 will be explained based on FIG. The voltage dividing circuit 10 is made up of a series circuit of resistors R1 to R4 , and has voltage dividing terminals P1 to P3 . The switch circuit 11 consists of three switch circuits S1 to S3 . The detection circuit 12 includes a first potential storage element M1 , and is connected to a voltage dividing terminal P2 via a second switch circuit S2 . The memory circuit 13 is a second and third potential memory element.
M 2 , M 3 and a first operational amplifier A 1 , the second potential storage element M 2 is connected to the voltage dividing terminal P 3 via the third and fourth switch circuits S 3 and S 4 , and the third The potential storage element M3 is connected to the voltage dividing terminal P1 via the first switch circuit S1 .
connected to. The first operational amplifier A1 inputs the outputs of the second and third potential storage elements M2 and M3 , and outputs when the output of the second potential storage element M2 matches the output of the third potential storage element M3 . occurs, and the fourth switch circuit S4 is opened. Therefore, the storage voltage of the second potential storage element M 2 remains unchanged until reaching the peak time t 1 of the third potential storage element M 2 .
Follow the voltage of M 3 . The comparison circuit 14
It consists of a second operational amplifier A 2 which receives the outputs of the potential storage elements M 1 and M 2 as input.

而してピーク時点t1までは各電位記憶素子M1
〜M3の記憶電圧が増大していくが、ピーク時点
t1後は第2電位記憶素子M2の記憶電圧Vcは第4
スイツチ回路S4の開成により一定であるに対し、
第1第3電位記憶素子M1,M3の記憶電圧は充電
電圧特性Aに対応して低下していく。このため低
下する第1電位記憶素子M1の記憶電圧と第2電
位記憶素子M2の記憶電圧Vcとの所定の差電圧
(具体例では零電圧)に至る時点t2において比較
回路14が出力を生じ、自動切換回路8にて第1
の充電枝路51の電子スイツチ7が開路され、続
いて第2の充電枝路52の電子スイツチ7が閉路
される。この充電枝路51,52の切換時に各電位
記憶素子M1〜M2は、自動切換回路8の出力によ
るリセツトスイツチRS1〜RS3の瞬時的閉成によ
りその記憶電圧が放電して初期状態に復帰せしめ
られ、次段の充電枝路52の電池ブロツク4の充
電検出に供される。
Thus, until the peak time t 1 , each potential storage element M 1
~The memory voltage of M3 increases, but at the peak point
After t 1 , the storage voltage Vc of the second potential storage element M 2 is the fourth
While it is constant due to the opening of switch circuit S4 ,
The storage voltage of the first and third potential storage elements M 1 and M 3 decreases in accordance with the charging voltage characteristic A. For this reason, the comparator circuit 14 outputs an output at time t 2 when a predetermined difference voltage (zero voltage in the specific example) between the decreasing storage voltage of the first potential storage element M 1 and the storage voltage Vc of the second potential storage element M 2 is reached. occurs, and the automatic switching circuit 8 selects the first
The electronic switch 7 of the second charging branch 5 1 is opened, and then the electronic switch 7 of the second charging branch 5 2 is closed. When the charging branches 5 1 and 5 2 are switched, the storage voltage of each potential storage element M 1 to M 2 is discharged by instantaneous closing of the reset switches RS 1 to RS 3 by the output of the automatic switching circuit 8. It is returned to the initial state and used for detecting the charge of the battery block 4 of the next stage charging branch 52 .

かくして各充電枝路51〜5oに個別に装着した
電池ブロツク4は順次充電されていく。またたと
えば第3の充電枝路53に電池ブロツク4が装着
されていない場合、第2充電枝路52の電池ブロ
ツク4の充電完了後、第3充電枝路53の電子ス
イツチ7は自動切換回路8の出力に基ずき閉路す
るが、電池ブロツクがないため分圧回路10の印
加電圧が大きく、比較回路14が異常電圧を検出
して出力を出し、自動切換回路8の出力により第
3充電枝路53の電子スイツチ7を開路し、次の
第4充電枝路54の電子スイツチ7を閉路せしめ
る。このようにして充電枝路に電池ブロツク4が
装着されていない場合には、その充電枝路を飛越
して全ての電池ブロツク4…を個別に充電する。
In this way, the battery blocks 4 individually attached to each of the charging branches 5 1 to 5 o are sequentially charged. For example, if the battery block 4 is not attached to the third charging branch 53 , the electronic switch 7 of the third charging branch 53 is automatically turned off after charging of the battery block 4 of the second charging branch 52 is completed. The circuit is closed based on the output of the switching circuit 8, but since there is no battery block, the voltage applied to the voltage dividing circuit 10 is large, and the comparator circuit 14 detects an abnormal voltage and outputs an output. The electronic switch 7 of the third charging branch 53 is opened, and the electronic switch 7 of the fourth charging branch 54 is closed. In this way, if no battery block 4 is attached to a charging branch, that charging branch is skipped and all battery blocks 4 are individually charged.

以上の如く本発明によれば、個々の電池ブロツ
クを個別に順次充電するから、残存電気量が異な
る電池ブロツクに対しても全て適正に充電するこ
とができると共に電池ブロツクの充電状態の検出
機構は1個でよく、充電装置の小型化が可能とな
る。また電池ブロツクの所定の充電状態の検出は
電池ブロツクの充電電圧特性のピーク時点後であ
り、電池の充電量を満充電量に近づけることがで
きる。さらに電池ブロツクの充電状態は電池電圧
を分圧する分圧回路の分圧点電圧として検出回路
にて検出され、電池電圧の最大電圧に対応した記
憶する記憶回路は、前記分圧点より高電位の前記
分圧回路の高電位点にスイツチを介して接続した
記憶素子の記憶電圧が前記分圧点より低電位の前
記分圧回路の低電位点電圧と等しくなるとき、前
記スイツチを開成して前記記憶電圧を階段状に上
昇せしめるため、記憶素子が検出回路の検出電圧
となる分圧点電圧より高電位の高電位点電圧から
給電されることになり、記憶電圧の前記低電位点
電圧に対する記憶電圧の追従応答性を高めること
ができる。またリセツト回路の働きによつて充電
開始時には記憶電圧が常に初期状態にセツトされ
ているので満充電時の誤検出を防ぐことができ
る。
As described above, according to the present invention, since each battery block is charged individually and sequentially, all battery blocks with different amounts of remaining electricity can be properly charged, and the detection mechanism for the state of charge of the battery blocks is Only one is required, and the charging device can be made smaller. Further, the predetermined state of charge of the battery block is detected after the peak of the charging voltage characteristic of the battery block, so that the amount of charge of the battery can be brought close to the amount of full charge. Furthermore, the state of charge of the battery block is detected by a detection circuit as a voltage dividing point voltage of a voltage dividing circuit that divides the battery voltage, and a memory circuit that stores the maximum voltage of the battery voltage is stored at a higher potential than the voltage dividing point. When the storage voltage of the storage element connected to the high potential point of the voltage dividing circuit via a switch becomes equal to the voltage of the low potential point of the voltage dividing circuit which is lower in potential than the voltage dividing point, the switch is opened and the In order to increase the storage voltage in a stepwise manner, the storage element is supplied with power from a high potential point voltage that is higher than the voltage division point voltage that is the detection voltage of the detection circuit, and the memory element is supplied with power from a high potential point voltage that is higher than the voltage division point voltage that is the detection voltage of the detection circuit. Voltage tracking response can be improved. Furthermore, since the memory voltage is always set to the initial state at the start of charging due to the function of the reset circuit, erroneous detection at full charge can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の具体例を示し、第1図は充電装
置の概略図、第2図は電池ブロツクの充電特性
図、第3図は制御回路の詳細回路図である。 4,4……電池ブロツク、51〜5o……充電枝
路、12……検出回路、13……記憶回路、14
……比較回路、8……自動切換回路、RS2……リ
セツト手段。
The drawings show specific examples of the present invention; FIG. 1 is a schematic diagram of a charging device, FIG. 2 is a charging characteristic diagram of a battery block, and FIG. 3 is a detailed circuit diagram of a control circuit. 4, 4... Battery block, 5 1 to 5 o ... Charging branch, 12... Detection circuit, 13... Memory circuit, 14
... Comparison circuit, 8 ... Automatic switching circuit, RS 2 ... Reset means.

Claims (1)

【特許請求の範囲】[Claims] 1 個々の電池ブロツクを充電する複数の充電枝
路と、充電中の電池ブロツクの電池電圧を分圧す
る分圧回路を有し、この分圧回路の分圧点電圧を
検出する検出回路と、前記分圧点より高電位の前
記分圧回路の高電位点にスイツチを介して接続し
た記憶素子の記憶電圧が、前記分圧点より低電位
の前記分圧回路の低電位点電圧と等しくなると
き、前記スイツチを開成して、前記記憶電圧を階
段上に上昇せしめる記憶回路と、前記電池電圧の
最大電圧後の低下する前記検出回路の出力と前記
記憶回路の記憶電圧との所定の差電圧を検出する
比較回路と、該比較回路の出力により前記充電枝
路を順次開閉制御する自動切換回路とを備え、前
記記憶回路は前記自動切換回路の出力により前記
記憶電圧を消去するリセツト手段を有する電池の
充電装置。
1 has a plurality of charging branches for charging individual battery blocks, a voltage divider circuit for dividing the battery voltage of the battery block being charged, and a detection circuit for detecting the voltage division point voltage of the voltage divider circuit; When the storage voltage of a storage element connected via a switch to the high potential point of the voltage dividing circuit, which has a higher potential than the voltage dividing point, becomes equal to the low potential point voltage of the voltage dividing circuit, which has a lower potential than the voltage dividing point. , the switch is opened to increase the storage voltage stepwise, and a predetermined difference voltage between the output of the detection circuit and the storage voltage of the storage circuit, which decreases after the maximum voltage of the battery voltage. A battery comprising: a comparison circuit for detecting the voltage; and an automatic switching circuit for sequentially controlling opening/closing of the charging branch circuit based on the output of the comparison circuit; charging device.
JP10746179A 1979-08-22 1979-08-22 Battery charger Granted JPS5630272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10746179A JPS5630272A (en) 1979-08-22 1979-08-22 Battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10746179A JPS5630272A (en) 1979-08-22 1979-08-22 Battery charger

Publications (2)

Publication Number Publication Date
JPS5630272A JPS5630272A (en) 1981-03-26
JPS631818B2 true JPS631818B2 (en) 1988-01-14

Family

ID=14459759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10746179A Granted JPS5630272A (en) 1979-08-22 1979-08-22 Battery charger

Country Status (1)

Country Link
JP (1) JPS5630272A (en)

Also Published As

Publication number Publication date
JPS5630272A (en) 1981-03-26

Similar Documents

Publication Publication Date Title
US5578914A (en) Charging system for multi-cell battery
US4354148A (en) Apparatus for charging rechargeable battery
US4387332A (en) Apparatus for successively charging rechargeable batteries
US4435675A (en) Battery charging system
JPH09233726A (en) Pulse charging method of secondary battery
WO1996021954A1 (en) Apparatus for simulating high battery temperature used in recharging lithium ion cells
US6388424B1 (en) Cell shunt circuit for battery cells
EP0799504A1 (en) Apparatus for simulating high battery temperature for rechargeable battery systems
US3921050A (en) Programmed battery charging system
JPH0974689A (en) Power unit using battery pack
JPH06325795A (en) Charging method and equipment for secondary battery and secondary battery equipment
JP2002186192A (en) Battery charger
JPS631818B2 (en)
JP2002199606A (en) Battery pack and charging method of the battery
JP2995142B2 (en) Series battery charger
JP3611696B2 (en) Capacitor charger
JPH1174001A (en) Charging method for lead-acid battery
JPH11313445A (en) Charging of lead-acid battery and apparatus thereof
JPH07153498A (en) Charging method for secondary battery
JPH1042484A (en) Charger
JPH06215801A (en) Charging/discharging device for storage battery
JPS5859567A (en) Charger holding resistance control system
JPH053633A (en) Battery charging controller
JPH0429077A (en) Controller for battery
JPS61154432A (en) Charger