JPS63174308A - Manufacture of semiconductor thin film crystal layer - Google Patents

Manufacture of semiconductor thin film crystal layer

Info

Publication number
JPS63174308A
JPS63174308A JP506987A JP506987A JPS63174308A JP S63174308 A JPS63174308 A JP S63174308A JP 506987 A JP506987 A JP 506987A JP 506987 A JP506987 A JP 506987A JP S63174308 A JPS63174308 A JP S63174308A
Authority
JP
Japan
Prior art keywords
film
thin film
semiconductor thin
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP506987A
Other languages
Japanese (ja)
Other versions
JPH0793259B2 (en
Inventor
Toshio Yoshii
俊夫 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP506987A priority Critical patent/JPH0793259B2/en
Publication of JPS63174308A publication Critical patent/JPS63174308A/en
Publication of JPH0793259B2 publication Critical patent/JPH0793259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the thermal conditions of the semiconductor thin film on a seed and the semiconductor thin film on an insulating film similar by isolating a ground semiconductor region which is made the seed of a recrystallizing semiconductor thin film from a ground substrate with the insulating film. CONSTITUTION:An SiO2 film 15, a polycrystalline Si film 17 and an SiO2 film 18 are formed on a crystalline Si substrate 11 by providing an aperture 16 which is made a seed. Then, after the film 17 is melted and recrystallized and a single crystal Si layer 17' is formed, the film 18 is removed and an MOS transistor consisting of a gate electrode 22, a source 13 and a drain 14 is formed on the layer 17'. Then, a region 21 which is to be made the seed is left and after an SiO2 film 22 is formed by oxidizing the layer 17', an SiO2 film 25 is formed as an interlayer insulating film. Then, after an aperture 26 is provided in the seed 21 on the film 25, a polycrystalline Si film 27 and an SiO2 film 28 are formed and a single crystal Si layer 27' is formed by melting and recrystallizing the film 27. Then, a ground Si region is isolated from the substrate 11 by the films 15, 25.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、絶縁膜上に半導体薄膜結晶層を成長させる方
法に係わり、特に絶縁膜に設けた開口部をシードとして
用いる半導体薄膜結晶層の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method of growing a semiconductor thin film crystal layer on an insulating film, and particularly relates to a method of growing a semiconductor thin film crystal layer on an insulating film, and in particular, a method of growing a semiconductor thin film crystal layer on an insulating film, and in particular, a method of growing a semiconductor thin film crystal layer on an insulating film, and in particular, a method of growing a semiconductor thin film crystal layer on an insulating film. The present invention relates to a method for manufacturing a semiconductor thin film crystal layer.

■ 単結晶薄膜を島状に分離し或いは誘電体により分離
することによって、′素子間の分離が容易且つ完全とな
る。
(2) By separating the single-crystal thin film into islands or using a dielectric material, separation between elements becomes easy and complete.

■ 単結晶薄膜上にMOSインバータ回路を作るときは
、基板バイアス効果がないことからスイッチング速度が
速い。
■ When creating a MOS inverter circuit on a single crystal thin film, the switching speed is fast because there is no substrate bias effect.

■゛ 寄生浮遊容量が小さく、高速化をはかり得る。■゛ Parasitic stray capacitance is small, allowing for faster speeds.

等の利点を有する。It has the following advantages.

ところで、SO8では下地基板として単結晶すファイア
が必要となるため、価格が高くなることが問題点として
残っている。そこで、溶融水晶板やSiウェハを酸化し
て形成した非晶質5to2膜或いはSiウェハ上に堆積
したSiN。
However, since SO8 requires a single-crystal sulfur as a base substrate, the problem remains that it is expensive. Therefore, an amorphous 5to2 film formed by oxidizing a fused quartz plate or a Si wafer, or a SiN deposited on a Si wafer.

5i02膜上に半導体膜を更に堆積したものを使用する
試みがある。このようなSOI (絶縁膜上のシリコン
)構造は、最近発達したビームアニール法によって部分
的に可能になっている。即ち、Siを例にとると、単結
晶Si基板を酸化し、5i02膜を形成した後、この一
部分を除去することによって開口し、次に多結晶Si膜
を全面に長によって単結晶化し、さらにビームの走査方
向に沿って5i02膜上の多結晶Si膜もそれに引続き
単結晶化されると云うものである。
There have been attempts to use a semiconductor film further deposited on the 5i02 film. Such SOI (silicon-on-insulator) structures are made possible in part by recently developed beam annealing techniques. That is, taking Si as an example, a single crystal Si substrate is oxidized to form a 5i02 film, a portion of this is removed to form an opening, then a polycrystalline Si film is made into a single crystal by length over the entire surface, and then a 5i02 film is formed. The polycrystalline Si film on the 5i02 film is subsequently turned into a single crystal along the beam scanning direction.

しかしながら、この種の方法にあっては次のような問題
があった。即ち、開口部上に被着したSiを溶融せしめ
るのに必要なエネルギーは、5i02膜上でのそれと比
較して高くなる。これは、Stの熱伝導率が8102の
それよりも大きいため、Si基板上のSi膜では熱が基
板下方に伝導していく割合いが大きくなり、基板表面近
くの温度が5i02膜上のSi膜よりも同一供給エネル
ギー条件の下では低くなるためである。これを解決する
ためにエネルギーを大きくすると、5i02膜上のSi
膜表面の平滑性が失われる現象が見られ、従来の方法で
は絶縁膜上に表面平坦性の優れたSi単結晶層を得るこ
とは困難であった。そして、3次元ICを実現するには
、この欠点が解決すべき大きな問題となっている。
However, this type of method has the following problems. That is, the energy required to melt the Si deposited on the opening is higher than that on the 5i02 film. This is because the thermal conductivity of St is higher than that of 8102, so the rate at which heat is conducted downwards in the Si film on the Si substrate increases, and the temperature near the substrate surface is lower than that of the Si film on the 5i02 film. This is because it is lower than that of a membrane under the same supply energy conditions. To solve this problem, if the energy is increased, the Si on the 5i02 film
A phenomenon was observed in which the smoothness of the film surface was lost, and it was difficult to obtain a Si single crystal layer with excellent surface flatness on the insulating film using conventional methods. In order to realize a three-dimensional IC, this drawback has become a major problem that must be solved.

(発明が解決しようとする問題点) 質の半導体単結晶層の成長を妨げる要因となっていた。(Problem to be solved by the invention) This was a factor that hindered the growth of a high quality semiconductor single crystal layer.

また、上記理由から、3次元ICの製造等に用いる表面
平滑性の優れた半導体単結晶層を得ることは困難であっ
た。
Furthermore, for the above-mentioned reasons, it has been difficult to obtain a semiconductor single crystal layer with excellent surface smoothness for use in manufacturing three-dimensional ICs and the like.

本発明上記事情を考慮してなされたもので、その目的と
するところは、再結晶化する半導体薄膜のシード部上と
絶縁膜上との熱的条件を同等のものとすることができ、
絶縁膜上に表面平滑性の優れた良質の半導体単結晶層を
成長させることのできる半導体薄膜結晶層の製造方法を
提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to make the thermal conditions on the seed part of the semiconductor thin film to be recrystallized and the insulating film the same,
It is an object of the present invention to provide a method for manufacturing a semiconductor thin film crystal layer, which can grow a high quality semiconductor single crystal layer with excellent surface smoothness on an insulating film.

[発明の目的〕 (問題点を解決するための手段) 本発明の骨子は、再結晶化する半導体薄膜のシード部と
なる下地半導体領域を絶縁膜で下地基板と分離し、シー
ド部から下地基板への熱伝導を小さくし、シード部上の
半導体薄膜と絶縁膜上の半導体薄膜との熱的条件を近付
けることにある。
[Objective of the Invention] (Means for Solving the Problems) The gist of the present invention is to separate a base semiconductor region, which will serve as a seed portion of a semiconductor thin film to be recrystallized, from a base substrate by an insulating film, and to separate the base semiconductor region from the base substrate from the seed portion. The objective is to reduce heat conduction to the seed portion and bring the thermal conditions of the semiconductor thin film on the seed portion and the semiconductor thin film on the insulating film closer to each other.

即ち本発明は、半導体単結晶基板上に一部開口部を有す
る絶縁膜を形成したのち、全面に非晶質若しくは多結晶
の半導体薄膜を堆積し、次いでこの半導体薄膜上でエネ
ルギービームを走査して該薄膜を溶融・再結晶化せしめ
る半導体薄膜結晶層の製造方法において、前記再結晶化
せしめる半導体薄膜と前記開口部を介して接続している
下地半導体領域を、予め絶縁膜により前記基板とは分離
するようにした方法である。
That is, in the present invention, after forming an insulating film having a partial opening on a semiconductor single crystal substrate, an amorphous or polycrystalline semiconductor thin film is deposited on the entire surface, and then an energy beam is scanned over this semiconductor thin film. In the method for manufacturing a semiconductor thin film crystal layer in which the thin film is melted and recrystallized using a semiconductor thin film, a base semiconductor region connected to the semiconductor thin film to be recrystallized via the opening is separated from the substrate by an insulating film in advance. This is a method that separates the two.

(作用) 上記方法であれば、シード部となる下地半導体領域が基
板とは絶縁膜で分離されるので、シード部領域から基板
への熱伝導が小さくなり、エネルギービーム照射時のシ
ード部上と絶縁膜上との半導体薄膜の温度差が小さくな
る。従って、半導体薄膜に照射するエネルギービームの
量を最適化することができ、絶縁膜上に良質の半導体単
結晶層を形成することが可能となる。
(Function) According to the above method, the underlying semiconductor region that becomes the seed portion is separated from the substrate by an insulating film, so that the heat conduction from the seed portion region to the substrate is reduced, and the heat transfer on the seed portion during energy beam irradiation is reduced. The temperature difference between the semiconductor thin film and the insulating film becomes smaller. Therefore, the amount of energy beam irradiated to the semiconductor thin film can be optimized, and a high quality semiconductor single crystal layer can be formed on the insulating film.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図(a)〜(g)は本発明の第1の実施例方法に係
わる半導体薄膜結晶層の製造工程、を示す断面図である
。まず、第1図(a)に示す如く単結晶Si基板11に
ゲート電極12及びソース・ドレイン13.14からな
るMOSトランジスタを形成し、この上に第1の層間絶
縁膜としてのシリコン酸化膜(Si02膜)15を平坦
に形成する。続いて、SiO2膜15の一部に後述する
ビームアニールの際のシード部となる開口部16を形成
する。その後、第1図(b)に示す如く、全面に第1の
多結晶Si膜17を堆積し、さらにニーの上にキャップ
層としての5i02膜18を堆積する。
FIGS. 1(a) to 1(g) are cross-sectional views showing the manufacturing process of a semiconductor thin film crystal layer according to the first embodiment method of the present invention. First, as shown in FIG. 1(a), a MOS transistor consisting of a gate electrode 12 and source/drain 13 and 14 is formed on a single crystal Si substrate 11, and a silicon oxide film ( A Si02 film) 15 is formed flat. Subsequently, an opening 16 is formed in a portion of the SiO2 film 15 to serve as a seed portion during beam annealing, which will be described later. Thereafter, as shown in FIG. 1(b), a first polycrystalline Si film 17 is deposited on the entire surface, and a 5i02 film 18 as a cap layer is further deposited on the knee.

次いで、第1図(c)に示す如く、キャップ層18を介
して多結晶Si層17に電子ビーム19を照射し走査す
ることにより、多結晶Si膜17を溶融・再結晶化せし
め、単結晶St層17′を形成する。ここで、上記電子
ビーム19のビーム径は100[μmφ]、走査速度は
10[CM/see ]とした。さらに、ビーム走査の
際に、該ビームを走査方向と直交する方向に高速偏向(
周波数50MHz、振幅41m)することにより、電子
ビーム19を疑似線状ビームとした。
Next, as shown in FIG. 1(c), the polycrystalline Si film 17 is melted and recrystallized by irradiating and scanning the polycrystalline Si layer 17 with an electron beam 19 through the cap layer 18 to form a single crystal. A St layer 17' is formed. Here, the beam diameter of the electron beam 19 was 100 [μmφ], and the scanning speed was 10 [CM/see]. Furthermore, during beam scanning, the beam is deflected at high speed in a direction perpendicular to the scanning direction (
The electron beam 19 was made into a pseudo-linear beam by setting the frequency to 50 MHz and the amplitude to 41 m.

次いで、第1図(d)に示す如くキャップ層18を除去
した後、単結晶St層17′にゲート電極22及びソー
ス・ドレイン13.14からなるMOSトランジスタを
形成する。さらに、次に形成すべきSi層のシード部と
なるべき部分21を残し、単結晶Si層17′を酸化し
て5i02膜22を形成する。この状態で、単結晶St
からなるシード部21は、5i02膜15.22により
覆われたものとなり、基板11とは分離されることにな
る。
Next, as shown in FIG. 1(d), after removing the cap layer 18, a MOS transistor consisting of a gate electrode 22 and source/drain 13, 14 is formed on the single crystal St layer 17'. Furthermore, a 5i02 film 22 is formed by oxidizing the single crystal Si layer 17', leaving a portion 21 that will become a seed portion of the next Si layer to be formed. In this state, single crystal St
The seed portion 21 consisting of the 5i02 film 15.22 is covered with the 5i02 film 15.22 and is separated from the substrate 11.

く全面に第2の多結晶Si膜(半導体薄膜)27を堆積
し、さらにこの上にキャップ層としての5to2膜28
を堆積する。
A second polycrystalline Si film (semiconductor thin film) 27 is deposited on the entire surface, and a 5to2 film 28 is further deposited on this as a cap layer.
Deposit.

次いで、先と同様に第1図(g)に示す如く、電子ビー
ム29を照射走査し、多結晶Si層27を溶融・再結晶
化することによって、5i02膜25上に単結晶St層
27′が形成・されることになる。
Next, as shown in FIG. 1(g) in the same manner as before, by scanning the electron beam 29 and melting and recrystallizing the polycrystalline Si layer 27, a monocrystalline St layer 27' is formed on the 5i02 film 25. will be formed and done.

このように本実施例方法によれば、絶縁膜としての5i
02膜25上に単結晶St層27′を形成することがで
きる。そしてこの場合、多結晶Si膜27をビームアニ
ールする際には、シード部21となる下地Si領域が5
i02膜15゜25により基板11と分離されているの
で、シード部21上と5i02膜25上とにおける熱的
条件は略等しいものとなる。このため、ビームアニール
の際に多結晶Si膜27をシード部21上及び5i02
膜25上とで略同じ温度に加熱することができ、良質の
単結晶St層27′を形成することができる。また、シ
ード部21上及び5i02膜25上における多結晶Si
層27のビームアニール時の温度を略等しくできるので
、ビシムエネルギーを低く抑えることが可能となり1、
 f 次いで、第2図(c)に示す如く、先の実施例と同様に
全面に多結晶Si層27及びキャップ層28を形成し、
電子゛ビーム29の照射により多結晶Si層27を溶融
・再結晶化する。
In this way, according to the method of this embodiment, 5i as an insulating film
A single crystal St layer 27' can be formed on the 02 film 25. In this case, when beam annealing the polycrystalline Si film 27, the underlying Si region that will become the seed portion 21 is
Since they are separated from the substrate 11 by the i02 film 15°25, the thermal conditions on the seed portion 21 and on the 5i02 film 25 are approximately equal. Therefore, during beam annealing, the polycrystalline Si film 27 is
The film 25 can be heated to substantially the same temperature as the film 25, and a high quality single crystal St layer 27' can be formed. Moreover, the polycrystalline Si on the seed part 21 and the 5i02 film 25 is
Since the temperature during beam annealing of the layer 27 can be made approximately equal, it is possible to keep the Visym energy low.
f Next, as shown in FIG. 2(c), a polycrystalline Si layer 27 and a cap layer 28 are formed on the entire surface as in the previous embodiment,
Polycrystalline Si layer 27 is melted and recrystallized by irradiation with electron beam 29.

このような実施例方法であっても、先の実施例と同様の
効果が得られる。また、開口部26を予め単結晶Si層
31で埋込んでおくことにより、多結晶Si層27をよ
り平坦に形成することができる等の利点がある。
Even with this embodiment method, the same effects as in the previous embodiment can be obtained. Further, by filling the opening 26 with the single crystal Si layer 31 in advance, there is an advantage that the polycrystalline Si layer 27 can be formed more flatly.

第3図(a)〜(d)は本発明の第3の実施例方法を説
明するための工程断面図である。この実施例方法は、単
結晶SL基板のシード部を絶縁分離するようにしたもの
である。
FIGS. 3(a) to 3(d) are process cross-sectional views for explaining the third embodiment of the method of the present invention. In this embodiment method, the seed portion of the single crystal SL substrate is insulated and separated.

まず、第3図(a)に示す如く、単結晶Si基板41上
にシリコン窒化膜(Si2H4)膜42を形成し、この
Si3N4膜42をレジスト43をマスクとしてバター
ニングする。この状態でB÷イオン注入を行い、マスク
されていない領域1;p十層44を形成する。
First, as shown in FIG. 3(a), a silicon nitride (Si2H4) film 42 is formed on a single crystal Si substrate 41, and this Si3N4 film 42 is patterned using a resist 43 as a mask. In this state, B÷ion implantation is performed to form an unmasked region 1; p layer 44.

次いで、第3図(b)に示す如く、SL3N442を通
してプロンプトイオン注入を行い、450[”C]でN
2中の熱処理を行い注入層をドより、p型層(基板11
の表層及びp中層44)は多孔質化するが、n型層(n
中層45)はそのままである。さらに、950[”C]
の水蒸気酸化を行い、第3図(c)に示す如く、多孔質
化したp型層を酸化し、5i02膜46を形成する。こ
のとき、プロトン注入で発生したドナーは消滅し、絶縁
層(Si02膜46)で完全に分離された単結晶領域(
シード部)47が残ることになる。
Next, as shown in FIG. 3(b), prompt ion implantation was performed through SL3N442, and N
2, the injection layer is heated, and the p-type layer (substrate 11
The surface layer and the p-middle layer 44) become porous, but the n-type layer (n
The middle layer 45) remains as it is. Furthermore, 950[”C]
Steam oxidation is performed to oxidize the porous p-type layer to form a 5i02 film 46, as shown in FIG. 3(c). At this time, the donors generated by proton injection disappear, and the single crystal region (
The seed portion) 47 will remain.

次いで、第3図(d)に示す如く、全面に層間絶縁膜と
しての5i02膜48を堆積し、この5i02膜48の
前記シード部47上に開口部49を形成する。その後、
全面に多結晶Si膜50及び図示しないキャップ層を堆
積し、これをビームアニールすることにより、先の実施
例方法と同様に単結晶St層が形成されることになる。
Next, as shown in FIG. 3(d), a 5i02 film 48 as an interlayer insulating film is deposited over the entire surface, and an opening 49 is formed on the seed portion 47 of this 5i02 film 48. after that,
By depositing a polycrystalline Si film 50 and a cap layer (not shown) on the entire surface and beam annealing them, a single crystal St layer is formed in the same manner as in the previous embodiment.

なお、本発明は上述した各実施例方法に限定されるもの
ではない。例えば、前記絶縁膜に設ける開口部は直線状
に開口してもよいし、点状に開口してもよい。さらに、
開口部の大きさ等は仕様に層の単結晶層形成の双方に本
発明を適用することも可能である。その他、本発明の要
旨を逸脱しない範囲で、種々変形して実施することがで
きる。
Note that the present invention is not limited to the methods of each embodiment described above. For example, the opening provided in the insulating film may be linear or dotted. moreover,
It is also possible to apply the present invention to both the formation of a single crystal layer and the size of the opening, etc., depending on the specifications. In addition, various modifications can be made without departing from the gist of the present invention.

[発明の効果] 以上詳述したように本発明によれば、ビームアニールす
べき半導体薄膜に接触する下地半導体領域の基板への熱
伝導が抑えられるので、シード部及び絶縁膜上の半導体
薄膜の加熱温度を略等しくすることができる。従って、
シード部における半導体薄膜の溶融・再結晶化を容易に
することができ、絶縁膜上に良質の半導体単結晶層を形
成することか可能となる。
[Effects of the Invention] As detailed above, according to the present invention, heat conduction to the substrate of the underlying semiconductor region in contact with the semiconductor thin film to be beam annealed is suppressed, so that the semiconductor thin film on the seed portion and the insulating film is The heating temperature can be made substantially equal. Therefore,
It is possible to facilitate melting and recrystallization of the semiconductor thin film in the seed portion, and it is possible to form a high quality semiconductor single crystal layer on the insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

断面図、第2図(a)〜(c)は本発明の第2の実施例
方法を説明するための工程断面図、第3図(a)〜(d
)は本発明の第3の実施例方法を説明するための工程断
面図である。 膜(半導体薄膜)、17’、27’・・・単結晶シリコ
ン層、18.28・・・キャップ層、19.29・・・
電子ビーム(エネルギービーム)、21.47・・・シ
ード部、22.46・・・5t02膜(シード部分出願
人 工業技術院長 飯塚 幸三 第1図
Cross-sectional views, FIGS. 2(a) to (c) are process cross-sectional views for explaining the second embodiment method of the present invention, and FIGS. 3(a) to (d)
) is a process sectional view for explaining the third embodiment method of the present invention. Film (semiconductor thin film), 17', 27'... Single crystal silicon layer, 18.28... Cap layer, 19.29...
Electron beam (energy beam), 21.47...Seed part, 22.46...5t02 film (Seed part Applicant Kozo Iizuka, Director General, Agency of Industrial Science and Technology Figure 1)

Claims (3)

【特許請求の範囲】[Claims] (1)半導体結晶基板上に一部開口部を有する絶縁膜を
形成したのち、前面に非晶質若しくは多結晶の半導体薄
膜を堆積し、次いでこの半導体薄膜上でエネルギービー
ムを走査して該薄膜を溶融・再結晶化せしめる半導体薄
膜結晶層の製造方法において、前記開口部に露出する下
地半導体層領域が前記基板とは絶縁膜により分離されて
いることを特徴とする半導体薄膜結晶層の製造方法。
(1) After forming an insulating film with a partial opening on a semiconductor crystal substrate, an amorphous or polycrystalline semiconductor thin film is deposited on the front surface, and an energy beam is then scanned over this semiconductor thin film to form the thin film. A method for producing a semiconductor thin film crystal layer by melting and recrystallizing a semiconductor thin film crystal layer, wherein the underlying semiconductor layer region exposed in the opening is separated from the substrate by an insulating film. .
(2)前記半導体単結晶基板は、絶縁膜上に単結晶層を
形成してなるものであることを特徴とする特許請求の範
囲第1項記載の半導体薄膜結晶層の製造方法。
(2) The method for manufacturing a semiconductor thin film crystal layer according to claim 1, wherein the semiconductor single crystal substrate is formed by forming a single crystal layer on an insulating film.
(3)前記半導体薄膜を形成する前に、前記開口部内に
単結晶半導体膜をエピタキシャル成長せしめることを特
徴とする特許請求の範囲第1項記載の半導体薄膜結晶層
の製造方法。
(3) The method for manufacturing a semiconductor thin film crystal layer according to claim 1, characterized in that, before forming the semiconductor thin film, a single crystal semiconductor film is epitaxially grown within the opening.
JP506987A 1987-01-14 1987-01-14 Method for manufacturing semiconductor thin film crystal layer Expired - Lifetime JPH0793259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP506987A JPH0793259B2 (en) 1987-01-14 1987-01-14 Method for manufacturing semiconductor thin film crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP506987A JPH0793259B2 (en) 1987-01-14 1987-01-14 Method for manufacturing semiconductor thin film crystal layer

Publications (2)

Publication Number Publication Date
JPS63174308A true JPS63174308A (en) 1988-07-18
JPH0793259B2 JPH0793259B2 (en) 1995-10-09

Family

ID=11601097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP506987A Expired - Lifetime JPH0793259B2 (en) 1987-01-14 1987-01-14 Method for manufacturing semiconductor thin film crystal layer

Country Status (1)

Country Link
JP (1) JPH0793259B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5308445A (en) * 1991-10-23 1994-05-03 Rohm Co., Ltd. Method of manufacturing a semiconductor device having a semiconductor growth layer completely insulated from a substrate
US5356510A (en) * 1991-10-08 1994-10-18 Thomson-Csf Method for the growing of heteroepitaxial layers
US5741733A (en) * 1994-01-14 1998-04-21 Siemens Aktiengesellschaft Method for the production of a three-dimensional circuit arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356510A (en) * 1991-10-08 1994-10-18 Thomson-Csf Method for the growing of heteroepitaxial layers
US5308445A (en) * 1991-10-23 1994-05-03 Rohm Co., Ltd. Method of manufacturing a semiconductor device having a semiconductor growth layer completely insulated from a substrate
US5741733A (en) * 1994-01-14 1998-04-21 Siemens Aktiengesellschaft Method for the production of a three-dimensional circuit arrangement

Also Published As

Publication number Publication date
JPH0793259B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JPH0258779B2 (en)
JPH0562451B2 (en)
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JPS60152018A (en) Manufacture of semiconductor thin film crystal layer
JPH0580159B2 (en)
JPS5893216A (en) Manufacture of semiconductor device
JPH03159116A (en) Method for thermally treating thin polycrystal semiconductor film
JPH02140916A (en) Crystal growth of semiconductor thin film
JPH0236050B2 (en)
JPH0810669B2 (en) Method of forming SOI film
JPS61116821A (en) Formation of single crystal thin film
JPS5825220A (en) Manufacture of semiconductor substrate
JPH04373171A (en) Forming method of semiconductor crystal article
JPS59184517A (en) Manufacture of lamination-type semiconductor device
JPS60246621A (en) Manufacture of semiconductor crystal layer
JPS5893224A (en) Preparation of semiconductor single crystal film
JPS61117821A (en) Manufacture of semiconductor device
JPS6043814A (en) Manufacture of semiconductor crystalline film
JPS61199624A (en) Manufacture of single crystal layer of semiconductor layer
JPS5831515A (en) Manufacture of semiconductor thin film
JPS5837952A (en) Semiconductor device and manufacture thereof
JPS5893215A (en) Manufacture of semiconductor singlecrystal thin film
JPS63271916A (en) Formation of silicon thin film
JPH0243331B2 (en)
JPS5961117A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term