JPS63171181A - Detection lag compensator for ac motor - Google Patents

Detection lag compensator for ac motor

Info

Publication number
JPS63171181A
JPS63171181A JP62001634A JP163487A JPS63171181A JP S63171181 A JPS63171181 A JP S63171181A JP 62001634 A JP62001634 A JP 62001634A JP 163487 A JP163487 A JP 163487A JP S63171181 A JPS63171181 A JP S63171181A
Authority
JP
Japan
Prior art keywords
current
motor
filter
coordinate
angular frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62001634A
Other languages
Japanese (ja)
Other versions
JPH07118953B2 (en
Inventor
Takayuki Matsui
孝行 松井
Toshiaki Okuyama
俊昭 奥山
Yuzuru Kubota
久保田 譲
Junichi Takahashi
潤一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62001634A priority Critical patent/JPH07118953B2/en
Publication of JPS63171181A publication Critical patent/JPS63171181A/en
Publication of JPH07118953B2 publication Critical patent/JPH07118953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To compensate for the phase lag of detecting signal along with an AC filter, by adding the product of the output of a coordinate converter by the primary angular frequency of an AC motor, to the output of the coordinate converter. CONSTITUTION:From a speed controlling section 10, the output of current command signal iq* according to a deviation between speed command signal omegar* and speed signal omegar is generated. The current command signal iq* and the speed signal omegar are added to each other, to obtain primary angular frequency omega. In the meantime, primary current iu-iw detected by an AC filter 6 is converted to the current component id1, iq1 of a rotary coordinate system by a coordinate converter 14. Then, the current id1, iq1 and the primary angular frequency omega are applied to multipliers 15, 17 and adders 16, 18, to obtain torque current id, iq. Besides, according to a deviation between the current command signal id*, iq* and the torque current id, iq, voltage command vd*, vq* is applied to a coordinate converter 13, and the voltage command vu*-vw* of a stator coordinate is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は交流電動機を駆動する電力変換器の電流及び電
圧の検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a current and voltage detection device for a power converter that drives an AC motor.

〔従来の技術〕[Conventional technology]

従来の装置は、例えば特開昭57−196887号公報
に記載のように交流電動機の電流を検出するのに、電力
変換器のスイッチング作用に伴う高周波ノイズを除去す
るために交流フィルタを使用することが安価であること
から一般的に実用されている。
Conventional devices detect the current of an AC motor using an AC filter to remove high-frequency noise associated with the switching action of a power converter, as described in Japanese Patent Application Laid-open No. 57-196887, for example. It is commonly used because it is inexpensive.

この方法においては、ノイズ成分を充分除去しようとす
ると基本波成分の位相が実際値に対して遅れる問題が知
られている。また、これが原因となって電流制御系の応
答遅れが生じる。従来、この問題に対する対策としては
、交流フィルタのノイズ除去性能を低く抑えて設計する
とか、特開昭58−1.95487号公報に記載のよう
に電流制御系シミュレーション回路を用いて補正するよ
うになっていた。しかし、曲者は広い可変速範囲にわた
って運転する場合にはノイズ成分が充分に除去されない
ために制御性能が不充分となる欠点があり、後者は制御
回路が複雑となる問題があった。
In this method, it is known that if the noise component is sufficiently removed, the phase of the fundamental wave component lags behind the actual value. This also causes a delay in the response of the current control system. Conventionally, countermeasures to this problem include designing AC filters with low noise removal performance, or correcting them using a current control system simulation circuit as described in Japanese Patent Laid-Open No. 1987-1.95487. It had become. However, when the vehicle is operated over a wide variable speed range, noise components are not removed sufficiently, resulting in insufficient control performance, and the latter has a problem in that the control circuit is complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

交流電動機をベクI−ル制御する場合には交流電動機の
電圧あるいは電流の検出値の基本波成分を用いるが、検
出信号には電力変換装置のスイッチングに伴う高周波ノ
イズ成分が含まれるために交流フィルタを介し、それら
を除去して基本波成分の検出信号を得ている。そのため
検出信号は実際値に対して位相遅れが生じる。この位相
遅れはベクトル制御を行う交流電動機では電動機の励磁
電流成分とトルク電流成分との検出値間に相互干渉を生
じさせると共に、それら各々の指令値と実際値に誤差を
生じさせる問題があった。
When vector I-controlling an AC motor, the fundamental wave component of the detected value of voltage or current of the AC motor is used, but since the detection signal contains high frequency noise components associated with switching of the power converter, an AC filter is used. By removing them, a fundamental wave component detection signal is obtained. Therefore, the detection signal has a phase lag with respect to the actual value. In AC motors that perform vector control, this phase delay causes mutual interference between the detected values of the motor's excitation current component and torque current component, and also causes errors between the command value and the actual value of each of them. .

本発明の目的はベクトル制御を行う交流電動機の電圧あ
るいは電流の基本波成分を位相遅れなしに検出すること
にある。
An object of the present invention is to detect the fundamental wave component of the voltage or current of an AC motor that performs vector control without phase delay.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、交流フィルタに伴う検出信号の基本波成分
の位相遅れを、回転磁界座標系において補償することに
より、達成される。
The above object is achieved by compensating for the phase delay of the fundamental wave component of the detection signal caused by the AC filter in the rotating magnetic field coordinate system.

〔作用〕[Effect]

交流電動機の固定子座標系の電圧あるいは電流の検出に
伴う基本波成分の位相遅れは、交流フィルタの時定数と
交流電動機の一次角周波数ωの大きさによって決まる。
The phase delay of the fundamental wave component accompanying the detection of voltage or current in the stator coordinate system of the AC motor is determined by the time constant of the AC filter and the magnitude of the primary angular frequency ω of the AC motor.

回転磁界座標系では検出に伴う基本波成分の位相遅れの
大きさは、回転磁界座標系の2つの成分の相互干渉量と
して表わされる。
In the rotating magnetic field coordinate system, the magnitude of the phase delay of the fundamental wave component accompanying detection is expressed as the amount of mutual interference between the two components in the rotating magnetic field coordinate system.

そこで、その相互干渉量を打消すようにすれば検出に伴
う基本波成分の位相遅れを補償することができる。その
相互干渉量の大きさは、上述の座標変換器の出力と交流
電動機の一次角周波数ωの積から求めることができるの
で、これを座標変換器の出力に前述の相互干渉量を打消
すように加算することにより、位相遅れが補償できる。
Therefore, by canceling out the amount of mutual interference, it is possible to compensate for the phase delay of the fundamental wave component accompanying detection. The magnitude of the mutual interference can be found from the product of the output of the coordinate converter mentioned above and the primary angular frequency ω of the AC motor, so this can be applied to the output of the coordinate converter to cancel out the mutual interference mentioned above. By adding , the phase delay can be compensated for.

〔実施例〕〔Example〕

以下、本発明のベクトル制御装置への一実施例を第1図
により説明する。先ずベクトル制御装置の全体構成を述
べる。図において、PWMインバータ1は直流電圧を可
変周波数の交流電圧に変換する。インバータ1はグレー
ツ結線された自己消弧素子と各自己消弧素子に逆並列接
続された帰還ダイオードとから構成される。自己消弧素
子としてはトランジスタやゲートターンオフサイリスタ
などのスイッチング素子が用いられる。インバータ1の
各相U、V、Wの交流出力端に誘導電動機2が接続され
ている。誘導電動機2のU相とV相及びW相の一次電流
lu、lv+ 1w  (インバータ1の出力電流)は
電流検出器3〜5によって検出される。検出された電流
1u+ lvl 1wは交流フィルタ6を介して高荊波
ノイズ成分を除去した一次電流Tτ、T7.−に変換さ
れる。
An embodiment of a vector control device according to the present invention will be described below with reference to FIG. First, the overall configuration of the vector control device will be described. In the figure, a PWM inverter 1 converts a DC voltage into an AC voltage with a variable frequency. The inverter 1 is composed of self-extinguishing elements connected in a Graetz connection and feedback diodes connected in antiparallel to each self-extinguishing element. As the self-extinguishing element, a switching element such as a transistor or a gate turn-off thyristor is used. An induction motor 2 is connected to AC output terminals of each phase U, V, and W of the inverter 1. Primary currents lu, lv+1w (output currents of the inverter 1) of the U-phase, V-phase, and W-phase of the induction motor 2 are detected by current detectors 3 to 5. The detected current 1u+ lvl 1w is converted into primary currents Tτ, T7 . − is converted to

速度指令回路7の速度指令信号ω−は加算器8において
速度検出器9の速度信号ω1と比較され、その偏差に応
じて速度制御部10は電動機2のトルク電流指令信号i
q*を出力する。トルク電流指令信号iq*は所定の係
数を乗算し、すべり周波数指令を演算し、加算器11に
おいて速度信号ω。
The speed command signal ω- of the speed command circuit 7 is compared with the speed signal ω1 of the speed detector 9 in an adder 8, and the speed control unit 10 adjusts the torque current command signal i of the electric motor 2 according to the deviation.
Output q*. The torque current command signal iq* is multiplied by a predetermined coefficient to calculate a slip frequency command, and an adder 11 outputs a speed signal ω.

と加算され、電動機2の一次角周波数ωが演算される。The primary angular frequency ω of the electric motor 2 is calculated.

発振器12はこの一次角周波数ωに比例した周波数で振
幅が一定な正弦波信号を出力する。
The oscillator 12 outputs a sine wave signal with a constant amplitude and a frequency proportional to this primary angular frequency ω.

この出力信号は座標変換器13.14に加えられる。This output signal is applied to a coordinate transformer 13.14.

交流フィルタ6の出力信号TτHiv、iwは座標変換
器14において、電動機2の回転磁界座標系の2つの電
流成分i++、iqの2相信号に変換される。この電流
T7は乗算器15において一次角周波数ωと乗算され、
加算器16においてiqと加算されトルク電流iqが演
算される。他方の電流了Tは乗算器17において一次角
周波数ωと乗算され、加算器18においてT7と加算さ
れ励磁電流i、が演算される。
The output signals TτHiv, iw of the AC filter 6 are converted by the coordinate converter 14 into two-phase signals of two current components i++, iq in the rotating magnetic field coordinate system of the electric motor 2. This current T7 is multiplied by the primary angular frequency ω in the multiplier 15,
The adder 16 adds it to iq to calculate torque current iq. The other current T is multiplied by the primary angular frequency ω in the multiplier 17, and added to T7 in the adder 18 to calculate the exciting current i.

励磁電流指令回路19の励磁電流指令信号id*は加算
器20において励磁電流idと比較され、−その偏差に
応じて励磁電流制御部21は電動機2の電圧指令vd*
を出力する。また、トルク電流指令i1は加算器22に
おいてトルク電流iqと比較され、その偏差に応じてト
ルク電流制御部23は電動機2の電圧指令vq*を出力
する。
The excitation current command signal id* of the excitation current command circuit 19 is compared with the excitation current id in an adder 20, and the excitation current control unit 21 sets the voltage command vd* of the motor 2 according to the deviation.
Output. Further, the torque current command i1 is compared with the torque current iq in the adder 22, and the torque current control unit 23 outputs the voltage command vq* of the electric motor 2 according to the deviation.

電動機2の電圧指令Vdt、 vq*iま座標変換器1
3において発振器12の正弦波信号に基づいて、回転磁
界座標から固定子座標の電圧指令Vu”IVv”I V
−に変換される。PWMインバータ1はこの電圧指令V
u*I Vv”、V−に基づいて直流型圧を交流電圧に
変換する。
Voltage command Vdt of electric motor 2, vq*i coordinate converter 1
3, based on the sine wave signal of the oscillator 12, voltage command Vu"IVv"IV from the rotating magnetic field coordinates to the stator coordinates.
− is converted to PWM inverter 1 uses this voltage command V
u*I Vv'', converts DC type voltage to AC voltage based on V-.

次に、交流フィルタに伴う検出位相遅れを補償する方法
を述べる。ここで説明を簡単にするために交流フィルタ
6を第2図に示す一次遅れ回路とする。この交流フィル
タの入出力特性は次式で表わされる。U相について示す
と、 一=                 ・・・(1)
1+TS ここに、T二時定数(=RC)、S ニラプラス演算子
(定常状態ではS=j・2.う:V:]−2ω:角周波
数)である。
Next, a method of compensating for the detection phase delay caused by the AC filter will be described. Here, to simplify the explanation, the AC filter 6 is assumed to be a first-order lag circuit shown in FIG. The input/output characteristics of this AC filter are expressed by the following equation. Regarding the U phase, 1=...(1)
1+TS Here, T2 time constant (=RC), S nira plus operator (in steady state S=j.2.U:V:]-2ω: angular frequency).

この交流フィルタの減衰比(i1/i−)、位相遅れ角
0 (=−tan−’ωT )は第3.第4図に示すよ
うに、交流フィルタの時定数Tを適当に選ぶことにより
自由に設計できる。しかし、電動機の運転される角周波
数ω(例えば1〜300rad/s)に対して位相遅れ
角0を充分小さくすると、高周波域のノイズ成分に対す
る減衰比を充分に得られない問題があり、通常は位相遅
わ角θを10〜20deg許容している。
The damping ratio (i1/i-) and phase delay angle 0 (=-tan-'ωT) of this AC filter are the third. As shown in FIG. 4, the AC filter can be freely designed by appropriately selecting the time constant T. However, if the phase delay angle 0 is made sufficiently small relative to the angular frequency ω (for example, 1 to 300 rad/s) at which the motor is operated, there is a problem that a sufficient damping ratio for noise components in the high frequency range cannot be obtained. A phase delay angle θ of 10 to 20 degrees is allowed.

この交流フィルタの入出力特性による位相遅れの影響は
次のようにして補償され電動機の励磁電流]、d+  
トルク電流iqが検出される。
The influence of phase delay due to the input/output characteristics of this AC filter is compensated as follows, and the exciting current of the motor], d+
Torque current iq is detected.

電動機の固定子座標系の電流iu、iv、iwを回転磁
界座標系の電流id、iqに変換する関係式は次式であ
る。
The relational expression for converting the currents iu, iv, iw in the stator coordinate system of the motor into the currents id, iq in the rotating magnetic field coordinate system is as follows.

ここに、[F(ωt)〕:座標変換行列、ω:電動機の
一次角周波数である。
Here, [F(ωt)]: coordinate transformation matrix, ω: primary angular frequency of the motor.

ところで、交流フィルタを介して検出される電流1uy
iv、iwは(1)式より次式で表わされる。
By the way, the current 1uy detected through the AC filter
iv and iw are expressed by the following equations from equation (1).

したがって、交流フィルタを介して検出される回転磁界
座標系の電流T7.了τは(2) 、 (3)式より次
式である。
Therefore, the current T7. of the rotating magnetic field coordinate system detected through the AC filter. From equations (2) and (3), τ is the following equation.

(2) 、 (4)式より、電動機の励磁電流]−dl
l”ルク電流iq と交流フィルタを介して求まる了1
゜iqの関係式を求めると次式である。
From equations (2) and (4), the exciting current of the motor ]-dl
1", which is determined through the l"lux current iq and the AC filter.
The relational expression for ゜iq is found as follows.

・・・(5) ここに、〔〕−工:〔〕の〕逆行列、S−□ t10) である。...(5) Here, []-E: Inverse matrix of [], S-□ t10) It is.

(5)式の右辺第2項は過渡項であり、定常状態では次
式となる。
The second term on the right side of equation (5) is a transient term, and in a steady state it becomes the following equation.

すなわち、電動機の交流フィルタによる位相遅れを補償
した励磁電流id、トルク電流iqは交流フィルタを介
して求まるia、iqに対して(6)式の演算を行うこ
とにより検出することができる。
That is, the excitation current id and torque current iq that have compensated for the phase delay caused by the AC filter of the motor can be detected by performing the calculation of equation (6) on ia and iq determined through the AC filter.

このようにして、交流フィルタに伴う位相遅れ及び減衰
が補償されるので、電動機の電流の基本波成分を位相遅
れなしに検出することができ、ベクトル制御を行う場合
においては励磁電流成分とトルク電流成分との検出値間
の干渉が生じないので、ベクトル制御の特長である高速
応答で安定な運転が行える効果がある。
In this way, the phase delay and attenuation associated with the AC filter are compensated, so the fundamental wave component of the motor current can be detected without phase delay, and when performing vector control, the excitation current component and torque current component can be detected without phase delay. Since there is no interference between detected values and components, stable operation can be achieved with fast response, which is a feature of vector control.

本実施例では電動機の電流を対象として説明したが、電
動機の電圧に対しても同様にして基本波成分の電圧を位
相遅れなしに検出できる。また、本実施例では動作説明
を解り易くするためアナログ回路にて説明したが、マイ
クロプロセッサを用いたディジタル制御ユニットに対し
ても本発明を適用できることは明らかである。
Although the present embodiment has been described with reference to the current of the motor, the voltage of the fundamental wave component can be similarly detected with respect to the voltage of the motor without phase delay. Further, in this embodiment, an analog circuit is used to explain the operation in order to make it easier to understand, but it is obvious that the present invention can also be applied to a digital control unit using a microprocessor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、交流電動機の電圧あるいは電流の基本
波成分を交流フィルタを介して検出する場合でも交流フ
ィルタに伴う位相遅れ及び減衰を無くして検出できるの
で、電力変換器のスイッチング作用に伴う高周波ノイズ
の影響が少ない高精度なベクトル制御が実現できる効果
がある。
According to the present invention, even when detecting the fundamental wave component of the voltage or current of an AC motor via an AC filter, it can be detected without phase delay and attenuation associated with the AC filter, so high frequency components associated with the switching action of the power converter can be detected. This has the effect of realizing highly accurate vector control with less influence of noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のベクトル制御装置の一実施例を示す制
御構成図、第2図は第1図の交流フィルタの回路構成を
示す回路図、第3図と第4図は第2図の交流フィルタの
減衰比と位相遅れ角を示す特性図である。 1・・・PWMインバータ、2・・・誘導電動機、3〜
5・・・電流検出器、6・・・交流フィルタ、13.1
4・・・座標変換器、15.17・・・乗算器、16.
18・・・加算器。
FIG. 1 is a control configuration diagram showing one embodiment of the vector control device of the present invention, FIG. 2 is a circuit diagram showing the circuit configuration of the AC filter in FIG. 1, and FIGS. FIG. 3 is a characteristic diagram showing the attenuation ratio and phase delay angle of an AC filter. 1...PWM inverter, 2...induction motor, 3~
5... Current detector, 6... AC filter, 13.1
4... Coordinate converter, 15.17... Multiplier, 16.
18... Adder.

Claims (1)

【特許請求の範囲】[Claims] 1、交流電動機に可変電圧可変周波数の交流を供給する
電力変換器の出力電流の電流検出器とノイズ成分を除去
するフィルタとからなる電流検出回路と、該検出回路の
出力信号を前記交流電動機の角周波数ωで回転する回転
磁界座標系の2つの成分i_d及びi_qに変換する座
標変換器を備えた電力変換装置において、前記座標変換
器の出力i_d及びi_qと前記角周波数ωの積を前記
座標変換器の出力i_d及びi_qの相互に加算する加
算器を設けたことを特徴とする交流電動機の検出遅れ補
償装置。
1. A current detection circuit consisting of a current detector for the output current of a power converter that supplies alternating current of variable voltage and variable frequency to the alternating current motor and a filter that removes noise components; In a power converter equipped with a coordinate converter that converts a rotating magnetic field coordinate system rotating at an angular frequency ω into two components i_d and i_q, the product of the outputs i_d and i_q of the coordinate converter and the angular frequency ω is converted into the coordinate 1. A detection delay compensation device for an AC motor, characterized in that an adder is provided for mutually adding outputs i_d and i_q of a converter.
JP62001634A 1987-01-09 1987-01-09 AC motor detection delay compensation device Expired - Lifetime JPH07118953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001634A JPH07118953B2 (en) 1987-01-09 1987-01-09 AC motor detection delay compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001634A JPH07118953B2 (en) 1987-01-09 1987-01-09 AC motor detection delay compensation device

Publications (2)

Publication Number Publication Date
JPS63171181A true JPS63171181A (en) 1988-07-14
JPH07118953B2 JPH07118953B2 (en) 1995-12-18

Family

ID=11506959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001634A Expired - Lifetime JPH07118953B2 (en) 1987-01-09 1987-01-09 AC motor detection delay compensation device

Country Status (1)

Country Link
JP (1) JPH07118953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532571A (en) * 1994-04-21 1996-07-02 Hitachi, Ltd. Control apparatus for induction motor
EP0751613A1 (en) * 1995-06-30 1997-01-02 Fanuc Ltd. Current controlling method for servo motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532571A (en) * 1994-04-21 1996-07-02 Hitachi, Ltd. Control apparatus for induction motor
EP0751613A1 (en) * 1995-06-30 1997-01-02 Fanuc Ltd. Current controlling method for servo motor

Also Published As

Publication number Publication date
JPH07118953B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
RU2392732C1 (en) Device for control of asynchronous motor vector, method for control of asynchronous motor vector and device for control of asynchronous motor drive
EP0119583B1 (en) Ac current control system
US6727675B2 (en) Motor control apparatus and motor control method
US8450955B2 (en) Alternating-current motor control apparatus
JP3257566B2 (en) PG-less vector control device for induction motor
JP3650565B2 (en) Power converter
JP6173520B1 (en) Control device for rotating electrical machine
JPH09308300A (en) Motor controller and controller for electric vehicle
US6008617A (en) Motor control device for high frequency AC driven motor
JP6400231B2 (en) Control device for rotating electrical machine
JPH1127951A (en) Pwm inverter controller
JPS63171181A (en) Detection lag compensator for ac motor
EP3474438A1 (en) Motor control device and control method
JP2004080975A (en) Controller for motor
JP2644750B2 (en) Control method of voltage source inverter
JP3783641B2 (en) Motor control device
JPH10201099A (en) Active filter
JP3509935B2 (en) Control device for voltage source PWM converter
JPH03135389A (en) Method and device for controlling voltage type inverter
JP2005168212A (en) Motor control device
JPH1080200A (en) Method and apparatus for control of vector of induction motor
JP3074681B2 (en) AC motor drive
JP2653485B2 (en) Inverter control device
JP3132625B2 (en) Variable speed drive for electric motor
JP5890210B2 (en) Active filter and active filter control circuit