JPS63168966A - Manufacture of lead storage battery - Google Patents

Manufacture of lead storage battery

Info

Publication number
JPS63168966A
JPS63168966A JP61313338A JP31333886A JPS63168966A JP S63168966 A JPS63168966 A JP S63168966A JP 61313338 A JP61313338 A JP 61313338A JP 31333886 A JP31333886 A JP 31333886A JP S63168966 A JPS63168966 A JP S63168966A
Authority
JP
Japan
Prior art keywords
lead
anode
formation
battery
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61313338A
Other languages
Japanese (ja)
Other versions
JPH0569263B2 (en
Inventor
Tadashi Yoneda
米田 忠司
Toshiyuki Matsumura
敏之 松村
Akira Fujii
明 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP61313338A priority Critical patent/JPS63168966A/en
Publication of JPS63168966A publication Critical patent/JPS63168966A/en
Publication of JPH0569263B2 publication Critical patent/JPH0569263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To restrict the temperature rise when a battery jar is formed chemically and to make it possible to form the battery jar without remaining a white portion in a simple equipment, by soaking anode plates in a dilute sulfuric acid to apply a lead-sulphatizing treatment, prior to the composition of a plate group. CONSTITUTION:Prior to the composition of a plate group, anode plates are soaked preliminarily in a dilute sulfuric acid to apply the lead-sulphatizing treatment. Since the anode plates are converted to a metallic lead as the formation of the anode plates proceeds, the preliminary lead-sulphatization of the anode plates to prevent to remain a white portion has no trouble. By lead- sulphatizing the anode plates preliminarily, the heating at the formation of a battery jar is generated mainly by cathode plates. Since the weight ratio of unformed active substances of a cathode and an anode is 1:1, the heating value can be reduced about 50% by lead-sulphatizing the anode active substance preliminarily. Therefore, the formation of the battery jar can be carried out remaining no white portion, with no cooling unit, or by using a simple cooling unit (a blower fan, for example) without a water tank.

Description

【発明の詳細な説明】 り産業上の利用分野コ 本発明は、電槽化成を行って鉛蓄電池を製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing lead-acid batteries by carrying out battery cell formation.

[従来の技術] 陰極板と陽極板とをセパレータを介して積層して構成し
た極板群を電槽に収納して化成を行う電槽化成法を行う
場合には、陰極板及び陽極板として、格子体にペースト
を充填して乾燥した未化成極板をそのまま用いている。
[Prior Art] When carrying out the battery cell formation method, in which a group of electrode plates, each consisting of a cathode plate and an anode plate laminated with a separator interposed therebetween, is housed in a battery case and chemically formed, the cathode plate and the anode plate are used as the cathode plate and the anode plate. , an unformed electrode plate whose lattice body is filled with paste and dried is used as it is.

電槽化成を行う際には、電槽中に希硫酸を注入して通電
するが、この希硫酸としては、比較的比重が高いものを
用いる。その理由は、電解液量が少ないために未化成活
物質の硫酸鉛化が生じると硫酸が消費されて電解液が水
に近付き、電気伝導度が下がるからである。経験的に比
重1.210〜1.260(20℃)の希硫酸が用いら
れている。
When chemically forming a container, dilute sulfuric acid is injected into the container and energized, and this dilute sulfuric acid has a relatively high specific gravity. The reason for this is that when the amount of electrolytic solution is small and the unformed active material becomes sulfated, the sulfuric acid is consumed and the electrolytic solution approaches water, resulting in a decrease in electrical conductivity. Dilute sulfuric acid having a specific gravity of 1.210 to 1.260 (20° C.) has been empirically used.

[発明が解決しようとする問題点コ ミ槽中に希硫酸を注入すると該希硫酸が未化成活物質と
反応して電池温度が上昇する。また比較的大電流を用い
ることが多いため、通電後も高い温度が維持される。電
槽化成中極板が高温に維持されると、極板の表面に硫酸
鉛の強固な被膜が生成され、この硫酸鉛が化成後も残留
していわゆる白残(硫酸鉛が残る現象)が生じ、化成不
良の状態になる。この傾向は特に陽極板に著しい。また
希硫酸として比重の高いものを用いると陽極活物質の硫
酸鉛化速度が速くなるため、白残が一層顕著に生じる。
[Problems to be Solved by the Invention] When dilute sulfuric acid is injected into the rice tank, the dilute sulfuric acid reacts with the unformed active material and the battery temperature rises. Furthermore, since a relatively large current is often used, a high temperature is maintained even after the current is applied. When the electrode plate is kept at high temperature during the formation of the battery, a strong film of lead sulfate is formed on the surface of the electrode plate, and this lead sulfate remains even after formation, resulting in so-called white residue (a phenomenon in which lead sulfate remains). This results in poor chemical formation. This tendency is particularly remarkable for the anode plate. Furthermore, if dilute sulfuric acid with a high specific gravity is used, the rate of sulfate formation of the anode active material becomes faster, resulting in more noticeable white residue.

上記0残が生じるのを防ぐため、従来は電池を水槽中で
冷却しながら電槽化成を行っていた。このように、従来
は電槽化成を行うために水槽を必要としたため、設備費
が高くなるだけでなく、電槽化成の際に電槽を水槽にセ
ットする手間が必要なため、作業が面倒になるという問
題があった。
In order to prevent the above-mentioned zero residue from occurring, conventionally, battery cell formation was performed while cooling the battery in a water tank. In this way, in the past, a water tank was required to perform battery cell formation, which not only increased equipment costs, but also made the work troublesome as it required the effort to set the battery case in the water tank during battery case formation. There was a problem with becoming.

また希硫酸として比重が高いものを用いる必要があった
ため、コストが高くなるという問題もあった。
Furthermore, since it was necessary to use dilute sulfuric acid with a high specific gravity, there was also the problem of increased costs.

[問題点を解決するための手段] 本発明は、格子体にペーストを充填して乾燥した未化成
極板を用いて極板群を構成し、該極板群を電槽に収納し
て化成を行う鉛蓄電池の製造方法において、温度上昇を
抑制し、0残を生じさせることなく電槽化成を行うこと
ができるようにしたものである。
[Means for Solving the Problems] The present invention constitutes a group of electrode plates using unformed electrode plates filled with paste in a lattice body and dried, and stores the group of electrode plates in a battery case to form a group of electrode plates. In the method for manufacturing lead-acid batteries, temperature rise is suppressed and battery cell formation can be performed without producing zero residue.

そのため、本発明においては、極板群を構成する前に陰
極板を予め希硫酸中に浸積して硫酸鉛化処理を施す工程
を行うようにした。
Therefore, in the present invention, before constructing the electrode plate group, a step of immersing the cathode plate in dilute sulfuric acid and subjecting it to sulfuric acid lead treatment is performed.

[発明の作用] 陰極板は化成の進行に伴って金属鉛化するため、陰極板
では陽極板で問題となる極板表面での0残が発生するこ
とはない。従って上記のように陰極板を予め硫酸鉛化し
ておいても何等支障がない。
[Operation of the Invention] Since the cathode plate becomes metallic lead as the chemical formation progresses, zero residue on the surface of the cathode plate, which is a problem with the anode plate, does not occur in the cathode plate. Therefore, there is no problem even if the cathode plate is previously converted into lead sulfate as described above.

陰極板を予め硫酸鉛化しておくと、電槽化成の際の発熱
は主として陽極板から起る。通常陽極及び陰極の未化成
活物質の重量比は1:1であるため、本発明の方法のよ
うに陰極活物質を予め硫酸鉛化しておくと、発熱量を5
0%程度減少させることができる。従って冷却設備を省
略するか、または水槽を用いない簡単な冷却設備(例え
ば送風ファン)で、0残を生じさせることなく電槽化成
を行うことができる。
If the cathode plate is converted into lead sulfate in advance, the heat generated during formation of the battery case will mainly occur from the anode plate. Normally, the weight ratio of the unformed active material of the anode and the cathode is 1:1, so if the cathode active material is previously converted to lead sulfate as in the method of the present invention, the calorific value can be reduced by 5.
It can be reduced by about 0%. Therefore, by omitting the cooling equipment or by using a simple cooling equipment (for example, a blower fan) that does not use a water tank, battery cell formation can be performed without producing zero residue.

また陰極活物質の硫酸鉛が金属鉛になると硫酸分を放出
するため、電解液として従来より比重の小さい希硫酸を
用いることができる。この場合、陽極活物質が硫酸鉛化
する速さが遅くなるため、陽極板での0残の発生が一層
抑制される。
Further, when the lead sulfate of the cathode active material turns into metallic lead, it releases sulfuric acid, so dilute sulfuric acid, which has a lower specific gravity than conventional ones, can be used as the electrolyte. In this case, since the rate at which the anode active material turns into lead sulfate is slowed down, the generation of zero residues on the anode plate is further suppressed.

[実施例] 以下通常の自動車用電池の未化成極板を用いて行った実
施例について説明する。
[Example] Hereinafter, an example using an unformed electrode plate of a normal automobile battery will be described.

実施例では熟成を終った未化成陰極板を比重1.260
(20℃)の希硫酸中に浸漬し、液温を40℃として、
1時間硫酸鉛化反応を行わせた。この処理により、陰極
板には約50〜60wt%の硫酸鉛が生成した。この陰
極板と未化成陽極板とを組合せて極板群を構成し、12
V、 30.Ahの電池を作成した。
In the example, the unformed cathode plate that has been aged has a specific gravity of 1.260.
(20℃) diluted sulfuric acid, the liquid temperature was set to 40℃,
The sulfate lead reaction was carried out for 1 hour. As a result of this treatment, about 50 to 60 wt % lead sulfate was produced in the cathode plate. This cathode plate and unformed anode plate are combined to form an electrode plate group, and 12
V, 30. I made an Ah battery.

電池の陽極未化成活物質は207Q/4枚、陰極活物質
は386g15枚であった。陰極板には、約50%の硫
酸鉛が含まれているため、電槽化成に用いる硫酸の比重
は1.140(20℃)とした。これは、化成後の硫酸
の比重を通常用いられる電解液の比重1.215 (2
0℃)と同じにするためである。
The unformed anode active material of the battery was 207Q/4 pieces, and the cathode active material was 386g/15 pieces. Since the cathode plate contains about 50% lead sulfate, the specific gravity of the sulfuric acid used for forming the battery case was set to 1.140 (20° C.). This means that the specific gravity of sulfuric acid after chemical conversion is 1.215 (2
This is to make it the same as 0℃).

化或は、電池の電槽中に上記の希硫酸を450mJ2/
セルずつ入れて大気中で通電することにより行った。
Alternatively, add 450 mJ2/ of the above dilute sulfuric acid to the battery container.
This was done by placing each cell in the cell and applying electricity in the atmosphere.

図面は、注液直後からの電池温度の変化を測定した結果
を従来法により電槽化成を行った場合と本発明の方法に
より電槽化成を行った場合とについて示したもので、従
来法では電池温度が注液直後に70℃付近まで上昇し、
1時間放置すると50℃付近まで低下した。
The drawings show the results of measuring changes in battery temperature immediately after liquid injection for cases in which the battery case was formed using the conventional method and in cases where the case was formed using the method of the present invention. Immediately after injection, the battery temperature rose to around 70℃,
When left for 1 hour, the temperature dropped to around 50°C.

これに対し、本発明の方法による場合には注液直後の電
池温度の上昇が45℃にとどまり、その後放置すると4
0℃まで低下した。また本発明の方法による場合、通電
後の電池温度は従来方法による場合に比べて約15℃低
い温度を維持した。電槽化成末期には、ガスの発生によ
る発熱のため、電池温度が再び上昇するが、この段階で
は化或はほぼ終了しているので問題は生じない。
On the other hand, in the case of the method of the present invention, the rise in battery temperature immediately after injection is only 45°C;
The temperature dropped to 0°C. Furthermore, when using the method of the present invention, the battery temperature after energization was maintained at about 15° C. lower than when using the conventional method. At the end of the formation of the battery, the battery temperature rises again due to heat generation due to gas generation, but at this stage no problem arises because the formation has almost finished.

化成終了後、電解液の比重を1.280 (25℃)に
調整して、25℃の水槽中で6Aの放電を行い、この放
電終了後充電を行って極板の表面を観察した。
After completion of chemical formation, the specific gravity of the electrolytic solution was adjusted to 1.280 (25° C.), and a discharge of 6 A was performed in a water tank at 25° C. After completion of the discharge, charging was performed and the surface of the electrode plate was observed.

その結果は次頁の表1の通りで、本発明の方法により製
造した蓄電池の方が従来法により製造した電池より放電
持続時間が約20分長かった。この場合放電は陽極によ
り支配されていた。また電池を解体して調べたところ、
従来法による電池では陽極板に0残が認められたが、本
発明の方法による電池には0残が認められなかった。
The results are shown in Table 1 on the next page, and the discharge duration of the storage battery manufactured by the method of the present invention was approximately 20 minutes longer than that of the battery manufactured by the conventional method. In this case the discharge was dominated by the anode. I also disassembled the battery and examined it.
In the battery prepared by the conventional method, zero residue was observed on the anode plate, but in the battery prepared by the method of the present invention, no residue was observed.

表1 [発明の効果コ 以上のように、本発明の方法によれば、電槽化成の際の
温度上昇を抑制することができるため、冷却設備を省略
するか、または従来用いられていた冷却設備よりはるか
に簡単な設備で、0残を生じさせることなく電槽化成を
行うことができる。
Table 1 [Effects of the Invention] As described above, according to the method of the present invention, it is possible to suppress the temperature rise during battery cell formation, so cooling equipment can be omitted or cooling equipment used in the past can be reduced. It is possible to perform battery cell formation without producing zero residue with much simpler equipment.

また電解液として従来より比重の小さい希硫酸を用いる
ことができるため、陽極活物質が硫酸鉛化する速さを遅
くして陽極板での0残の発生を一層抑制することができ
、化成不良が生じるのを防止して、品質の良い電池を製
造することができる。
In addition, since dilute sulfuric acid, which has a lower specific gravity than conventional ones, can be used as the electrolyte, it is possible to slow down the rate at which the anode active material turns into lead sulfate, further suppressing the occurrence of 0 residues on the anode plate, resulting in poor chemical formation. It is possible to prevent this from occurring and produce high-quality batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は電解液の注入直後から電槽化成終了までの電池温
度の変化を従来法による場合と本発明の方法による場合
とについて示した線図である。
The drawing is a diagram showing changes in battery temperature from immediately after injection of electrolytic solution until completion of battery cell formation in the case of the conventional method and the case of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 格子体にペーストを充填して乾燥した未化成極板を用い
て極板群を構成し、該極板群を電槽に収納して化成を行
う鉛蓄電池の製造方法において、前記極板群を構成する
前に陰極板を予め希硫酸中に浸積して硫酸鉛化処理を施
す工程を行うことを特徴とする鉛蓄電池の製造方法。
A method for manufacturing a lead-acid battery in which a grid body is filled with paste and dried unformed electrode plates are used to form a plate group, and the plate group is stored in a battery container and chemically formed. 1. A method for manufacturing a lead-acid battery, which comprises performing a step of pre-immersing a cathode plate in dilute sulfuric acid and subjecting it to sulfuric acid lead treatment before assembly.
JP61313338A 1986-12-29 1986-12-29 Manufacture of lead storage battery Granted JPS63168966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313338A JPS63168966A (en) 1986-12-29 1986-12-29 Manufacture of lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313338A JPS63168966A (en) 1986-12-29 1986-12-29 Manufacture of lead storage battery

Publications (2)

Publication Number Publication Date
JPS63168966A true JPS63168966A (en) 1988-07-12
JPH0569263B2 JPH0569263B2 (en) 1993-09-30

Family

ID=18040040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313338A Granted JPS63168966A (en) 1986-12-29 1986-12-29 Manufacture of lead storage battery

Country Status (1)

Country Link
JP (1) JPS63168966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187173A (en) * 2012-03-12 2013-09-19 Shin Kobe Electric Mach Co Ltd Method for manufacturing control valve type lead-acid storage battery
CN104466086A (en) * 2014-11-14 2015-03-25 浙江天能电池(江苏)有限公司 Preparation method of lead storage battery green plate for reducing dusting powder
CN115771124A (en) * 2022-11-24 2023-03-10 沪东中华造船(集团)有限公司 Two-way handle of boats and ships raised floor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560849B2 (en) * 1999-05-27 2010-10-13 株式会社Gsユアサ Control valve type lead storage battery manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1478708A (en) * 1920-07-06 1923-12-25 Westinghouse Union Battery Com Process of manufacturing storage batteries
JPS4945889A (en) * 1972-09-07 1974-05-01
JPS607061A (en) * 1983-06-24 1985-01-14 Shin Kobe Electric Mach Co Ltd Manufacture of plate for sealed lead storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1478708A (en) * 1920-07-06 1923-12-25 Westinghouse Union Battery Com Process of manufacturing storage batteries
JPS4945889A (en) * 1972-09-07 1974-05-01
JPS607061A (en) * 1983-06-24 1985-01-14 Shin Kobe Electric Mach Co Ltd Manufacture of plate for sealed lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187173A (en) * 2012-03-12 2013-09-19 Shin Kobe Electric Mach Co Ltd Method for manufacturing control valve type lead-acid storage battery
CN104466086A (en) * 2014-11-14 2015-03-25 浙江天能电池(江苏)有限公司 Preparation method of lead storage battery green plate for reducing dusting powder
CN115771124A (en) * 2022-11-24 2023-03-10 沪东中华造船(集团)有限公司 Two-way handle of boats and ships raised floor

Also Published As

Publication number Publication date
JPH0569263B2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
CN113675380A (en) Formula and preparation method of deep-circulation type lead-acid storage battery positive lead paste
JPS63168966A (en) Manufacture of lead storage battery
CN114447323A (en) Lithium metal material with phosphate coating on surface and preparation method and application thereof
JPH11312533A (en) Manufacture of sealed lead-acid battery
JPS6216506B2 (en)
JPS58115775A (en) Lead-acid battery
US2952726A (en) Storage batteries
JPH05325950A (en) Manufacture of lead-acid battery of negative electrode absorbing sealed type
JPS59139563A (en) Manufacturing method of plate for lead storge battery
JPH04248261A (en) Formation of electrode plate for lead-acid battery
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPS5929366A (en) Manufacture of paste type electrode for lead storage battery
JP3614440B2 (en) High energy battery electrolyte and method for producing the electrolyte
JP3614440B6 (en) High energy battery electrolyte and method for producing the electrolyte
JPH10134810A (en) Manufacture of lead-acid battery
JPH0348617B2 (en)
JPH11120998A (en) Manufacture of lead-acid battery
JPS63108667A (en) Manufacture of strap for lead acid battery
JP3298177B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery
JPS58129758A (en) Manufacture of negative plate in lead storage battery
JPS59171463A (en) Manufacture of lead storage battery plate
JPS60249243A (en) Positive plate for sealed storage battery
JPH08130009A (en) Forming method for clad type positive plate
JPH05151987A (en) Manufacture of sealed type lead acid battery