JPS6316404B2 - - Google Patents

Info

Publication number
JPS6316404B2
JPS6316404B2 JP8523184A JP8523184A JPS6316404B2 JP S6316404 B2 JPS6316404 B2 JP S6316404B2 JP 8523184 A JP8523184 A JP 8523184A JP 8523184 A JP8523184 A JP 8523184A JP S6316404 B2 JPS6316404 B2 JP S6316404B2
Authority
JP
Japan
Prior art keywords
general formula
novolak resin
formula
resin
etching resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8523184A
Other languages
Japanese (ja)
Other versions
JPS60228522A (en
Inventor
Yasushi Saotome
Hiroshi Gokan
Kazuhide Saigo
Shigeyoshi Suzuki
Yoshitake Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8523184A priority Critical patent/JPS60228522A/en
Priority to US06/724,457 priority patent/US4624909A/en
Priority to GB08510722A priority patent/GB2158450B/en
Priority to DE19853515210 priority patent/DE3515210A1/en
Publication of JPS60228522A publication Critical patent/JPS60228522A/en
Publication of JPS6316404B2 publication Critical patent/JPS6316404B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は新規なノボラツク樹脂、更に詳しく
は、ケイ素原子を構造中に含有せしめることによ
り耐ドライエツチング性を大幅に向上せしめたノ
ボラツク樹脂に関する。 (従来技術とその問題点) 集積回路、バブルメモリ素子などの電子デバイ
スの製造工程において、プロセスに高分子材料が
多く用いられている。 近年、製造上の要求から、これら高分子材料に
対して、ドライエツチング工程での耐性が強く求
められるようになり、高ドライエツチ耐性高分子
の研究が行われるようになつた。 これら高分子材料の化学組成と、エツチング耐
性との走量的な相関関係は、発明者らにより始め
て示された。(ジヤーナル・オブ・エレクトロケ
ミカルソサエテイー(J.Electrochem.Soc.)第
130巻143ページ(1983年)。その結果、異方性エ
ツチングを目的とするイオンビームエツチングで
は、有機物中の炭素含量がエツチング耐性に支配
的にあることが示された。この結果は、炭素自身
が最もエツチング耐性の高い有機物であり、それ
を超える耐性を求めるならば、無機元素を導入す
る必要のあることを暗示していた。 発明者らは、ポリスチレンにケイ素を導入した
素材、すなわちポリトリメチルシリルスチレン
や、トリメチルシリルスチレンを構造のくり返し
単位として含む素材を開発した(半導体集積回路
技術第23回シンポジウム講演論文集、p18、昭
57、及び特開昭59−15243号と特開昭59−15419号
公報)。 しかし、エレクトロニクス素材として重要なノ
ボラツク樹脂については、ケイ素を含む材料につ
いて満足するものはなかつた。 (発明の目的) 本発明は、ドライエツチング耐性、特に酸素ド
ライエツチング耐性のきわわめて高い、新規なノ
ボラツク樹脂を提供することにある。 (発明の構成) 本発明によれば、一般式Aで示される構造を20
〜80モル%くり返し単位として主鎖に含む分子量
300〜6000のノボラツク樹脂が得られる。 一般式A: (式中nは1〜3、Rは水素原子またはアルキル
基を表わす) (構成の詳細な説明) 本発明は上述の構成をとることにより従来技術
の問題点を解決した。以下に本発明の構成を詳細
に説明する。 本発明のノボラツク樹脂は、特許請求の範囲に
示した一般式Aで表わされる単位構造を少なくと
も含むことを特徴とするが、該樹脂は、一般式A
で示される単位構造のほかに、
(Industrial Application Field) The present invention relates to a novel novolak resin, and more particularly to a novolak resin whose dry etching resistance is greatly improved by incorporating silicon atoms into its structure. (Prior Art and its Problems) In the manufacturing process of electronic devices such as integrated circuits and bubble memory elements, polymeric materials are often used in the process. In recent years, due to manufacturing requirements, there has been a strong demand for these polymer materials to be resistant to dry etching processes, and research has begun on polymers with high dry etching resistance. The inventors were the first to demonstrate the chemotactic correlation between the chemical composition of these polymeric materials and their etching resistance. (J.Electrochem.Soc.) No.
Volume 130, page 143 (1983). The results showed that in ion beam etching, which aims at anisotropic etching, the carbon content in the organic matter is the dominant factor in etching resistance. This result implied that carbon itself is the organic substance with the highest etching resistance, and that if higher resistance is desired, it is necessary to introduce inorganic elements. The inventors have developed a material in which silicon is introduced into polystyrene, namely polytrimethylsilylstyrene, and a material containing trimethylsilylstyrene as a repeating unit in the structure (Proceedings of the 23rd Symposium on Semiconductor Integrated Circuit Technology, p. 18,
57, and JP-A-59-15243 and JP-A-59-15419). However, with regard to novolac resins, which are important as electronic materials, no material containing silicon has been found to be satisfactory. (Object of the Invention) An object of the present invention is to provide a novel novolak resin having extremely high dry etching resistance, particularly oxygen dry etching resistance. (Structure of the Invention) According to the present invention, the structure represented by the general formula A is
~80 mol% molecular weight included in the main chain as a repeating unit
300-6000 novolak resin is obtained. General formula A: (In the formula, n represents 1 to 3, and R represents a hydrogen atom or an alkyl group.) (Detailed description of the structure) The present invention has solved the problems of the prior art by adopting the above-mentioned structure. The configuration of the present invention will be explained in detail below. The novolak resin of the present invention is characterized in that it contains at least a unit structure represented by the general formula A shown in the claims;
In addition to the unit structure shown in

【式】【formula】

【式】【formula】

【式】【formula】

【式】 などで示される構造を含んでいてもよい。また、
このノボラツク樹脂の重合度は、本発明者らの実
験によれば20を越えない。本発明のノボラツク樹
脂に感光性物質を添加してレジスト組成物として
用いる場合には、該樹脂は塗布され得るために何
らかの溶剤に可溶である必要があり、また現像に
適した溶剤(例えば、アルカリ性物質を含む水溶
液)に可溶である必要があるので、ノボラツク樹
脂中の一般式Aの含有率は80mol%以下が望まし
い。また十分なドライエツチング耐性をもたせる
ためには一般式Aの含有率は20mol%以上が望ま
しい。 前記ノボラツク樹脂に感光剤として添加される
ジアゾ化合物としては、電子線、X線、深紫外
線、紫外線、あるいは可視光線を照射することに
より、アルカリ性水溶液に不溶である状態からア
ルカリ性水溶液に可溶な状態へ変化する物質をす
べて含むが、光学露光に関しては、キノンジアジ
ド化合物が望ましい。電子線、X線、深紫外線で
もこの化合物が使える。 キノンジアジド化合物としては、ナフトキノン
ジアジド基やベンゾキノンジアジド基を含む低分
子および高分子化合物、例えばナフトキノンジア
ジドスルホン酸クロリドやベンゾキノンジアジド
スルホン酸クロリドと水酸基を有する低分子化合
物や高分子化合物の縮合生成物があげられる。こ
こで、水酸基を有する低分子化合物の例として
は、ヒドロキノン、レゾルシン、フロログルシ
ン、2,4−ジヒドロキシベンゾフエノン、2,
3,4−トリヒドロキシベンゾフエノン等があげ
られ、高分子化合物の例としてはフエノール系樹
脂、ポリヒドロキシスチレン等があげられる。 感光剤の添加量は、本発明の樹脂100グラムに
対して5ないし100グラムの範囲であることが望
ましく、15ないし50グラムの範囲であることがさ
らに望ましい。感光剤以外に、付加的な添加物と
して、少量の付加的な樹脂(例えば有機膜との接
着を向上させるためのもの、)可塑剤、顔料、染
料(光吸収剤)などが添加されていてもよい。 つづいて、パターンを形成する方法を詳細に説
明する。第一層に厚い有機膜をスピン塗布し、蒸
発乾固せしめた後、該有機膜上に、本発明のレジ
スト組成物をスピン塗布する。塗布の際の溶剤と
しては、キシレン、酢酸イソアミル、エチル酢酸
セロソルブ、メチル酢酸セロソルブ、酢酸セロソ
ルブ、およびこれらの混合物があげられる。第一
層の有機膜を溶解・変形しない溶剤を選択する必
要がある。塗布後、適当で条件で加熱乾燥した
後、本発明のレジスト組成物を、電子線・X線・
深紫外線・紫外線・可視光線等で露光し、現像す
ることにより、所定のレジストパターンを描くこ
とができるが、本発明のレジスト組成物の現像に
適する現像液としては、水酸化ナトリウム・水酸
化カリウム等の無機アルカリ水溶液、水酸化テト
ラメチルアンモニウム、コリン等の有機アルカリ
を含む水溶液など、アルカリ性を示す水溶液をす
べて含む。アルカリ性物質の他に、界面活性剤等
の付加的な添加剤が加えられていてもよい。 現像により得られたレジストパターンをマスク
として、第一層の厚い有機層を酸素を用いた反応
性イオンエツチングや酸素イオンビームエツチン
グに代表されるドライエツチング法によつてエツ
チングする。しかる後、微細パターンが形成され
た厚い有機層が得られる。 (実施例) 還流冷却器、滴下ロートをとりつけた200mL
の三つ口フラスコに、100mLのエタノール、4.6
gの金属ナトリウムを入れて磁気撹拌子で撹拌し
た。溶液が均一になつたらレゾルシンを22g加
え、還流させながら1時間撹拌をつづけた。還流
下でトリメチルシリルクロロメタン24.5gを滴下
ロートから2時間かけて滴下し、滴下終了後さら
に還流を24時間つづけた。放冷後エタノールを減
圧除去し、水を30mL加えて、濃塩酸で若干酸性
にしてからクロロホルムで抽出(30mL×4)
し、抽出液をまとめて水洗(30mL×4)した。
クロロホルム溶液を無水硫酸マグネシウムで乾燥
後、減圧蒸留を行ない、0.2torrにおいて86℃の
沸点で留出する成分を12.6g得た。この留分は核
磁気共鳴特性(CDCl3中、δ0.1(9H、S、3CH3)、
3.5(2H、S、CH2)、5.0(1H、S、OH)、6.0−
7.3(4H、m、Ar))、赤外線吸収特性(KBrdisk、
3350(OH)、1255(SiCH3))、元素分析値(C、
61.3%:H、8.3%)より、3−(トリメチルシリ
ルメトキシ)フエノール(以下1〜と略記する)で
あると確認した。 上記合成法と同様にして、2−メチル−3−
(トリメチルシリルメトキシ)フエノール(以下
2と略記する)、(沸点:81℃/0.15torr.元素分析
値:C、62.8%;H、8.8%)、3−(3−トリメ
チルシリルプロポキシ)フエノール(以下3〜と略
記する)、(沸点:117℃/0.1torr.元素分析値:
C、64.4%;H、8.9%)を合成した。 つづいて、5.0gの1〜、2.1gの2−メチルレゾ
ルシン、3.7gの35%ホルマリンを21gのエタノ
ールに溶解し、濃塩酸を10滴加えて加熱還流して
付加縮合反応を行なわせた。12時間後に水500m
Lに投入し、7.6gの淡黄色粉末を得た。得られ
たノボラツク系樹脂(以下P1〜と略記する)は、
アルコール、クロロホルム、エチル酢酸セロソル
ブ、アセトン等の有機溶剤、および、1規定の水
酸化ナトリウム水溶液、1規定の水酸化テトラメ
チルアンモニウム水溶液に可溶であつた。 1〜,2−メチルレゾルシン、ホルマリンの比率
を変化させて付加縮合を行ない、樹脂(以下それ
ぞれP2〜、P3〜、P4〜、P5〜およびP6〜と略
記す
る)を得た。さらに上記付加縮合において1〜のか
わりに2〜、あるいは3〜を用いて反応を行ない樹脂
P7〜およびP8〜を得た。結果を表−1に示す。
[Formula] etc. may be included. Also,
According to experiments conducted by the present inventors, the degree of polymerization of this novolak resin does not exceed 20. When adding a photosensitive substance to the novolak resin of the present invention and using it as a resist composition, the resin needs to be soluble in some solvent in order to be coated, and also needs to be soluble in a solvent suitable for development (e.g. Since the novolak resin needs to be soluble in an aqueous solution containing an alkaline substance, the content of general formula A in the novolak resin is preferably 80 mol% or less. Further, in order to provide sufficient dry etching resistance, the content of general formula A is preferably 20 mol % or more. The diazo compound added to the novolac resin as a photosensitizer can be changed from a state insoluble in an alkaline aqueous solution to a state soluble in an alkaline aqueous solution by irradiating it with electron beams, X-rays, deep ultraviolet rays, ultraviolet rays, or visible light. For optical exposure, quinonediazide compounds are preferred. This compound can also be used with electron beams, X-rays, and deep ultraviolet light. Examples of quinonediazide compounds include low-molecular and high-molecular compounds containing naphthoquinonediazide groups and benzoquinonediazide groups, such as condensation products of naphthoquinonediazide sulfonic acid chloride and benzoquinonediazide sulfonic acid chloride and low-molecular and high-molecular compounds having hydroxyl groups. It will be done. Here, examples of low molecular weight compounds having a hydroxyl group include hydroquinone, resorcinol, phloroglucin, 2,4-dihydroxybenzophenone, 2,
Examples of the polymer compound include 3,4-trihydroxybenzophenone and the like, and examples of the polymer compound include phenolic resin and polyhydroxystyrene. The amount of the photosensitizer added is preferably in the range of 5 to 100 grams, more preferably in the range of 15 to 50 grams, per 100 grams of the resin of the present invention. In addition to the photosensitizer, additional additives such as small amounts of additional resins (for example, to improve adhesion with organic films), plasticizers, pigments, dyes (light absorbers), etc. are added. Good too. Next, a method for forming a pattern will be explained in detail. After a thick organic film is spin-coated as the first layer and evaporated to dryness, a resist composition of the present invention is spin-coated onto the organic film. Solvents for coating include xylene, isoamyl acetate, cellosolve ethyl acetate, cellosolve methyl acetate, cellosolve acetate, and mixtures thereof. It is necessary to select a solvent that does not dissolve or deform the first layer organic film. After coating, the resist composition of the present invention is heated and dried under appropriate conditions, and then exposed to electron beams, X-rays,
A predetermined resist pattern can be drawn by exposing to deep ultraviolet rays, ultraviolet rays, visible light, etc. and developing it. As a developer suitable for developing the resist composition of the present invention, sodium hydroxide and potassium hydroxide are used. This includes all aqueous solutions that exhibit alkalinity, such as inorganic alkali aqueous solutions such as, tetramethylammonium hydroxide, and aqueous solutions containing organic alkalis such as choline. In addition to the alkaline substance, additional additives such as surfactants may be added. Using the resist pattern obtained by development as a mask, the first thick organic layer is etched by a dry etching method such as reactive ion etching using oxygen or oxygen ion beam etching. Thereafter, a thick organic layer with fine patterns is obtained. (Example) 200mL with reflux condenser and dropping funnel attached
In a three-neck flask, add 100 mL of ethanol, 4.6
g of metallic sodium was added thereto and stirred with a magnetic stirrer. When the solution became homogeneous, 22 g of resorcinol was added and stirring was continued for 1 hour while refluxing. 24.5 g of trimethylsilylchloromethane was added dropwise from the dropping funnel over 2 hours under reflux, and after the addition was complete, reflux was continued for an additional 24 hours. After cooling, remove ethanol under reduced pressure, add 30 mL of water, make slightly acidic with concentrated hydrochloric acid, and extract with chloroform (30 mL x 4).
The extracts were combined and washed with water (30 mL x 4).
After drying the chloroform solution over anhydrous magnesium sulfate, vacuum distillation was performed to obtain 12.6 g of a component distilled at a boiling point of 86° C. at 0.2 torr. This fraction has nuclear magnetic resonance properties (in CDCl 3 , δ0.1 (9H, S, 3CH 3 ),
3.5 (2H, S, CH 2 ), 5.0 (1H, S, OH), 6.0−
7.3 (4H, m, Ar)), infrared absorption characteristics (KBrdisk,
3350 (OH), 1255 (SiCH 3 )), elemental analysis value (C,
61.3%:H, 8.3%), it was confirmed that it was 3-(trimethylsilylmethoxy)phenol (hereinafter abbreviated as 1-). 2-methyl-3-
(Trimethylsilylmethoxy)phenol (hereinafter abbreviated as 2), (boiling point: 81℃/0.15torr. Elemental analysis value: C, 62.8%; H, 8.8%), 3-(3-trimethylsilylpropoxy)phenol (hereinafter 3- ), (boiling point: 117℃/0.1torr. Elemental analysis value:
C, 64.4%; H, 8.9%) were synthesized. Subsequently, 5.0 g of 1-, 2.1 g of 2-methylresorcin, and 3.7 g of 35% formalin were dissolved in 21 g of ethanol, 10 drops of concentrated hydrochloric acid was added, and the mixture was heated under reflux to carry out an addition condensation reaction. 500m of water after 12 hours
7.6 g of pale yellow powder was obtained. The obtained novolac-based resin (hereinafter abbreviated as P1~) is
It was soluble in organic solvents such as alcohol, chloroform, cellosolve ethyl acetate, and acetone, as well as in 1N aqueous sodium hydroxide solution and 1N aqueous tetramethylammonium hydroxide solution. Addition condensation was carried out while changing the ratio of 1-,2-methylresorcin and formalin to obtain resins (hereinafter abbreviated as P2-, P3-, P4-, P5- and P6-, respectively). Furthermore, in the above addition condensation reaction, 2~ or 3~ was used in place of 1~ to give resins P7~ and P8~. The results are shown in Table-1.

【表】【table】

【表】 これら重合体の酸素ドライエツチング耐性を確
認するために、樹脂P1をエチル酢酸セロソルブ
に溶解しシリコン基板上にスピンナを用いて塗布
し、80℃で30分間乾燥した試料を、ケイ素を含ま
ないノボラツク樹脂を主成分とする(シツプレー
社)MP−1300と比較して実験を行つた。 反応性酸素イオンエツチングにおいては、酸素
流量5sccm、酸素圧1.5Pa、高周波出力100Wの条
件の下で、MP−1300は、P1〜より約15倍の速
度、すなわちP1〜が1000Åエツチングされる間に
MP−1300は約15000Åエツチングされた。 また酸素イオンビームエツチングにおいては、
加速電圧100V、イオン電流密度0.25mA/cm2
酸素圧力2.6Paの条件下で、P1〜はMP−1300の
20倍以上の耐性を示した。すなわちP1〜が1000Å
エツチングされる間にMP−1300は20000Å以上
エツチングされた。 P2〜〜P8〜の重合体においても、同様に高いエ
ツチング耐性を示し、これら新規なケイ素含有ノ
ボラツク樹脂が、所期の目的の通り、高いエツチ
ング耐性を有する素材であることが分かつた。 (発明の効果) 本発明によつて、ケイ素原子を含む新規なフエ
ノール系樹脂が得られた。該樹脂はドライエツチ
ング工程においてきわめて高いエツチング耐性を
示す素材であることがわかつた。
[Table] In order to confirm the oxygen dry etching resistance of these polymers, resin P1 was dissolved in ethyl acetate cellosolve, applied on a silicon substrate using a spinner, and dried at 80°C for 30 minutes. An experiment was conducted in comparison with MP-1300 (Shipley Co., Ltd.) whose main component is novolak resin. In reactive oxygen ion etching, under the conditions of oxygen flow rate of 5 sccm, oxygen pressure of 1.5 Pa, and high frequency output of 100 W, MP-1300 etches at a rate approximately 15 times faster than P1~, that is, while P1~ is etched by 1000 Å.
MP-1300 was etched to approximately 15,000 Å. In addition, in oxygen ion beam etching,
Accelerating voltage 100V, ion current density 0.25mA/cm 2 ,
Under the condition of oxygen pressure 2.6Pa, P1~ is of MP-1300.
It showed more than 20 times more resistance. That is, P1~ is 1000Å
During etching, MP-1300 was etched by more than 20,000 Å. Polymers P2 to P8 showed similarly high etching resistance, proving that these new silicon-containing novolac resins are materials with high etching resistance, as intended. (Effects of the Invention) According to the present invention, a novel phenolic resin containing silicon atoms was obtained. It was found that this resin is a material that exhibits extremely high etching resistance in the dry etching process.

Claims (1)

【特許請求の範囲】 1 一般式Aで示される構造を20〜80モル%くり
返し単位として主鎖に含む分子量300〜6000のノ
ボラツク樹脂。 一般式A: (式中nは1〜3、Rは水素原子またはアルキル
基を表わす) 2 一般式Aが一般式Cで示される構造である特
許請求の範囲第1項記載のノボラツク樹脂。 一般式C: (式中nは1ないし3、Rは水素原子またはメチ
ル基を表わす)
[Scope of Claims] 1. A novolak resin having a molecular weight of 300 to 6,000 and containing a structure represented by general formula A as a repeating unit of 20 to 80 mol % in the main chain. General formula A: (In the formula, n represents 1 to 3, and R represents a hydrogen atom or an alkyl group.) 2. The novolak resin according to claim 1, wherein the general formula A has a structure represented by the general formula C. General formula C: (In the formula, n is 1 to 3, R represents a hydrogen atom or a methyl group)
JP8523184A 1984-04-27 1984-04-27 Novolak resin, resist composition, and pattern formation Granted JPS60228522A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8523184A JPS60228522A (en) 1984-04-27 1984-04-27 Novolak resin, resist composition, and pattern formation
US06/724,457 US4624909A (en) 1984-04-27 1985-04-18 Silicon-containing novolak resin and resist material and pattern forming method using same
GB08510722A GB2158450B (en) 1984-04-27 1985-04-26 Silicon-containing novolak resin and material and pattern forming method using same
DE19853515210 DE3515210A1 (en) 1984-04-27 1985-04-26 NOVOLAC RESINS CONTAINING TRIMETHYLSILY GROUPS, THEIR USE FOR THE PRODUCTION OF PHOTORESIST MATERIAL AND PATTERNS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8523184A JPS60228522A (en) 1984-04-27 1984-04-27 Novolak resin, resist composition, and pattern formation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP28355286A Division JPS62187843A (en) 1986-11-28 1986-11-28 Resist composition and formation of pattern

Publications (2)

Publication Number Publication Date
JPS60228522A JPS60228522A (en) 1985-11-13
JPS6316404B2 true JPS6316404B2 (en) 1988-04-08

Family

ID=13852785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8523184A Granted JPS60228522A (en) 1984-04-27 1984-04-27 Novolak resin, resist composition, and pattern formation

Country Status (1)

Country Link
JP (1) JPS60228522A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191848A (en) * 1986-02-17 1987-08-22 Nec Corp Positive resist material
TW201806995A (en) * 2016-04-06 2018-03-01 迪愛生股份有限公司 Method for producing novolac type resin

Also Published As

Publication number Publication date
JPS60228522A (en) 1985-11-13

Similar Documents

Publication Publication Date Title
JP6641879B2 (en) Composition for forming resist underlayer film, method for producing resist underlayer film and patterned substrate
JPH11258809A (en) Polymer and photosensitive corrosion resistant film composition for short wavelength image formation
TW200305059A (en) Negative photoresists for short wavelength imaging
GB2158450A (en) Silicon-containing novolak resin and material and pattern forming method using same
WO2018016648A1 (en) Compound, resin, composition, and pattern formation method
CN104884423A (en) methanofullerene
WO2006040921A1 (en) Sulfur-atom-containing composition for forming of lithographic antireflection film
WO2018016634A1 (en) Compound, resin, and composition, as well as resist pattern formation method and circuit pattern formation method
JP2001158810A (en) Composition for organic anti-reflection film and method for producing the same
JP2001092137A (en) Composition for organic antireflection film and its production
JPH04130324A (en) Positive type resist composition
CN112684661B (en) Photoresist composition and preparation method thereof
JPS6316404B2 (en)
TW200907571A (en) Photo-sensitive compound and photoresist composition including the same
CN111458978A (en) Photoresist composition
JP5534205B2 (en) Photosensitive resist underlayer film forming composition and resist pattern forming method
JPS6260418B2 (en)
JP2676902B2 (en) Triphenylmethane derivative and process for producing the same
JPH0768435B2 (en) Radiation-sensitive resin composition
JPH0594018A (en) Radiation sensitive composition
JP2914172B2 (en) Positive electron beam resist composition and method for forming fine pattern using the same
WO2022022728A1 (en) Patterning material and patterned film
JPH0153772B2 (en)
JP3099528B2 (en) Radiation-sensitive resin composition for dry development
JPH05265213A (en) Radiation sensitive resin composition