JPS63158747A - Plate type cadmium negative electrode - Google Patents

Plate type cadmium negative electrode

Info

Publication number
JPS63158747A
JPS63158747A JP61305747A JP30574786A JPS63158747A JP S63158747 A JPS63158747 A JP S63158747A JP 61305747 A JP61305747 A JP 61305747A JP 30574786 A JP30574786 A JP 30574786A JP S63158747 A JPS63158747 A JP S63158747A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
internal pressure
catalyst
type cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61305747A
Other languages
Japanese (ja)
Other versions
JPH0555980B2 (en
Inventor
Masako Kusaka
草鹿 雅子
Yoshimasa Inaba
稲葉 吉尚
Hideo Kaiya
英男 海谷
Minoru Yamaga
山賀 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61305747A priority Critical patent/JPS63158747A/en
Publication of JPS63158747A publication Critical patent/JPS63158747A/en
Publication of JPH0555980B2 publication Critical patent/JPH0555980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To absorb hydrogen gas evolved in overcharge to retard an increase in internal pressure by forming a layer comprising support powder supported with catalyst and a binder on the surface of a paste type cadmium negative electorde, and further forming a porous film of fluorine resin thereon. CONSTITUTION:A layer comprising support powder supported with catalyst and an adhesive is formed on the surface of a paste type cadmium electrode of a sealed alkaline storage battery. Palladium or platinum is used as the catalyst, and carbon powder is used as the support powder. The thickness of the layer formed on the surface of the electrode is 0.5-20mum. A porous layer of fluorine resin is formed on the surface of the layer comprising the support powder and the binder. Hydrogen gas evolved in overcharge is electrochemically absorbed to prevent an increase in internal pressure caused by hydrogen gas evolved in a severe charging condition.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉型アルカリ蓄電池に用いられるペースト
式カドミウム負極に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a paste-type cadmium negative electrode for use in sealed alkaline storage batteries.

従来の技術 一般に、密閉型アルカリ蓄電池では、過充電時に水の電
気分解によるガス発生が起こり、電池内圧が上昇するの
を防ぐため、(1)正極から発生する酸素ガスは負極の
充電生成物である金属カドミウムに吸収させる、@)負
極に充填する活物質の電気化学的容量を、正極に充填す
る活物質の電気化学的容量より多くすることによシ、負
極からの水素ガスの発生を防ぐという方法がとられてい
る。しかし、これらの方法を用いても過充電時の内圧レ
ベルが高いため、さらに電池内圧の上昇を防ぐことので
きる特性を持った負極が必要となってきた。
Conventional technology In general, in sealed alkaline storage batteries, in order to prevent the internal pressure from increasing due to gas generation due to water electrolysis during overcharging, (1) oxygen gas generated from the positive electrode is a charging product of the negative electrode. By making the electrochemical capacity of the active material filled in the negative electrode larger than the electrochemical capacity of the active material filled in the positive electrode, hydrogen gas generation from the negative electrode is prevented. This method is being used. However, even when these methods are used, the internal pressure level during overcharging is high, and therefore a negative electrode with characteristics that can further prevent the internal pressure of the battery from increasing has become necessary.

発明が解決しようとする問題点 このような問題を解決するために、特開昭60−817
65号公報に見られるように、電極表面に炭素粉末層を
形成することが提案されているが、このような負極では
、酸素ガス吸収性を高めることはできるが、充電を受は
入れることができる水酸化カドミウムが極板中に残って
いない場合の水素ガスによる内圧上昇をおさえることが
できなかった。
Problems to be Solved by the Invention In order to solve these problems, Japanese Patent Application Laid-Open No. 60-817
As seen in Publication No. 65, it has been proposed to form a carbon powder layer on the electrode surface, but such a negative electrode can improve oxygen gas absorption, but cannot accept charge. It was not possible to suppress the increase in internal pressure due to hydrogen gas when the produced cadmium hydroxide did not remain in the electrode plate.

本発明は、以上のような従来の欠点を解消し、過酷な充
電条件下でも水素ガスによる内圧上昇が極めて少ないペ
ースト式カドミウム負極を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a paste-type cadmium negative electrode which eliminates the above-mentioned conventional drawbacks and which causes an extremely small increase in internal pressure due to hydrogen gas even under severe charging conditions.

問題点を解決するだめの手段 上記の問題解決のため、本発明のペースト式カドミウム
負極は、電極表面に触媒を担持させた担体粉末と結着剤
とから成る層を形成したものである。又よシ好ましくは
層の表面に弗素樹脂の多孔膜を形成したものである。
Means for Solving the Problems In order to solve the above problems, the paste-type cadmium negative electrode of the present invention has a layer made of a binder and a carrier powder supporting a catalyst on the electrode surface. Preferably, a porous membrane of fluororesin is formed on the surface of the layer.

作用 このようなペースト式カドミウム負極は、電極表面に触
媒を担持させた担体粉末と結着剤から成る層を形成させ
であるため、過充電時に発生する水素ガスを電気化学的
に吸収することが可能となシ、水素ガスによる内圧上昇
を防ぐことができる。
Function: This type of paste-type cadmium negative electrode forms a layer consisting of a binder and a carrier powder carrying a catalyst on the electrode surface, which makes it possible to electrochemically absorb hydrogen gas generated during overcharging. It is possible to prevent an increase in internal pressure due to hydrogen gas.

とくに弗素樹脂の多孔膜を層表面に設ければ気相を確保
して水素ガスの触媒による消失を円滑に行えるものであ
る。
In particular, if a porous membrane of fluororesin is provided on the surface of the layer, a gas phase can be ensured and hydrogen gas can be smoothly eliminated by the catalyst.

実施例 以下実施例により、本発明を詳述する。Example The present invention will be explained in detail with reference to Examples below.

平均粒径的1μの酸化カドミウム粉末に、ポリビニルア
ルコールのエチレンクリコール溶液ヲ加え、混練してペ
ースト状にする。このペーストを導電性支持体である厚
さ0.1111mのニッケルメッキした開孔鋼板に塗着
し、約140℃で30分間乾燥し、厚さ約o、smmの
電極を得だ。
An ethylene glycol solution of polyvinyl alcohol is added to cadmium oxide powder with an average particle size of 1 μm, and the mixture is kneaded to form a paste. This paste was applied to a nickel-plated perforated steel plate with a thickness of 0.1111 m as a conductive support, and dried at about 140° C. for 30 minutes to obtain an electrode with a thickness of about 0.02 mm.

また、塩化パラジウムを塩酸で溶解した溶液に人造黒鉛
粉末を加え、混練してパラジウムを黒鉛に吸着させる。
Furthermore, artificial graphite powder is added to a solution of palladium chloride dissolved in hydrochloric acid, and the mixture is kneaded to cause palladium to be adsorbed onto the graphite.

ここに、水酸化ナトリウム水溶液およびホルマリンを加
え、吸着されたパラジウム純水にこの黒鉛粉末を重量比
で30%、ポリビニルアルコールを重量比6チ分散させ
た溶液に、前記電極を約10秒間浸漬した後、80’C
で乾燥させ、電極表面に層を形成させた。次にこの電極
をアルカリ溶液中で理論容量の約40%充電し、水洗、
乾燥しペースト式カドミウム負極を得た。
To this, an aqueous sodium hydroxide solution and formalin were added, and the electrode was immersed for about 10 seconds in a solution in which 30% by weight of this graphite powder and 6% by weight of polyvinyl alcohol were dispersed in pure water with adsorbed palladium. After, 80'C
to form a layer on the electrode surface. Next, this electrode was charged to about 40% of its theoretical capacity in an alkaline solution, washed with water,
After drying, a paste-type cadmium negative electrode was obtained.

この負極をaとする。Let this negative electrode be a.

一方、上記の方法により表面に層を形成させない他は同
様の構成による比較例のカドミウム負極を用意した。こ
れをbとする。
On the other hand, a cadmium negative electrode of a comparative example having the same structure except that no layer was formed on the surface by the above method was prepared. Let this be b.

さらに、パラジウムを吸着させていない人造黒鉛粉末を
重量比で309IJ、ポリビニルアルコールを重量比で
6チとした溶液を用い、同様に表面に層を形成させた比
較例のカドミウム負極Cを得た。
Furthermore, a cadmium negative electrode C of a comparative example was obtained in which a layer was similarly formed on the surface using a solution containing 309 IJ of artificial graphite powder on which palladium was not adsorbed and 6 IJ of polyvinyl alcohol by weight.

上記、3種類のカドミウム負極を、焼結式ニッケル正極
と組み合せて、密閉形蓄電池を試作し、過充電時の内圧
試験および電池保存後の充電時の内圧試験を行った。過
充電時の内圧試験は、次の条件で行った。電池を20℃
で0,1C相当の電流で16時間充電し、20’Cで2
時間放置した後、0℃で1゜6C相轟の電流で2時間充
電し、0℃で1.6G相当の電流で放電した。この時、
0℃での充電開始時間を0とし、電池内圧の経時変化を
測定した。また、電池保存後の充電時の内圧試験は、次
のように行った。電池を20’Cで0.10相当の電流
で10時間充電し、45℃で1チ月間放置した後、20
℃で0.2G相当の電流で2時間充電し、20℃で0.
2G相当の電流で放電した。この時、0.2Gでの充電
開始時間を0とし、電池内圧の経時変化を測定した。
A sealed storage battery was prototyped by combining the above three types of cadmium negative electrodes with a sintered nickel positive electrode, and an internal pressure test during overcharging and an internal pressure test during charging after battery storage were conducted. The internal pressure test during overcharging was conducted under the following conditions. battery at 20℃
Charged for 16 hours at a current equivalent to 0.1C, then charged at 20'C for 2 hours.
After being left for an hour, it was charged at 0°C with a current of 1°6C phase for 2 hours, and discharged at 0°C with a current equivalent to 1.6G. At this time,
The charge start time at 0° C. was set as 0, and changes in battery internal pressure over time were measured. Further, an internal pressure test during charging after battery storage was conducted as follows. After charging the battery at 20'C with a current equivalent to 0.10 for 10 hours and leaving it at 45°C for 1 month,
Charged for 2 hours with a current equivalent to 0.2G at ℃, and 0.2G at 20℃.
It was discharged with a current equivalent to 2G. At this time, the charging start time at 0.2G was set to 0, and the change in battery internal pressure over time was measured.

第1図は、過充電時の内圧試験における電池内圧と時間
との関係を示す。aは本発明の負極を用いた電池、b、
cは比較のだめの負極を用いた電池を示す。また放電後
の平衡圧りは、電池内の水素残存圧を示す。この結果か
ら明らかなように、電極表面に黒鉛粉末を含む層が形成
された負極&およびCを用いた電池&、Oは、電極表面
に特に層を形成されていない負極すを用いた電池に比べ
内圧が大幅に減少している。これは、電極表面に導電性
を持つ層が形成されたことによシ、表面付近にガス吸収
に関与する金属カドミウムが生成されやすくなったため
であると考えられる。また、パラジウムを吸着させた黒
鉛粉末を表面層に用いた負極乙による電池aは、放電後
の水素残存圧が0となっている。これは触媒の作用によ
り、発生した水素ガスが電気化学的に吸収されたためと
考えられる。さらに、電池aにおける内圧カーブをパラ
ジウムを吸着させていない黒鉛粉末を用いた負極Cによ
る電池Cにおける内圧カーブと比較すると、はぼ同じ形
をしていることから、触媒の作用は、おもに水素ガス吸
収に及んでいるものと考えられる。
FIG. 1 shows the relationship between battery internal pressure and time in an internal pressure test during overcharging. a is a battery using the negative electrode of the present invention, b,
c shows a battery using a negative electrode for comparison. In addition, the equilibrium pressure after discharge indicates the residual hydrogen pressure within the battery. As is clear from this result, a battery using a negative electrode & and C with a layer containing graphite powder formed on the electrode surface is different from a battery using a negative electrode with no layer formed on the electrode surface. The internal pressure is significantly reduced compared to the previous model. This is thought to be because the formation of a conductive layer on the electrode surface made it easier for metal cadmium, which is involved in gas absorption, to be generated near the surface. Further, in battery a using negative electrode B, in which graphite powder adsorbed with palladium was used for the surface layer, the residual hydrogen pressure after discharge was zero. This is thought to be because the generated hydrogen gas was electrochemically absorbed by the action of the catalyst. Furthermore, when comparing the internal pressure curve of battery a with the internal pressure curve of battery C using negative electrode C using graphite powder on which palladium is not adsorbed, the shape is almost the same, so the action of the catalyst is mainly caused by hydrogen gas. It is thought that this is due to absorption.

第2図は、電池保存後の充電時の内圧試験における電池
内圧と時間の関係を示す。図から明らかなように、この
試験においても過充電時の内圧試験における結果と同様
の結果が得られた。過充電を行なうことにより負極中の
水酸化カドミウムが金属カドミウムに変化し、充電を受
は入れることができる水酸化カドミウムがなくなった場
合、さらに充電を続けると水素ガスが発生する。また、
電池保存により、充電を受は入れ易いγ型水酸化カドミ
ウムが充電を受は入れにくいβ型水酸化カドミウムに変
化するため、充電を行うと水素ガスが発生する。本実施
例では、いずれの場合でも水素ガスを電気化学的に吸収
することができる。又層の表面に弗素樹脂の多孔膜を形
成すれば、ガス導入のための気相を確保でき、触媒によ
る水素ガス消失をより円滑に行える。
FIG. 2 shows the relationship between battery internal pressure and time in an internal pressure test during charging after battery storage. As is clear from the figure, results similar to those obtained in the internal pressure test during overcharging were obtained in this test as well. By overcharging, the cadmium hydroxide in the negative electrode changes to metallic cadmium, and when there is no longer enough cadmium hydroxide to accept charge, hydrogen gas is generated if charging is continued. Also,
When a battery is stored, γ-type cadmium hydroxide, which easily accepts charge, changes to β-type cadmium hydroxide, which does not easily accept charge, so hydrogen gas is generated when the battery is charged. In this embodiment, hydrogen gas can be electrochemically absorbed in any case. Furthermore, by forming a porous film of fluororesin on the surface of the layer, a gas phase for gas introduction can be secured, and hydrogen gas can be more smoothly eliminated by the catalyst.

なお、実施例では触媒をパラジウムとしたが、白金を用
いても同様の効果が得られる。層の厚みについては、技
術的に0.5μ以下にするのは困難であシ、また20μ
以上の厚い層になると、実際の充放電が不可能となるの
で、層の厚みとしては0.6〜20μが適当であるとい
える。また、実施例では結着剤としてポリビニルアルコ
ールを用いたが、メチルセルロースなどのような他の水
溶性結着剤、あるいはフッ素樹脂などのような非水溶性
の結着剤を用いても同様の効果が得られる。
Note that although palladium was used as the catalyst in the examples, similar effects can be obtained by using platinum. Regarding the thickness of the layer, it is technically difficult to reduce it to 0.5μ or less, and it is 20μ or less.
If the layer becomes thicker than the above, actual charging and discharging becomes impossible, so it can be said that the appropriate layer thickness is 0.6 to 20 μm. In addition, although polyvinyl alcohol was used as the binder in the examples, similar effects can be obtained by using other water-soluble binders such as methylcellulose or water-insoluble binders such as fluororesin. is obtained.

発明の効果 以上のように、本発明によれば過酷な充電条件下でも、
アルカリ蓄電池の内部圧力の上昇をおさえることができ
る。
As described above, according to the present invention, even under severe charging conditions,
It is possible to suppress the increase in internal pressure of alkaline storage batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明における負極を用いたニッ
ケルーカドミウム蓄電池の内圧の経時変化を示す図であ
る。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名り一
偵東残魯〃 B)悶(h+υps) 第2図 が¥ 閉 (hsups)
FIGS. 1 and 2 are diagrams showing changes over time in the internal pressure of a nickel-cadmium storage battery using the negative electrode of the present invention. Name of agent: Patent attorney Toshio Nakao, and one other person, Isshu Tozanro B) Agony (h+υps) Figure 2 is ¥ closed (hsups)

Claims (5)

【特許請求の範囲】[Claims] (1)触媒を担持させた担体粉末と結着剤とから成る層
を、電極表面に形成したことを特徴とするペースト式カ
ドミウム負極。
(1) A paste-type cadmium negative electrode characterized in that a layer consisting of a carrier powder supporting a catalyst and a binder is formed on the electrode surface.
(2)触媒が、パラジウムまたは白金である特許請求の
範囲第1項記載のペースト式カドミウム負極。
(2) The paste-type cadmium negative electrode according to claim 1, wherein the catalyst is palladium or platinum.
(3)担体粉末が炭素粉末である特許請求の範囲第1項
又は第2項記載のペースト式カドミウム負極。
(3) The paste-type cadmium negative electrode according to claim 1 or 2, wherein the carrier powder is carbon powder.
(4)層の厚みが0.5〜20μである特許請求の範囲
第1項記載のペースト式カドミウム負極。
(4) The paste-type cadmium negative electrode according to claim 1, wherein the layer has a thickness of 0.5 to 20μ.
(5)電極表面の触媒を担持させた担体粉末と結着剤と
から成る層の表面に弗素樹脂の多孔膜を設けた特許請求
の範囲第1項記載のペースト式カドミウム負極。
(5) The paste type cadmium negative electrode according to claim 1, wherein a porous film of fluororesin is provided on the surface of the layer consisting of a binder and a carrier powder supporting a catalyst on the electrode surface.
JP61305747A 1986-12-22 1986-12-22 Plate type cadmium negative electrode Granted JPS63158747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61305747A JPS63158747A (en) 1986-12-22 1986-12-22 Plate type cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61305747A JPS63158747A (en) 1986-12-22 1986-12-22 Plate type cadmium negative electrode

Publications (2)

Publication Number Publication Date
JPS63158747A true JPS63158747A (en) 1988-07-01
JPH0555980B2 JPH0555980B2 (en) 1993-08-18

Family

ID=17948854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61305747A Granted JPS63158747A (en) 1986-12-22 1986-12-22 Plate type cadmium negative electrode

Country Status (1)

Country Link
JP (1) JPS63158747A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167935A (en) * 1974-11-02 1976-06-12 Varta Batterie
JPS6081765A (en) * 1983-10-12 1985-05-09 Sanyo Electric Co Ltd Manufacturing method for paste type cadmium negative electrode plate
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS61208755A (en) * 1985-03-13 1986-09-17 Sanyo Electric Co Ltd Pasted negative cadmium plate for sealed alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167935A (en) * 1974-11-02 1976-06-12 Varta Batterie
JPS6081765A (en) * 1983-10-12 1985-05-09 Sanyo Electric Co Ltd Manufacturing method for paste type cadmium negative electrode plate
JPS60100382A (en) * 1983-11-07 1985-06-04 Matsushita Electric Ind Co Ltd Closed nickel-hydrogen storage battery
JPS61208755A (en) * 1985-03-13 1986-09-17 Sanyo Electric Co Ltd Pasted negative cadmium plate for sealed alkaline storage battery

Also Published As

Publication number Publication date
JPH0555980B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
JPS63158747A (en) Plate type cadmium negative electrode
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JP2797554B2 (en) Nickel cadmium storage battery
JPH028419B2 (en)
JP3043108B2 (en) Method for producing non-sintered cadmium electrode plate for alkaline storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPS5933758A (en) Sealed nickel cadmium battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH10275619A (en) Paste type cadmium electrode
JPH0232750B2 (en)
JP3070081B2 (en) Sealed alkaline storage battery
JPS63158746A (en) Paste type cadmium negative electrode
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH0675397B2 (en) Method for producing paste type cadmium negative electrode
JPH09293503A (en) Manufacture of sintered nickel electrode
JPH09245827A (en) Manufacture of alkaline storage battery
JPS61190861A (en) Cadmium anode for alkaline storage battery
JPS58209063A (en) Manufacture of plate for lead-acid battery
JPH0888001A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS612268A (en) Manufacture of sealed nickel-cadmium battery
JPS63310565A (en) Manufacture of paste type cadmium negative electrode
JPS60112253A (en) Hydrogen-absorbing electrode
JPH09223514A (en) Sealed lead-acid battery
JPS6127072A (en) Rechargeable electrochemical system