JPS63157122A - Scanning optical system - Google Patents

Scanning optical system

Info

Publication number
JPS63157122A
JPS63157122A JP30283786A JP30283786A JPS63157122A JP S63157122 A JPS63157122 A JP S63157122A JP 30283786 A JP30283786 A JP 30283786A JP 30283786 A JP30283786 A JP 30283786A JP S63157122 A JPS63157122 A JP S63157122A
Authority
JP
Japan
Prior art keywords
lens
aberration
optical system
scanning
image surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30283786A
Other languages
Japanese (ja)
Inventor
Satoshi Itami
伊丹 敏
Fumitaka Abe
文隆 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30283786A priority Critical patent/JPS63157122A/en
Publication of JPS63157122A publication Critical patent/JPS63157122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To obtain an optical system in which a view angle is >=30 deg. in one side and an aberration scarcely occurs, by a lens constituted of one piece, by providing a necessary f.theta lens between an optical deflector and an image surface. CONSTITUTION:A laser beam 13 which is deflected at an equal angular velocity by a rotary polygon mirror 10 passes through an f.theta lens 12 provided between the polygon mirror 10 and an image surface 11 and forms an image on the surface 11. This lens 12 is formed by one piece of aspherical lens and goes to a meniscus lens of a convex part to the image surface side, and approximate curvatures r1, r2 of first and second faces are selected so as to satisfy a condition of the expression I. In such a way, the astigmatism and the image surface curvature aberration are corrected, and even when a light source is in an infinity, a scanning optical system in which a view angle is >=30 deg. in one side and the aberration scarcely occurs is obtained by a lens constituted of one piece.

Description

【発明の詳細な説明】 〔概 業〕 走査光学系であって、像面側に凸面の一枚の非球面レン
ズで構成したf・θレンズを用いることにより、部品点
数が少なく、しかも十分な結像性能を得ることを可能と
する。
[Detailed Description of the Invention] [General Work] By using an f/θ lens consisting of a single aspherical lens with a convex surface on the image plane side as a scanning optical system, the number of parts is small and the number of parts is sufficient. It makes it possible to obtain imaging performance.

〔産業上の利用分野〕[Industrial application field]

本発明はレーザビーム等の光を走査して文字や画像を記
録する装置或いは文字や画像を読み取る装置に関するも
ので、さらに詳しく言えば光を小さなスポットに結像し
走査するための走査レンズに関するものである。
The present invention relates to a device that records characters or images by scanning light such as a laser beam, or a device that reads characters or images, and more specifically relates to a scanning lens that focuses light into a small spot and scans it. It is.

レーザビームを光偏向器で走査し続くレンズ系によって
結像し像点を走査する光学系の応用はプリンタ、ディス
プレイ、パターンジェネレータ、画像読み取り装置等多
分野に及ぶ。例えば第2図に示すようにレーザ光を文字
のドツトパターンに応じて変調し、感光ドラム上に文字
の潜像を形成して記録するレーザプリンタにおいては回
転多面鏡1、走査レンズ2をとりつけ、入射されたレー
ザ3の走査レンズによる像点4をドラム5の端から他端
に向って直線的に反復走査できるようにしている。
Optical systems in which a laser beam is scanned by an optical deflector and then imaged by a lens system to scan the image point are used in a wide variety of fields, including printers, displays, pattern generators, and image reading devices. For example, as shown in FIG. 2, a laser printer that modulates laser light according to the dot pattern of characters to form and record latent images of characters on a photosensitive drum is equipped with a rotating polygon mirror 1, a scanning lens 2, The image point 4 of the incident laser 3 by the scanning lens can be repeatedly scanned linearly from one end of the drum 5 to the other end.

さて、走査レンズの焦点距離をf、レンズに入射するビ
ームと光軸のなす角をθとすれば、一般レンズの理想像
高がf−tan θで定義されるのに対して、理想像高
がf・θで定義されるようなレンズをf・θレンズと呼
ぶ。本発明はこのf・θレンズに関するものである。r
・θレンズを用いれば像面上でビームの速度Vは で表わされる。光偏向器が等角速度で回転する回転多面
鏡であれば なり像点は等速度で走査される。このように「・θレン
ズは走査角度と走査位置の関係をリニアに保つ特徴があ
る。
Now, if the focal length of the scanning lens is f, and the angle between the beam incident on the lens and the optical axis is θ, then the ideal image height of a general lens is defined as f-tan θ, while the ideal image height is A lens in which is defined by f·θ is called an f·θ lens. The present invention relates to this f/θ lens. r
- If a θ lens is used, the velocity V of the beam on the image plane is expressed as. If the optical deflector is a rotating polygon mirror that rotates at a constant angular speed, the image point is scanned at a constant speed. In this way, the .theta lens has the characteristic of maintaining a linear relationship between the scanning angle and the scanning position.

〔従来の技術と発明が解決しようとする問題点〕従来の
走査レンズとしては2〜3枚のレンズを用いたもの(特
開昭53−137631、特開昭51−9463、特開
昭54−41149 、特開昭54−109457、特
開昭54−150144)があるが、これらはいずれも
部品点数が多くなるという欠点があった。
[Prior art and problems to be solved by the invention] Conventional scanning lenses use two or three lenses (JP-A-53-137631, JP-A-51-9463, JP-A-Sho 54- 41149, JP-A No. 54-109457, and JP-A No. 54-150144), but all of these had the disadvantage of having a large number of parts.

また、一枚のレンズを用いた走査レンズとしては■特開
昭55−7727■特開昭54−87540がある。
Further, as a scanning lens using a single lens, there are Japanese Patent Application Laid-Open No. 55-7727 and ■ Japanese Patent Application Laid-open No. 54-87540.

■は球面レンズであり、歪曲収差は小さく補正できるが
、画角が大きくなると像面わん曲が大きくなり平面結像
性能が低下するので使用できる画角に制限がある。■は
光偏向器に入射するビームの発光点の共役像位置を有限
距離に選ぶというもので光偏向器に複数面のミラー(回
転多面鏡)を用いることをカバーすることは目的として
いない。
(2) is a spherical lens, which can correct distortion to a small extent, but as the angle of view increases, the curvature of the field increases and plane imaging performance deteriorates, so there is a limit to the angle of view that can be used. (2) selects the conjugate image position of the light emitting point of the beam incident on the optical deflector at a finite distance, and is not intended to cover the use of multiple mirrors (rotating polygon mirrors) in the optical deflector.

f・θレンズに要求される性能を大別すると次のように
なる。
The performances required of f/theta lenses can be roughly classified as follows.

■結像性能が良い(球面収差、コマ収差が小さい) ■平面結像性能が良い(非点収差、像面わん曲が小さい
) ■f・θ特性が良い(歪曲収差が小さい)−FIHに、
f・θレンズでは焦点距離fと、入射ビーム径りの比f
/D即ちFナンバーが太き(暗いとき■についてはあま
り注意する必要がない、■。
■Good imaging performance (small spherical aberration, comatic aberration) ■Good planar imaging performance (small astigmatism, small curvature of field) ■Good f/θ characteristics (small distortion) - For FIH ,
For an f/θ lens, the focal length f and the ratio of the incident beam diameter f
/D, that is, the F number is thick (when it's dark, you don't need to pay much attention to ■).

■が重要である。■ is important.

ここで収差論において■に関係する三次の収差係数は非
点収差:■、球欠像面わん曲:■、ペッツバール和:P
であり、次のような関係がある。
Here, in aberration theory, the third-order aberration coefficients related to ■ are astigmatism: ■, field curvature: ■, and Petzval sum: P
and has the following relationship.

rv=m+p  ・・・(1) 特開昭54−87540では次のような記述がある。「
光源位置が偏向器から無限遠方にあるとき、走査レンズ
の結像面である被走査平面を像面わん曲なく走査するた
めには■=0、IV=0でなければならない。しかし走
査用レンズが屈折率Nなる硝材の単レンズであるとき、
レンズの焦点距離f=1としてP = 1 / N・・
・(2)(N:レンズの屈折率)であるので前述のm=
o、IV=Oの両方を満足することは不可能である。即
ち、単レンズのときはペッツバ−ル和が残存するので、
非点収差■あるいは球欠像面わん曲■のいずれか一方し
か補正できない。・・・(中略)・・・。これに対して
光源位置を有限距離に配置すると、ペッツバ−ル和が残
存していても非点収差及び球欠像面わん曲の両方を補正
でき被走査平面上に結像位置を一敗させることが可能で
ある。」と記述されており、光源が無限遠方にあるとき
は単レンズでは非点収差及び球面収差の両方を同時に補
正することはできないとしている。
rv=m+p (1) JP-A-54-87540 has the following description. "
When the light source position is at an infinite distance from the deflector, ■=0 and IV=0 must be satisfied in order to scan the scanned plane, which is the imaging surface of the scanning lens, without field curvature. However, when the scanning lens is a single lens made of a glass material with a refractive index of N,
Assuming that the focal length of the lens is f=1, P = 1/N...
・(2) (N: refractive index of the lens), so m =
It is impossible to satisfy both o and IV=O. In other words, in the case of a single lens, the Petzval sum remains, so
Only either astigmatism ■ or curvature of the field field ■ can be corrected. ...(omitted)... On the other hand, if the light source position is placed at a finite distance, both astigmatism and spherical field curvature can be corrected even if the Petzval sum remains, and the imaging position can be fixed on the scanned plane. Is possible. '', which states that when the light source is at infinity, it is not possible to correct both astigmatism and spherical aberration at the same time with a single lens.

本発明はこのような点に鑑みて創作されたもので、光偏
向器に入射する発光点の供役像位置がほぼ無限遠方に位
置する光学系で、回転多面鏡を光偏向器に用いる光学系
において、画角が片側30゜以上で且つ収差の少ない一
枚構成のレンズを提供することを目的としている。
The present invention was created in view of these points, and is an optical system in which the conjugate image position of the light emitting point incident on the optical deflector is located at an almost infinite distance, and an optical system that uses a rotating polygon mirror as the optical deflector. The object of the present invention is to provide a single-lens lens having an angle of view of 30° or more on one side and having few aberrations.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明においては第1図に例示するように、等
角速度に光の偏向を行う光偏向器1oと、該光偏向器1
0と像面11の間にf・θレンズl2を備え、平行ビー
ムを光走査する走査光学系において、該f・θレンズ1
2が一枚の非球面レンズから構成され、該f・θレンズ
12の形状が像面側に凸面のメニスカスレンズであるこ
とを特徴としている。
Therefore, in the present invention, as illustrated in FIG. 1, an optical deflector 1o that deflects light at a constant angular velocity,
In a scanning optical system that includes an f/θ lens 12 between 0 and an image plane 11 and scans a parallel beam, the f/θ lens 1
2 is composed of one aspherical lens, and the f/θ lens 12 is characterized in that it is a meniscus lens with a convex surface on the image plane side.

〔作 用〕[For production]

前記f・θレンズ12の第1面の光軸近傍の曲率をrl
、第2面の光軸近傍の曲率をr2としたとき、不等式1
≦□〈1.5を満たす場合に、g 非点収差及び像面わん曲の双方を補正することが可能と
なる。
The curvature of the first surface of the f/θ lens 12 near the optical axis is rl
, when the curvature near the optical axis of the second surface is r2, inequality 1
When ≦□<1.5 is satisfied, both g astigmatism and field curvature can be corrected.

〔実施例〕〔Example〕

本発明は光源位置が偏向器から無限遠方にあるときに対
応するが、前述の特開昭54−87540の記述に反し
て次のような理由で実用化になりうる一枚非球面レンズ
を設計できる可能性がある。
The present invention deals with cases where the light source position is at an infinite distance from the deflector, but contrary to the description in the above-mentioned Japanese Patent Application Laid-Open No. 54-87540, we designed a single aspherical lens that could be put into practical use for the following reasons. There is a possibility that it can be done.

i)実際の平面結像性能には許容範囲があり■=0、I
V=0にもある程度の許容範囲がある。
i) There is a tolerance range in the actual planar imaging performance ■=0, I
There is also a certain tolerance range for V=0.

ii )式(2)P=1/Nは薄肉系として考えた場合
であるが厚肉系として考えれば次式である。
ii) Equation (2) P=1/N applies when considering a thin wall system, but when considering a thick wall system, the following equation is obtained.

(3)式においてp=oとおくと rl  =  r。If we set p=o in equation (3), rl = r.

すなわち第1面と第2面の曲率半径が同じときP=0と
なる。しかし、r、!rtは設計時に大きな制限となる
ので実際にはrlとr2は比較的近い値をとることによ
り、Pをある程度Oに近づけることができる。したがっ
てr、とr2は同符号すなわちメニスカスレンズの方が
非点収差と像面わん曲を同時に補正しやすいと考えられ
る。
That is, when the radii of curvature of the first surface and the second surface are the same, P=0. But r,! Since rt is a major restriction during design, P can be brought close to O to some extent by actually setting rl and r2 to relatively close values. Therefore, it is considered that r and r2 have the same sign, that is, a meniscus lens is easier to correct astigmatism and field curvature at the same time.

また、画角が大きいときの高次の収差補正は非球面を用
いて設計の自由度を大きくする。
In addition, for high-order aberration correction when the angle of view is large, an aspheric surface is used to increase the degree of freedom in design.

従来、レンズ設計は、計算機を用いて、レンズの各収差
に重みを乗じたものの和であるメリット関数値を計算し
、目標値に達しないとレンズの構成パラメータの値を若
干変えてメリット関数値を計算し直し、このメリット関
数値が目標値を満足するまで何回もこの操作を繰り返す
という手法をとっている。しかし、レンズを設計するた
めの光学パラメータは非球面レンズの場合屈折率、厚み
、曲率半径、非球面の係数入射瞳位置等、非常に多くレ
ンズの最適設計はは多変数関数の最適化問題となる。
Conventionally, in lens design, a computer is used to calculate the merit function value, which is the sum of each lens aberration multiplied by weight. The method used is to recalculate and repeat this operation many times until the merit function value satisfies the target value. However, in the case of an aspheric lens, there are many optical parameters for designing a lens, such as refractive index, thickness, radius of curvature, aspheric coefficient entrance pupil position, etc. The optimal design of a lens is an optimization problem of a multivariable function. Become.

一般に、いろいろな収差の和であるメリット関数は極値
が多く存在するので如何に計算機を用いて最適化を行な
っても初期値を間違えれば良いレンズは得られない。そ
こで初期値は収差論を指針にしたり、過去のデータを用
いたりすることは周知の手法である。本発明においても
このような手順により計算機を用いて試行錯誤を操り返
しながら最適設計を行ない、良好なレンズを得ることが
できた。
Generally, the merit function, which is the sum of various aberrations, has many extreme values, so no matter how much optimization is performed using a computer, if the initial values are wrong, a good lens cannot be obtained. Therefore, it is a well-known method to set the initial value using aberration theory as a guideline or using past data. In the present invention as well, we were able to obtain a good lens by performing optimal design through trial and error using a computer using such a procedure.

第1図に1枚非球面f・θレンズのモデルを示す。同図
は平行な入射ビーム13が回転多面鏡を用いた光偏向器
10で反射しf・θレンズの光軸を通って像面に達する
図である。レンズの構成パラメータは、屈折率二N、中
心厚:d1、第n面の曲率半径と非球面係数:rn  
、Bn 、Cn  +Dn 、En 、Fn  、Gn
である。ただしn面の形状は各面の頂点を基準にした光
軸方向の座標値Xn、光軸に垂直な方向の座標Snとす
ると+′CnSn’ +DnSn” +EnSnI0+
FnSnI2+GnSn′4であられされる光軸を中心
軸とする回転対称形状とする。その他のパラメータとし
て入射瞳位置とその変化に関するパラメータとして回転
多面鏡とレンズ第一面の距離d0、入射ビームと光軸の
角度ψ、回転鏡の大きさく内接円径):RO1回転鏡中
心位置に関する距離:ΔXである。回転多面鏡の場合内
接円と外接円の差から走査角θ(光軸とレンズに入射す
る角度のなす角)に応じて反射点の位置が変わる。すな
わち走査角θに応じて入射瞳位置は変化する。f・θレ
ンズはこのように入射瞳位置が変化しても、性能が悪く
ならないような特性をもつ必要がある。
Figure 1 shows a model of a single aspherical f/θ lens. In this figure, a parallel incident beam 13 is reflected by an optical deflector 10 using a rotating polygon mirror, passes through the optical axis of an f/θ lens, and reaches an image plane. The constituent parameters of the lens are: refractive index 2N, center thickness: d1, radius of curvature of the n-th surface and aspheric coefficient: rn
, Bn, Cn +Dn, En, Fn, Gn
It is. However, the shape of the n-plane is +'CnSn'+DnSn''+'CnSn'+DnSn''+'CnSn'+DnSn''+'CnSn'+DnSn' +EnSnI0+
It has a rotationally symmetrical shape with the optical axis formed by FnSnI2+GnSn'4 as the central axis. Other parameters related to the entrance pupil position and its changes include the distance d0 between the rotating polygon mirror and the first surface of the lens, the angle ψ between the incident beam and the optical axis, the diameter of the inscribed circle (size of the rotating mirror): RO1 rotating mirror center position Distance related to: ΔX. In the case of a rotating polygon mirror, the position of the reflection point changes depending on the scanning angle θ (the angle between the optical axis and the angle of incidence on the lens) based on the difference between the inscribed circle and the circumscribed circle. That is, the entrance pupil position changes depending on the scanning angle θ. The f/theta lens needs to have characteristics such that its performance does not deteriorate even if the entrance pupil position changes in this way.

以上f・θレンズに要求される重要な性能は次のとおり
である。
The important performances required of the f/theta lens are as follows.

■非点収差、像面わん曲が小さい。■Small astigmatism and curvature of field.

■歪曲収差が小さい、(f・θ特性が良い)■走査角変
化による入射瞳位置変化でも■■の特性が良好である。
■Distortion aberration is small (f/θ characteristics are good) ■■Characteristics are good even when the entrance pupil position changes due to changes in the scanning angle.

以上のようなことを考慮に入れて電子計算機を用いて試
行錯誤を繰り返しながら最適設計を行なった。その結果
、前述で収差論から予想したように、rlとr2の値が
比較的近いメニスカスレンズ(像面方向に凸)でなけれ
ば収差を同時に補正できないことがわかった。r、とr
2との比「 電 (□)で表わすと、最適設計を繰り返した結果次の不等
式を満たす必要があることがわがった。
Taking the above into account, we performed an optimal design using a computer through repeated trial and error. As a result, as expected from the theory of aberrations mentioned above, it was found that aberrations cannot be corrected at the same time unless a meniscus lens (convex in the image plane direction) has relatively close values of rl and r2. r, and r
As a result of repeated optimal design, it was found that the following inequality must be satisfied:

1≦(−) < 1.5 z この範囲外では各収差と同時に補正することはむずかし
い。
1≦(−)<1.5 z Outside this range, it is difficult to correct each aberration at the same time.

以下実施例について説明する。Examples will be described below.

1枚非球面レンズの最適設計に大きな影響を与える要素
を何個か選び、それぞれを変化させて最適設計を行なっ
た。
We selected several elements that greatly influence the optimal design of a single aspherical lens, and performed the optimal design by varying each of them.

選んだ要素は次のものである。The selected elements are:

0画角(θmax) ■屈折率(N) ■レンズの厚み(dl) ■は光軸とレンズに入射するビームとの最大の角度θm
ax  (θmax>O)であり、−θmax 〜θm
axの間の入射ビームが有効である。
0 angle of view (θmax) ■Refractive index (N) ■Lens thickness (dl) ■ is the maximum angle θm between the optical axis and the beam incident on the lens
ax (θmax>O), and −θmax ~θm
The incident beam between ax is valid.

θmaxは33° 、44° 、52°で、それぞれ8
面体、6面体、5面体の回転多面鏡に対応する。画角に
対応する焦点距離等の値を第1表に示す。
θmax is 33°, 44°, 52°, respectively 8
Compatible with rotating polygon mirrors such as a hexahedron, a hexahedron, and a pentahedron. Table 1 shows values such as focal length corresponding to the angle of view.

第1表 ■の屈折率Nについては、現在レンズに用いられている
光学材料は1.4から1.9程度である。本発明では低
屈折率の代表として約1.5と高屈折率の代表として約
1.8で最適設計を行なった。繰伶返し最適設計を行な
った結果Nが大きい方が各収差の補正に有利であること
がわかった。このことは後述の実施例によくあられれて
いる。
Regarding the refractive index N in Table 1, the optical materials currently used for lenses are about 1.4 to 1.9. In the present invention, the optimal design was carried out using approximately 1.5 as a representative of a low refractive index and approximately 1.8 as a representative of a high refractive index. As a result of repeatedly performing optimal design, it was found that a larger N is advantageous in correcting each aberration. This is clearly seen in the embodiments described below.

また、繰り返し最適設計を行なった結果、レンズの■の
厚みdlが収差補正に大きな影響を与えること、および
d、が小さすぎると各収差を同時に補正できず、ある程
度の厚みが必要であることがわかった。
In addition, as a result of repeatedly performing optimal design, we found that the thickness dl of the lens has a large effect on aberration correction, and that if d is too small, it will not be possible to correct each aberration at the same time, so a certain amount of thickness is necessary. Understood.

以下実施例を示す。第2表は実施例番号と0画角、■屈
折率、■レンズの厚みの関係を示し、第3表に各実施例
の諸元を示し、第3図乃至第20図に各実施例の収差を
示した。図より1≦□〈1.5を満す本各実施例は収差
が小さく実用に適することがわかる。なお図示しないが
“前記条件外のものは収差が大きく実用に適さない。
Examples are shown below. Table 2 shows the relationship between the example number and 0 angle of view, ■ refractive index, ■ lens thickness, Table 3 shows the specifications of each example, and Figs. It showed aberrations. From the figure, it can be seen that the present embodiments satisfying 1≦□<1.5 have small aberrations and are suitable for practical use. Although not shown in the drawings, "those outside the above conditions have large aberrations and are not suitable for practical use.

以下余白 第2表 第: 〔実施例1〕 f  = 220.0000          d 
O=r 1 = −45,3668d 1 ar 2 
= −41,0367d 2 ;B 1 = −2,5
64104Xl0−’     C1ミE1=  5.
990942XlO−”    F1=82 = −1
,200928Xl0−6G 2・E 2 = −9,
098427xlO−IbF 2 =l −−1,ioe z 収差図は第3図に示す。
Table 2 with blank space below: [Example 1] f = 220.0000 d
O=r1=-45,3668d1ar2
= −41,0367d 2 ; B 1 = −2,5
64104Xl0-'C1miE1=5.
990942XlO−” F1=82=−1
,200928Xl0-6G2・E2=-9,
098427xlO-IbF 2 =l −-1,ioez The aberration diagram is shown in FIG.

ただし歪曲収差は焦点距離f、歩査角θ、yとしたとき
の次式の値である。
However, the distortion aberration is the value of the following equation when focal length f, step angle θ, and y.

fθ 1表(1) ・ 11.0000 ・ 40.0000            N=  
1.48600・283.4399 ・ 1.724664xlO−’     D1=−1
,734847xlo−’・ 0.0        
      G1=  0.0・−2゜225062X
10−”    D2=  8.369305X10−
”・  0.0              G2= 
 0.0像高 〔実施例2〕 f  = 220.0000          d 
Or 1 = −50,9850d 1 r 2 =  45.5954         d 
2B 1 = −1,742203Xl0−5    
 CIE1=  3.712757XIO−”    
FIB 2 = −5,244683Xl0−’   
  C2E 2 =−2,030129xlO−”  
  F 2−− =1.118 I 収差図は第4図に示す。
fθ Table 1 (1) ・ 11.0000 ・ 40.0000 N=
1.48600・283.4399・1.724664xlO-' D1=-1
,734847xlo-'・0.0
G1= 0.0・-2゜225062X
10-” D2=8.369305X10-
”・0.0 G2=
0.0 image height [Example 2] f = 220.0000 d
Or 1 = -50,9850d 1 r 2 = 45.5954 d
2B 1 = -1,742203Xl0-5
CIE1=3.712757XIO-”
FIB2=-5,244683Xl0-'
C2E 2 =-2,030129xlO-”
F 2−− =1.118 I The aberration diagram is shown in FIG.

〔実施例3〕 f  = 220.0000         d O
r 1 = −57,0081d 1 r 2 = −49,9818d 2 B 1 = −1,264485Xl0−’     
CIEl=  1.540421XIO−”    F
IB 2−−2.392693 Xl0−’     
C2E 2 = −6,018082xlO−I7F 
2−−1.141  収差図は第5図に示3表(2) =  11.0000 =  50.0000            N= 
 1.48600=290.5615 =  1.015482X10−’     DI=−
1,057879X10−’=  0.0      
       G1=  0.0=−1,056290
xlO−10D2=  1.565872xlO−14
=  0.0             G2=  0
.0=  12.0000 =  60.0000           N=  
1.48600=295.7277 =  5.503187X10−’     D1=−
5,097621X10−16− 0.0      
      G1=  0.0=−6,329331X
10−”    D2=  3.516849X10−
”−0,0G2葦 0.0 す。
[Example 3] f = 220.0000 dO
r 1 = -57,0081d 1 r 2 = -49,9818d 2 B 1 = -1,264485Xl0-'
CIEl=1.540421XIO-”F
IB 2--2.392693 Xl0-'
C2E2 = -6,018082xlO-I7F
2--1.141 The aberration diagram is shown in Figure 5 Table 3 (2) = 11.0000 = 50.0000 N=
1.48600=290.5615=1.015482X10-' DI=-
1,057879X10-'=0.0
G1= 0.0=-1,056290
xlO-10D2= 1.565872xlO-14
= 0.0 G2= 0
.. 0= 12.0000 = 60.0000 N=
1.48600=295.7277=5.503187X10-' D1=-
5,097621X10-16-0.0
G1= 0.0=-6,329331X
10-” D2= 3.516849X10-
”-0,0G2 reed 0.0.

〔実施例4〕 f  = 220.0000         d O
r 1 = −66,5182d 1 r 2 = −57,5658d 2 B 1 = −5,240528Xl0−”     
CIE1=  2.222347X10−”    F
IB 2 = −1,068260Xl0−’    
 C2E 2 = −2,052871Xl0−’6 
   F 2一=1.156 z 収差図は第6図に示す。
[Example 4] f = 220.0000 dO
r 1 = -66,5182d 1 r 2 = -57,5658d 2 B 1 = -5,240528Xl0-"
CIE1=2.222347X10-”F
IB 2 = -1,068260Xl0-'
C2E 2 = -2,052871Xl0-'6
F2-=1.156z The aberration diagram is shown in FIG.

〔実施例5〕 r  = 220.0000          d 
Or 1 = −69,1807d 1 r 2 = −61,9764d 2 B l = −5,668784Xl0−’     
CIE 1 =  8.531304 Xl0−”  
  F t82 =−6,606470Xl0−’  
   C2E 2 = −4,906209Xl0−”
    F Zr ! −=1.116  収差図は第7図( 3表(3) =  26.0000 ”  30.0000             N 
=   1.78571=263.6571 =  9.635758X10−”    D1=−6
,297802X10’伺2=   0.0     
         G1=   0.0=−3,0O0
820X10−”     D2=  5.95708
4X10−14=   0.0           
   G2=   0.0=  17.0000 =  40.0000             N=
   1.78571=275.9692 =   1.603355xlO−’     D I
 =−6,24265xlo−”=  0.0    
          G1=  0.0=   1.1
48118X10−”     D2=−1,6634
01X10伺3=   0.0           
   G2=   0.0こ示す。
[Example 5] r = 220.0000 d
Or 1 = -69,1807d 1 r 2 = -61,9764d 2 B l = -5,668784Xl0-'
CIE 1 = 8.531304 Xl0-”
F t82 =-6,606470Xl0-'
C2E 2 = −4,906209Xl0−”
FZr! -=1.116 The aberration diagram is shown in Figure 7 (Table 3 (3) = 26.0000" 30.0000 N
= 1.78571=263.6571 = 9.635758X10-” D1=-6
,297802X10'2=0.0
G1= 0.0=-3,0O0
820X10-”D2=5.95708
4X10-14=0.0
G2= 0.0= 17.0000 = 40.0000 N=
1.78571=275.9692=1.603355xlO-' DI
=-6,24265xlo-”=0.0
G1= 0.0= 1.1
48118X10-” D2=-1,6634
01X10 3= 0.0
G2=0.0 is shown.

〔実施例6〕 f  =220.0000         dr 1
 = −74,7753d r 2 = −67,5528d B 1−−3.178875 xlO−’     C
E 1 =  4.805572 xlO−14FB 
2−−2.869785 Xl0−’     CB 
2−−4.013730 XIO””    Fr。
[Example 6] f = 220.0000 dr 1
= -74,7753d r 2 = -67,5528d B 1--3.178875 xlO-' C
E 1 = 4.805572 xlO-14FB
2--2.869785 Xl0-' CB
2--4.013730 XIO””Fr.

−−=1.10? 収差図は第8図に示す。--=1.10? The aberration diagram is shown in FIG.

〔実施例7〕 f  −220,0000d I r 1−−77.4896         dr 2
 = −71,7326d ’。
[Example 7] f -220,0000d I r 1--77.4896 dr 2
= −71,7326d'.

B 1−−1.904874 XIO″h     c
El電 4.334901 Xl0−1SF lB2−
−1.327272X10−’     C:B2−−
4.460741X10−”    FS−t、oso
  収差図は第9図にぢ 3表(4) 0 =  17.2386 1 = 50.0000           N電 
1.785712−284.7271 1=  6.646437xlO−’     DI暑
−3,236906x 10− ”1− 0.0   
         Gl−0,02=  2.5388
32X10−”    D2=−4,399395X1
0−”2− 0.0            G2= 
 0.01 =  23.2564 1壜60.0000          N=  1.
78571! =294.9517 4 6.175538xlO−”    DI−−5,
110941xlO−”−0,0G1=  0.0 !−−2,351038X10−”    D2−−3
.112747X1(1”:電 0.OG2=  0.
0 辷す。
B 1--1.904874 XIO″h c
El Den 4.334901 Xl0-1SF lB2-
-1.327272X10-' C:B2--
4.460741X10-” FS-t, oso
The aberration diagram is shown in Figure 9. Table 3 (4) 0 = 17.2386 1 = 50.0000 N
1.785712-284.7271 1= 6.646437xlO-' DI heat-3,236906x 10- "1- 0.0
Gl-0,02=2.5388
32X10-” D2=-4,399395X1
0-”2- 0.0 G2=
0.01 = 23.2564 1 bottle 60.0000 N = 1.
78571! =294.9517 4 6.175538xlO-” DI--5,
110941xlO-”-0,0G1=0.0!--2,351038X10-”D2--3
.. 112747X1 (1”: Electric 0.OG2=0.
0.

〔実施例8〕 r  =165.5000         dr 1
 = −’48.7381           dr
 2 = −38,4946d B 1 =−3,482473xlO−’     C
E1=  8.707567X10−”     FB
 2 = −8,861466Xl0−’     C
E 2 =−1,754637xlo−1F:r。
[Example 8] r = 165.5000 dr 1
= -'48.7381 dr
2 = -38,4946d B 1 = -3,482473xlO-' C
E1= 8.707567X10-” FB
2 = -8,861466Xl0-'C
E2=-1,754637xlo-1F:r.

−−1,266 収差図は第1O図に示す。--1,266 The aberration diagram is shown in Figure 1O.

〔実施例9〕 f  −165,5000d 1 r 1 = −53,2086d r 2 = −41,8659d : B1−−2.256799xlO−’   C:E 1
 =  2.413553 xlO−”   F )B
 2 = −2,057704x 10−’   C:
E 2 = −5,260583xlo−”  F :
− =1.271  収差図は第11図1「! 3表(5) )−7,0627 1−40,0000N=  1.48600と瓢209
.9229 [=  5.072485xlO−’     DI−
−9,376305xlO−’1=−4.439226
XIO−13G1=  1.002868X10−”≧
= −2,101010xlO−”    02− 7
.557104x10−目!−1,815009X10
−”    G2=−8,403720X10−”1=
  7.2970 =  50.0000           N=  
1.48600: =216.3631       
   D I = −3,630719X10−”= 
 2.223478X10−’     Gl=  6
.743042X10−”と−7,046832X10
−”    D2=  3.239996X10−”!
=−1.196650X10−”     G2−−1
.344378X10−”1 =  4.028875
 X 10− ’ ”:示す。
[Example 9] f -165,5000d 1 r 1 = -53,2086d r 2 = -41,8659d : B1--2.256799xlO-' C:E 1
= 2.413553xlO-”F)B
2 = -2,057704x 10-' C:
E2=-5,260583xlo-”F:
- = 1.271 The aberration diagram is shown in Figure 11.
.. 9229 [= 5.072485xlO-' DI-
-9,376305xlO-'1=-4.439226
XIO-13G1= 1.002868X10-”≧
= -2,101010xlO-” 02-7
.. 557104x10-th! -1,815009X10
-” G2=-8,403720X10-”1=
7.2970 = 50.0000 N=
1.48600: =216.3631
D I = −3,630719X10−”=
2.223478X10-' Gl=6
.. 743042X10-" and -7,046832X10
−”D2=3.239996X10−”!
=-1.196650X10-” G2--1
.. 344378X10-”1 = 4.028875
X 10-'”: Show.

〔実施例10〕 f  =165.5000 r L = −56,8958 r 2 = −44,8169 B 1 =  1.909148 xlO−’    
 IE 1 =  1.520780 xlO−”  
  IB 2 =  6.279218 xlo−9+
E2=−1,641882X10−”    1− =
 1.270 収差図は第12図に示す。
[Example 10] f = 165.5000 r L = -56,8958 r 2 = -44,8169 B 1 = 1.909148 xlO-'
IE 1 = 1.520780 xlO-”
IB 2 = 6.279218 xlo-9+
E2=-1,641882X10-” 1-=
1.270 The aberration diagram is shown in FIG.

〔実施例11) f  =165.5000 r 1 = −65,1473 r 2 = −52,1968 B1=−8,134037Xl0−h(E1=  2.
870138X10−”    IB 2 = −1,
217566Xl0−h(E 2 = −1,6014
73Xl0−1S1I =1.248  収差図は第13し 3表(6) 10 =  7.6444 11 =  60.0000            
N=  1.4860012 =222.5803 11:1=  1.660395xlO−’     
DI=−2,524011xlO−’r l = −3
,846042X10−目  G1=  2.4474
31X10−”1=−5,871182xlO−”  
  D2=  1.355357xlO−+21=  
9.679337X10−I9G2=−2,40814
5X10−”! 0 =  15.3378 11 =  30.0000           N
 =  1.78571L 2 =199.0332 1=9.487563xlO−’     DI=−6
,791407xlO−”’  1  =  −8,3
75036xlO−lb      G  1  = 
  8.824204xlO−”二 2=−4,780
826xlO−10D2=   4.438801xl
O−13”2=  1.529839xlO−”   
 G2=−7,533866xlO−”ゴに示す。
[Example 11] f = 165.5000 r 1 = -65,1473 r 2 = -52, 1968 B1 = -8, 134037Xl0-h (E1 = 2.
870138X10-”IB2=-1,
217566Xl0-h (E2 = -1,6014
73Xl0-1S1I = 1.248 The aberration diagram is shown in Table 13 and Table 3 (6) 10 = 7.6444 11 = 60.0000
N= 1.4860012 =222.5803 11:1= 1.660395xlO-'
DI=-2,524011xlO-'r l=-3
,846042X10-th G1= 2.4474
31X10-”1=-5,871182xlO-”
D2= 1.355357xlO-+21=
9.679337X10-I9G2=-2,40814
5X10-”! 0 = 15.3378 11 = 30.0000 N
= 1.78571L 2 =199.0332 1=9.487563xlO-' DI=-6
,791407xlO−”' 1 = −8,3
75036xlO-lb G 1 =
8.824204xlO-”2 2=-4,780
826xlO-10D2= 4.438801xl
O-13"2= 1.529839xlO-"
G2=-7,533866xlO-" is shown in FIG.

第3゜ 〔実施例12〕 f   =  165.5000          
  d O−IEr 1 = −65,9158d l
 =  4Cr 2 = −55,4219d 2 =
20981 = −4,816877xlL’    
  CI =  5E 1 =   9.075982
  xlO−”      F 1 = −282= 
−4,602700Xl0−’      C2= −
2E 2 = −5,968362xlO−I′F 2
 =  3=1.189  収差図は第14図に示す。
3rd degree [Example 12] f = 165.5000
d O−IEr 1 = −65,9158d l
= 4Cr 2 = -55,4219d 2 =
20981 = -4,816877xlL'
CI = 5E 1 = 9.075982
xlO−” F 1 = −282=
-4,602700Xl0-' C2= -
2E 2 = -5,968362xlO-I'F 2
= 3=1.189 The aberration diagram is shown in FIG.

z 〔実施例13〕 f  = 165.5000         d O
= 18r 1 = −70,2339d l = 5
Cr 2 = −59,8876d 2 =217B 
l =−3,601022Xl0−hC1=  EE1
=  1.690907X10−”    F1=−3
82= −2,166960Xl0−’     C2
= −IE 2 = −2,803466Xl0−” 
   F 2 =  1I −=1.172  収差図は第15図に示す。
z [Example 13] f = 165.5000 d O
= 18r 1 = -70,2339d l = 5
Cr2=-59,8876d2=217B
l=-3,601022Xl0-hC1=EE1
= 1.690907X10-” F1=-3
82=-2,166960Xl0-'C2
= −IE 2 = −2,803466Xl0−”
F 2 = 1I −=1.172 The aberration diagram is shown in FIG. 15.

絶 (7) 、2892 .0000            N=  1.78
571.6895 .191031X10−9DI=−3,250581X
lO−”、345027X10−1”    G1= 
 2.339426X10−”、942563X10−
IoD2=  3.714396xlO−”、6951
59 X 10伺9G2=−1,147817X10−
22.4312 .0000            N=  1.78
571.3409 .311956 X 10−”    D I = −
5,513907X 10−目、032890X10−
”    G1=  2.137596X10−19.
547980 X 10伺’    D2=  2.3
90081xlO−Iff、340327X10−” 
   G 2 = −2,833385X10−”〔実
施例14〕 f   =165.5000            
  dr  1 = −73,9872d r  2 = −63,9824d B 1 = −3,514309xlO−h     
 cE 1 =   2.387407  xlO−”
      FB 2 = −1,244709xlo
−’       CE 2 = −1,473841
Xl0−16     F :一=1.156  収差
図は第16図乙〔実施例15) f  = 140.0000         d +
r 1 = −58,1510d r2=−41,9345’        djB1=
−2,491429X10−’     CE1=−3
,330604X10−”    F′B2=  4.
179378XIO−”     (、:E2=−2,
573251X10−I6F:− =1.387  収
差図は第17図番。
Zetsu (7), 2892. 0000 N= 1.78
571.6895. 191031X10-9DI=-3,250581X
lO-”, 345027X10-1” G1=
2.339426X10-”, 942563X10-
IoD2 = 3.714396xlO-”, 6951
59
22.4312. 0000 N= 1.78
571.3409. 311956 X 10-” DI=-
5,513907X 10th, 032890X10-
”G1=2.137596X10-19.
547980 x 10' D2 = 2.3
90081xlO-Iff, 340327X10-”
G 2 = -2,833385X10-” [Example 14] f = 165.5000
dr 1 = -73,9872d r 2 = -63,9824d B 1 = -3,514309xlO-h
cE 1 = 2.387407 xlO-”
FB2 = -1,244709xlo
−' CE 2 = −1,473841
Xl0-16 F: -=1.156 The aberration diagram is shown in Figure 16 B [Example 15] f = 140.0000 d +
r1=-58,1510d r2=-41,9345'djB1=
-2,491429X10-' CE1=-3
, 330604X10-"F'B2=4.
179378XIO-” (,:E2=-2,
573251X10-I6F:- = 1.387 The aberration diagram is number 17.

3表(8) )=  19.4385 1=  60.0000             N
=  1.78571≧=224.5533 1 =  1.451175xlO”     D I
 −−8,487944X10−目L=−3,5983
32X10−IhG1=  2.145000X10−
”≧=−8.226158X10−”     D2=
  1.587217X10−”!=  5.5895
77X10−”°    G 2 = −8,7654
93X 1O−24=示す。
Table 3 (8) ) = 19.4385 1 = 60.0000 N
= 1.78571≧=224.5533 1 = 1.451175xlO” DI
--8,487944X10-th L=-3,5983
32X10-IhG1= 2.145000X10-
"≧=-8.226158X10-" D2=
1.587217X10-”!= 5.5895
77X10-”°G2=-8,7654
93X 1O-24=shown.

)=  7.2443 ’、 = 60.000ON =  1.48600!
 = 187.2432 、=  1.805369X10−’    D1=−
1,499721X10−’=  4.299494X
10−1’   G1=−1,486034X10−I
h!=−1,590367xlO−”   D2=  
3.338246xlO−13:=  1.21573
9X10−’″  G 2 = −2,221703X
 10d3:示す。
) = 7.2443', = 60.000ON = 1.48600!
= 187.2432, = 1.805369X10-' D1=-
1,499721X10-'= 4.299494X
10-1' G1=-1,486034X10-I
h! =-1,590367xlO-”D2=
3.338246xlO-13:= 1.21573
9X10-''' G 2 = -2,221703X
10d3: Show.

〔実施例16〕 (=  140.0000             
d Or  ! = −63,4297d  1r 2
 = −48,6415d 2 B1=−1,258949X10−’       C
IEl冨  1.817489  Xl0−”    
  F IB 2 = −1,363431Xl0−”
       C2E2=−6,254525X10−
”      F2− =1.304  収差図は第1
8図に〔実施例17] r  = 140.0000         d O
r 1 = −66,0795d i r 2 = −52,3199d 2 B 1 = −5,609556Xl0−”     
CIE l =  8.466122 Xl0−目  
 FIB 2 = −3,993857Xl0−’  
   C2E 2 = −1,338344XIO刊’
    F2r。
[Example 16] (= 140.0000
dOr! = -63,4297d 1r 2
= -48,6415d 2 B1=-1,258949X10-' C
IEl Tomi 1.817489 Xl0-”
F IB 2 = −1,363431Xl0−”
C2E2=-6,254525X10-
"F2- = 1.304 The aberration diagram is the first
In Figure 8 [Example 17] r = 140.0000 d O
r 1 = −66,0795d i r 2 = −52,3199d 2 B 1 = −5,609556Xl0−”
CIE l = 8.466122 Xl0-th
FIB2 = -3,993857Xl0-'
C2E 2 = -1,338344XIO'
F2r.

−=1.263 r。-=1.263 r.

収差図は第19図に示す。The aberration diagram is shown in FIG. 19.

3表(9) =  11.4681 =  30.0000            N−1
,78705=169.1624 =  6.839530X10−”     D1=−
4,664560X10−’。
Table 3 (9) = 11.4681 = 30.0000 N-1
,78705=169.1624=6.839530X10-” D1=-
4,664560X10-'.

ター4.353678xlO−”    Gl=  4
.439959xlO−”=−6,882926X10
−”    D2=  2.626494X10−12
=  5.687494x10−18G2=−2,34
3089xlO−”示す。
4.353678xlO-” Gl=4
.. 439959xlO-”=-6,882926X10
-”D2=2.626494X10-12
= 5.687494x10-18G2=-2,34
3089xlO-”.

ミ12.8452 = 40.0000         N=  1.7
8705=177.3239 =  1.544548×1O−1lDI=−6,15
0223X10−”= −1,683842X 10柑
6G1=  2.322477xlO−Iq= −5,
100006X 10刊’   D2冨 9.8076
53 x 10− ”=  8.273120x10−
19G2=−2,424213xlO−”第3 〔実施例18〕 f  = 140.0000         d O
r 1−−64.4613         d 1r
 2 = −54,5623d 2 B 1−−4.312118 Xl0−”     C
IE1=  1.784064X10−”    FI
B2=−1,124136X10−’     C2E
2−−7.416259X10−”    F2I −=1.181 収差図は第20図に示す。
Mi12.8452 = 40.0000 N= 1.7
8705=177.3239=1.544548×1O-1lDI=-6,15
0223
100006X 10th edition' D2 Tomi 9.8076
53 x 10-” = 8.273120x10-
19G2=-2,424213xlO-” 3rd [Example 18] f = 140.0000 d O
r 1--64.4613 d 1r
2 = -54,5623d 2 B 1--4.312118 Xl0-"C
IE1= 1.784064X10-” FI
B2=-1,124136X10-' C2E
2--7.416259X10-''F2I-=1.181 The aberration diagram is shown in FIG.

表(10) =  12.1043 =  50.0000             N−
1,78705=187.8261 =  1.922232X10−”     DI=−
8,932850X10−”=−3,262454X1
0−”     G1=  3.517197X10−
”=−4,290317X10−”    D2=  
7.609930X10−’コニ  3.503699
X10−”    G2=−7,348855X10−
”ゴ〔発明の効果〕 以上述べてきたように、本発明によれば、18の非球面
レンズを用いることによって部品点数4少なくし、しか
も十分な結像性能を持つ走査光9系を提供でき、実用的
には極めて有用である。
Table (10) = 12.1043 = 50.0000 N-
1,78705=187.8261=1.922232X10-” DI=-
8,932850X10-”=-3,262454X1
0-” G1= 3.517197X10-
”=-4,290317X10-” D2=
7.609930X10-'Koni 3.503699
X10-” G2=-7,348855X10-
[Effect of the Invention] As described above, according to the present invention, by using 18 aspherical lenses, the number of parts can be reduced by 4, and in addition, it is possible to provide 9 scanning light systems with sufficient imaging performance. , which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非球面体f・θレンズのモデルを示す
図、 第2図はf・θレンズの原理を説明するためC図、 第3図乃至第20図は本発明の第1乃至第18の実施例
の収差を示す図である。 第1図において、 10は光偏向器(回転多面鏡)、 11は像面、 12はf・θレンズ、 13は平行ビームである。 本発明の非球面f・θレンズのモデルを示す図1o  
光偏向器(回転多面鏡) 11、像面 12、f・θレンズ 13  平行ビーム 救面収差(mm) 実施例7の収差図 球面収差(mm) 実施例14の収差図 第16図
Fig. 1 is a diagram showing a model of the aspherical f/θ lens of the present invention, Fig. 2 is a C diagram for explaining the principle of the f/θ lens, and Figs. It is a figure which shows the aberration of 18th Example. In FIG. 1, 10 is a light deflector (rotating polygon mirror), 11 is an image plane, 12 is an f/θ lens, and 13 is a parallel beam. Figure 1o shows a model of the aspherical f/θ lens of the present invention.
Optical deflector (rotating polygon mirror) 11, image plane 12, f/θ lens 13 Parallel beam salvage aberration (mm) Aberration diagram of Example 7 Spherical aberration (mm) Aberration diagram of Example 14 Fig. 16

Claims (1)

【特許請求の範囲】 1、等角速度に光の偏向を行う光偏向器(10)と、該
光偏向器(10)と像面(11)との間にf・θレンズ
(12)を備え、平行ビームを光走査する走査光学系に
おいて、 上記f・θレンズ(12)が一枚の非球面レンズから構
成され、該f・θレンズ(12)の形状が像面側に凸面
のメニスカスレンズであることを特徴とする走査光学系
。 2、上記f・θレンズ(12)の第1面の光軸近傍の曲
率をr_1、第2面の光軸近傍の曲率をr_2としたと
き、不等式 1≦r_1/r_2<1.5 を満たすことを特徴とした特許請求の範囲第1項記載の
走査光学系。
[Claims] 1. An optical deflector (10) that deflects light at a constant angular velocity, and an f/θ lens (12) between the optical deflector (10) and an image plane (11). , in a scanning optical system that optically scans a parallel beam, the f/θ lens (12) is composed of a single aspherical lens, and the f/θ lens (12) is a meniscus lens having a convex surface on the image plane side. A scanning optical system characterized by: 2. When the curvature of the first surface of the f/θ lens (12) near the optical axis is r_1, and the curvature of the second surface near the optical axis is r_2, inequality 1≦r_1/r_2<1.5 is satisfied. A scanning optical system according to claim 1, characterized in that:
JP30283786A 1986-12-20 1986-12-20 Scanning optical system Pending JPS63157122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30283786A JPS63157122A (en) 1986-12-20 1986-12-20 Scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30283786A JPS63157122A (en) 1986-12-20 1986-12-20 Scanning optical system

Publications (1)

Publication Number Publication Date
JPS63157122A true JPS63157122A (en) 1988-06-30

Family

ID=17913693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30283786A Pending JPS63157122A (en) 1986-12-20 1986-12-20 Scanning optical system

Country Status (1)

Country Link
JP (1) JPS63157122A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0702256A1 (en) 1994-09-06 1996-03-20 Canon Kabushiki Kaisha Optical scanning apparatus including a lens having aspherical surfaces on both sides
US5563729A (en) * 1993-08-30 1996-10-08 Minolta Co., Ltd. Image forming light scanning apparatus
US5812181A (en) * 1996-03-29 1998-09-22 Canon Kabushiki Kaisha Scanning optical apparatus
US5995131A (en) * 1996-12-19 1999-11-30 Canon Kabushiki Kaisha Imaging lens system of scanning optical apparatus
US6133935A (en) * 1996-12-19 2000-10-17 Canon Kabushiki Kaisha Optical scanning apparatus
KR100499319B1 (en) * 2001-06-08 2005-07-04 캐논 가부시끼가이샤 Light scanning device and image forming apparatus using the same
KR100499615B1 (en) * 2001-06-12 2005-07-05 캐논 가부시끼가이샤 Light scanning device and image forming apparatus using the same
JPWO2007119838A1 (en) * 2006-04-11 2009-08-27 住友電工ハードメタル株式会社 YAG laser, fiber laser lens and laser processing apparatus
EP2182400A1 (en) 1995-02-28 2010-05-05 Canon Kabushiki Kaisha Scanning optical apparatus
US7817321B2 (en) 1994-09-06 2010-10-19 Canon Kabushiki Kaisha Scanning optical apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828480A (en) * 1993-08-30 1998-10-27 Minolta Co., Ltd. Image forming light scanning apparatus
US5563729A (en) * 1993-08-30 1996-10-08 Minolta Co., Ltd. Image forming light scanning apparatus
US5721631A (en) * 1993-08-30 1998-02-24 Minolta Co., Ltd. Image forming light scanning apparatus
US5926306A (en) * 1993-08-30 1999-07-20 Minolta Co., Ltd. Image forming light scanning apparatus
US8068265B2 (en) 1994-09-06 2011-11-29 Canon Kabushiki Kaisha Scanning optical apparatus
EP0702256A1 (en) 1994-09-06 1996-03-20 Canon Kabushiki Kaisha Optical scanning apparatus including a lens having aspherical surfaces on both sides
US8681406B2 (en) 1994-09-06 2014-03-25 Canon Kabushiki Kaisha Scanning optical apparatus
US5818505A (en) * 1994-09-06 1998-10-06 Canon Kabushiki Kaisha Optical scanning apparatus including a lens having aspherical surfaces on both sides
US8610984B2 (en) 1994-09-06 2013-12-17 Canon Kabushiki Kaisha Scanning optical apparatus
US8213068B1 (en) 1994-09-06 2012-07-03 Canon Kabushiki Kaisha Scanning optical apparatus
US8115981B2 (en) 1994-09-06 2012-02-14 Canon Kabushiki Kaisha Scanning optical apparatus
US7817321B2 (en) 1994-09-06 2010-10-19 Canon Kabushiki Kaisha Scanning optical apparatus
US7898711B2 (en) 1994-09-06 2011-03-01 Canon Kabushiki Kaisha Scanning optical apparatus
EP2182400A1 (en) 1995-02-28 2010-05-05 Canon Kabushiki Kaisha Scanning optical apparatus
US5812181A (en) * 1996-03-29 1998-09-22 Canon Kabushiki Kaisha Scanning optical apparatus
US6133935A (en) * 1996-12-19 2000-10-17 Canon Kabushiki Kaisha Optical scanning apparatus
US5995131A (en) * 1996-12-19 1999-11-30 Canon Kabushiki Kaisha Imaging lens system of scanning optical apparatus
KR100499319B1 (en) * 2001-06-08 2005-07-04 캐논 가부시끼가이샤 Light scanning device and image forming apparatus using the same
KR100499615B1 (en) * 2001-06-12 2005-07-05 캐논 가부시끼가이샤 Light scanning device and image forming apparatus using the same
JPWO2007119838A1 (en) * 2006-04-11 2009-08-27 住友電工ハードメタル株式会社 YAG laser, fiber laser lens and laser processing apparatus

Similar Documents

Publication Publication Date Title
US6061183A (en) Collimator lens and light-scanning apparatus using the same
JP2000171705A (en) Image-formation lens and image reader using the same
JP4057135B2 (en) Collimator lens and optical scanning device using the same
US6236512B1 (en) Collimator lens and light-scanning apparatus using the same
JP2641514B2 (en) Single group objective lens
JPS63157122A (en) Scanning optical system
JPH07168094A (en) Scanning optical system
JP2000321490A (en) Photographic lens
JPH10282451A (en) Oblique projection optical system
JPH11326757A (en) Objective optical system for infrared ray
JP3034565B2 (en) Telecentric fθ lens
JP2709944B2 (en) Telecentric fθ lens
JPH10133119A (en) Microscope objective lens
JPH0821952A (en) Zoom lens for finite distance
JPS61175607A (en) Scanning optical system
JPH0540232A (en) Wide visual field eyepiece
JPH0199013A (en) Scanned optical system
JPH07110443A (en) Aspherical telecentric lens
JPH1039205A (en) Scanning lens
JP4190265B2 (en) Microscope objective lens
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JPS6231817A (en) Microscope objective lens
JPH0830784B2 (en) Microscope objective lens
JPH0364724A (en) F-theta lens
JP2602716B2 (en) Optical system for light beam scanning