JPS63148691A - Rod for laser - Google Patents

Rod for laser

Info

Publication number
JPS63148691A
JPS63148691A JP29497786A JP29497786A JPS63148691A JP S63148691 A JPS63148691 A JP S63148691A JP 29497786 A JP29497786 A JP 29497786A JP 29497786 A JP29497786 A JP 29497786A JP S63148691 A JPS63148691 A JP S63148691A
Authority
JP
Japan
Prior art keywords
crystal
rod
laser
yag
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29497786A
Other languages
Japanese (ja)
Other versions
JPH0750806B2 (en
Inventor
Shoichi Sudo
昭一 須藤
Katsunari Okamoto
勝就 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61294977A priority Critical patent/JPH0750806B2/en
Publication of JPS63148691A publication Critical patent/JPS63148691A/en
Publication of JPH0750806B2 publication Critical patent/JPH0750806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain easily a rod for laser having clad layers without receiving a large loss by forming crystal layers or glass layers, the refraction index of which is smaller than that of a crystalline like a round bar, around its crystalline like a round bar including light emitting elements. CONSTITUTION:Crystal or glass layers 2, refraction indices of which are smaller than that of a crystalline 1 like a round bar, are formed around its crystalline 1 like a round bar including light emitting elements. In this way, a rod for laser having clad layers is easily made and then, the rod is easily obtained without receiving a large loss. The formation of thick clad layers makes a core diameter small and makes it possible to obtain the rod for laser which has a small emission part and directly connects to a single mode.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、クラッド層を有するレーザ用ロッドに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a laser rod having a cladding layer.

[従来の技術] 従来のレーザ用ロッドは、Ndを含むYAG(Y3八J
1sO+□)結晶体、あるいはGGG(Gd3Ga50
,2)結晶体を光学研磨して、丸棒状のレーザ用ロッド
を作製し、このレーザ用ロッドの側面あるいは端面より
励起用の光をあて、光学ミラーと組み合わせて、レーザ
発振の出力光を得るようにしていた。
[Prior art] A conventional laser rod is made of YAG (Y38J) containing Nd.
1sO+□) crystal, or GGG(Gd3Ga50
, 2) Optically polish the crystal to create a round laser rod, apply excitation light from the side or end face of this laser rod, and combine it with an optical mirror to obtain laser oscillation output light. That's what I was doing.

しかしながらこの場合、クラッド層はなく、したがって
、レーザ用ロッドの表面では散乱損失が大きかった。特
に、レーザ用ロッドの寸法を小さく、たとえば、100
μm以下とした場合、この散乱損失はさらに大きくなり
、高品質なレーザ用ロッドを得るのが難しいという問題
点があった。
However, in this case, there was no cladding layer, and therefore the scattering loss was large on the surface of the laser rod. In particular, the dimensions of the laser rod can be reduced, e.g.
When the thickness is less than μm, this scattering loss becomes even larger, and there is a problem that it is difficult to obtain a high-quality laser rod.

さらに、従来のレーザ用ロッドでは、直径を5〜10μ
mまで小さくして、コア径5〜10μmの単一モード光
ファイバと直接結合することはほとんど不可能であった
Furthermore, conventional laser rods have a diameter of 5 to 10 μm.
It has been almost impossible to reduce the diameter to 5 to 10 μm and directly couple it to a single mode optical fiber with a core diameter of 5 to 10 μm.

さらに従来のレーザ用ロッドでは、loAtm以下の寸
法を実現するのは極めて困難なほか、結晶体の外側が空
気であるため、結晶体と空気の屈折率差は大変大きくな
る。したがって単一モード状態を実現するのに、結晶体
寸法を2μm〜1μmまで小さくする必要が生じるとい
う困難がある。
Furthermore, with conventional laser rods, it is extremely difficult to achieve dimensions of less than loAtm, and since the outside of the crystal is air, the difference in refractive index between the crystal and air becomes very large. Therefore, in order to realize a single mode state, there is a difficulty in that it is necessary to reduce the crystal size to 2 μm to 1 μm.

[発明が解決しようとする問題点] 本発明は上述した散乱損失が大きく、単一モード光ファ
イバと結合することが困難であるという従来の欠点を解
決し、損失の小さなレーザ用ロッドを提供し、また単一
モードファイバと直接結合でき結合損失の小さな光源を
提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned conventional drawbacks of large scattering loss and difficulty in coupling with a single mode optical fiber, and provides a laser rod with small loss. , and also to provide a light source with low coupling loss that can be directly coupled to a single mode fiber.

[問題点を解決するための手段] このような目的を達成するために、本発明のレーザ用ロ
ッドは発光性元素を含む丸棒状の結晶体の周囲に、屈折
率が該丸棒状結晶体より小さな結晶層またはガラス層を
有することを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the laser rod of the present invention has a structure around a round rod-shaped crystal body containing a luminescent element, with a refractive index lower than that of the round rod-shaped crystal body. It is characterized by having a small crystal layer or glass layer.

[作 用コ 本発明によれば、クラッド層を有するレーザ用ロッドを
容易に作製できるものであり、低損失なレーザ用ロッド
゛を容易に得られる利点がある。また、厚いクラッド層
を形成することによって、コア径を小さくできしたがっ
て、発光部が小さく、単一モードと直接結合できるレー
ザ用ロッドを得られる。
[Function] According to the present invention, a laser rod having a cladding layer can be easily produced, and there is an advantage that a low-loss laser rod can be easily obtained. Furthermore, by forming a thick cladding layer, the core diameter can be made small, so that a laser rod with a small light emitting part and capable of direct coupling with a single mode can be obtained.

[実施例コ 第1図(A) 、 (B)に本発明の基本構成を示す、
同図(八)はレーザ用ロッドの断面図、同図CB)はそ
の屈折率分布を示す図である。図において、1は発光性
元素を含む丸棒状の結晶体、2は結晶体1より屈折率の
小さな結晶層またはガラス層である。レーザ光は結晶体
1内で発生し、結晶体1(屈折率n2)と結晶体2(屈
折率n+)の屈折率差(n2−n、=Δn)によって、
結晶体1内にとじこめられる。
[Embodiment Figure 1 (A) and (B) show the basic configuration of the present invention,
Figure (8) is a cross-sectional view of the laser rod, and Figure CB) is a diagram showing its refractive index distribution. In the figure, 1 is a round rod-shaped crystal containing a luminescent element, and 2 is a crystal layer or glass layer having a smaller refractive index than the crystal 1. Laser light is generated within the crystal body 1, and due to the refractive index difference (n2-n, = Δn) between the crystal body 1 (refractive index n2) and the crystal body 2 (refractive index n+),
It is confined within the crystal body 1.

さらに本発明では、発光性元素を含む結晶体Iの寸法を
小さくし、10μm以下とした場合は、レーザ光は結晶
層2へもしみ出し、特に、次式で決まるパラメータ■が
2.405以下のときには阜−モードと呼ばれる状態に
なり、発光レーザ光の20%〜50%が結晶層に漏洩す
る。
Furthermore, in the present invention, when the size of the crystal I containing the luminescent element is reduced to 10 μm or less, the laser light also seeps into the crystal layer 2, and in particular, the parameter (2) determined by the following formula is 2.405 or less. At this time, a state called a fu mode occurs, and 20% to 50% of the emitted laser light leaks into the crystal layer.

n1Δn ■=πa −(1) λ (1)式でπは円周率、aは結晶体1の直径、λは発光
するレーザ光の波長である。従来のレーザ用ロッドでは
Δnが大きく、従って■が大きくなるのに対し、本発明
のクラッド層は損失低減化に重要な役割をするほか、結
晶体1の小さな寸法の実現を容易にするものである。
n1Δn ■=πa −(1) λ In the formula (1), π is the circumference, a is the diameter of the crystal body 1, and λ is the wavelength of the emitted laser light. In conventional laser rods, Δn is large and therefore ■ becomes large, whereas the cladding layer of the present invention not only plays an important role in reducing loss, but also facilitates the realization of small dimensions for the crystal body 1. be.

哀直里± たとえば、第1図に示した本発明の基本構成図において
、結晶体1として、発光性元素としてNdを1%含んだ
YAGを使用し、結晶層2としてNdを含まないYAG
を使用して、本発明のレーザ用ロッドを構成した場合、
Ndを含むYA(i結晶とNdを含まないYAG結晶の
屈折率差Δnはほぼ0.018程度であり、したがって
、式(1)より、a=3μmとすれば、1μm以上の波
長域で単一モード状態となる。(YAG結晶の屈折率は
1.82であり、したが)てn、=1.82とした。)
この場合、外側のYAG結晶層の寸法すとしては、10
0〜200μmが適当であり、これは任意に作製できる
For example, in the basic configuration diagram of the present invention shown in FIG. 1, YAG containing 1% Nd as a luminescent element is used as the crystal 1, and YAG containing no Nd is used as the crystal layer 2.
When the laser rod of the present invention is constructed using
The refractive index difference Δn between the Nd-containing YA (i) crystal and the Nd-free YAG crystal is approximately 0.018. Therefore, from equation (1), if a = 3 μm, the refractive index difference Δn is approximately 0.018. It becomes a one-mode state. (The refractive index of YAG crystal is 1.82, so n = 1.82.)
In this case, the dimensions of the outer YAG crystal layer are 10
A suitable thickness is 0 to 200 μm, and this can be made arbitrarily.

上記構成のレーザ用ロッドの作製については下記のとお
り行った。すなわち、直径0.6〜0.7mmのNd 
: YAG結晶棒を用意しくNd : YAGはNdを
含むYAGを意味する)、これを研磨して直径0.5m
mφの丸棒状Nd : YAG結晶体を得た。次に、直
径10mmφのYAG結晶体(Ndを含まない)を用意
し、この表面を研磨すると共に、中心部に直径0.5+
+unφの穴をあけ、この内面を研磨して、穴直径を0
.6mmφとした。続いて、直径0.5mmφのNd 
: YAG結晶体を上記YAG結晶体の穴に封入し5、
プリフォームとした。このとき、内側のNd : YA
G結晶体の外面と穴内面のギャップ(クリアランス)は
できるだけ小さいほど良い。今回の実施例ではO,1m
mであった。また結晶体の方位は、同じ方向であること
が望ましい0次に、プリフォームを1900〜2000
℃の高温電気炉中にて処理し、引き伸し加工を行って、
直径1+nmφのレーザ用ロッドを得た。このレーザ用
ロッドは第1図に示した構造を有し、寸法すが1 mm
、寸法aが0.05mmである。このレーザ用ロッドは
、損失が極めて小さく、1.0μmで0.05d[l/
m以下であった。さらに、本実施例では、上記直径1m
mのレーザ用ロッドから、直径50μm(寸法b)、コ
ア径2.5 μm(寸法b)の単結晶ファイバ状のレー
ザ用ロッドを作製した。この作製は、論文(M、M、F
ejer他: ”La5er −haated m1n
iaturepedestal growth app
aratus for single −crysta
l optical fibers’ Rev、 Sc
i、 Instrum。
The laser rod having the above configuration was manufactured as follows. That is, Nd with a diameter of 0.6 to 0.7 mm
: Prepare a YAG crystal rod (Nd: YAG means YAG containing Nd) and polish it to a diameter of 0.5 m.
A round rod-shaped Nd:YAG crystal with mφ was obtained. Next, prepare a YAG crystal (not containing Nd) with a diameter of 10 mmφ, polish the surface, and add a diameter of 0.5 +
Drill a hole of +unφ and polish the inner surface to make the hole diameter 0.
.. It was set to 6 mmφ. Next, Nd with a diameter of 0.5 mmφ
: Enclose the YAG crystal in the hole of the YAG crystal 5,
It was made into a preform. At this time, inner Nd: YA
The smaller the gap (clearance) between the outer surface of the G crystal and the inner surface of the hole, the better. In this example, O, 1m
It was m. In addition, it is desirable that the orientation of the crystal is in the same direction.
It is treated in a high temperature electric furnace at ℃ and then stretched.
A laser rod having a diameter of 1+nmφ was obtained. This laser rod has the structure shown in Figure 1, and its dimensions are 1 mm.
, the dimension a is 0.05 mm. This laser rod has an extremely low loss of 0.05d[l/
m or less. Furthermore, in this example, the diameter is 1 m.
A single-crystal fiber-shaped laser rod having a diameter of 50 μm (dimension b) and a core diameter of 2.5 μm (dimension b) was produced from the laser rod of m. This fabrication was carried out in the paper (M, M, F
ejer et al.: “La5er-hated m1n
iaturepedestal growth app
aratus for single-crysta
l optical fibers' Rev, Sc
i, Instrument.

55(11)、 Nov、 1984. pp、179
1−1796)  に示されている作製装置を用いて、
レーザ用ロッドをレーザ加熱によって部分的に溶融し、
ロッド全体を上昇させながら溶融部分を引上げて単結晶
化した。
55(11), Nov. 1984. pp, 179
1-1796) using the production apparatus shown in
The laser rod is partially melted by laser heating,
While raising the entire rod, the molten part was pulled up to form a single crystal.

この単結晶ファイバ状レーザ用ロッドは、コア直径が2
.5μmと極めて小さいために、通常使用している単一
モードファイバ(コア径8〜10μm)と低損失で、直
接結合できる。事実、このレーザ用ロッドの片端より波
長0.82μmのレーザダイオードでボンピングしたと
ころ、効率20%〜30%で1.064μmのレーザ出
力が得られ、また効率2%〜3%で1.32μmのレー
ザ出力が得られ、それぞれ、単一モードファイバに直接
結合できた。結合損失は1 dB/m以下であった。
This single crystal fiber laser rod has a core diameter of 2
.. Since it is extremely small at 5 μm, it can be directly coupled to commonly used single mode fibers (core diameter 8 to 10 μm) with low loss. In fact, when one end of this laser rod was bombed with a laser diode with a wavelength of 0.82 μm, a laser output of 1.064 μm was obtained at an efficiency of 20% to 30%, and a laser output of 1.32 μm was obtained at an efficiency of 2% to 3%. Laser outputs were obtained and each could be coupled directly into a single mode fiber. The coupling loss was less than 1 dB/m.

GGG結晶体についてもYAG結晶と同様に取り扱うこ
とができ、中心(コア)にNd : GGG結晶、周囲
(クラッド)にNdを含まないGGG結晶を使用して単
結晶ファイバを作製した。外径寸法(b)は上述のYA
G結晶の場合と同一であフた。しかしながら、GGG結
晶体の場合には、Ndの添加量が2%と大きいため、N
d : GGG結晶とGGG結晶の屈折率Δnが大きく
なり、従って(1)式よりコア径を小さくできる。木G
GG車結晶ファイバは、コア径は1.5μm程度と小さ
くなった。さらに、レーザダイオードによってボンピン
グしたところ、効率は30%〜40%と極めて高かった
GGG crystals can also be handled in the same way as YAG crystals, and a single crystal fiber was produced using a Nd: GGG crystal in the center (core) and a GGG crystal that does not contain Nd in the periphery (cladding). The outer diameter dimension (b) is YA mentioned above.
It was the same as in the case of G crystal. However, in the case of GGG crystals, the amount of Nd added is as large as 2%, so N
d: The refractive index Δn of the GGG crystal and the GGG crystal becomes large, so the core diameter can be made smaller according to equation (1). Tree G
The core diameter of the GG Kuruma crystal fiber is as small as about 1.5 μm. Furthermore, when bombing was performed using a laser diode, the efficiency was extremely high at 30% to 40%.

夫五■ユ 実施例1ではクラッドとしてNdを含まないYAG結晶
体またはGGG結晶体を使用したが、GeO、ガラスを
使用することができる。GeO2ガラスの熱膨張係数は
B x 1G−’ (/度)と大きく、したがフて、Y
AGの熱膨張係数6.9 Xl0−’およびGGGの熱
膨張係数9.5 Xl0−’と良く整合するものである
。またGeO、の屈折率は1.62程度であり、YAG
あるいはGGGのそれよりもかなり小さいが、表面の荒
れの低下、コア径の細径化には有効である。
In Example 1, Nd-free YAG crystal or GGG crystal was used as the cladding, but GeO or glass may also be used. The thermal expansion coefficient of GeO2 glass is as large as B x 1G-' (/degree), so Y
This matches well with AG's thermal expansion coefficient of 6.9 Xl0-' and GGG's thermal expansion coefficient of 9.5 Xl0-'. Also, the refractive index of GeO is about 1.62, and YAG
Although it is considerably smaller than that of GGG, it is effective in reducing surface roughness and reducing the core diameter.

本実施例では、直径1mmφのGGGロッドの外側にV
AD法(気相軸づけ法)で合成したガラス微粒子を堆積
した後、800〜900℃の温度で透明ガラス化するこ
とによってクラッド層としてのGeO2ガラス層を形成
した。これによって、GGGロッドの外径に直径15+
nmのGcO2ガラス層が形成された。このプリフォー
ムロッドを基にして、外径1mm、長さ1000mmの
レーザロッドを作製できた。
In this example, V is installed on the outside of the GGG rod with a diameter of 1 mmφ.
After depositing glass fine particles synthesized by the AD method (vapor phase axial deposition method), a GeO2 glass layer as a cladding layer was formed by transparent vitrification at a temperature of 800 to 900°C. This makes the outer diameter of the GGG rod 15+
A nm GcO2 glass layer was formed. Based on this preform rod, a laser rod with an outer diameter of 1 mm and a length of 1000 mm was manufactured.

実施例3 さらに他の実施例として、Nd:GGG結晶をコアとし
、Nd : YAG結晶またはYAG結晶をクラッドと
するレーザ用ロッドを作製した。Nd : GGG結晶
の屈折率は1.99程度、Nd:YAGの屈折率は1.
84程度、YAGの屈折率は1.82である。したがっ
て、Nd : GGGをコアとし、Nd : YAGま
たはYAGをクラッドとして第1図の構造が形成できる
。また、軟化温度の点でもGCiGは1750℃、 Y
AGは1950℃であるため、内側に入れたGGGの方
が先に軟化し、ファイバ線引きには有利である。
Example 3 As yet another example, a laser rod having a core made of Nd:GGG crystal and a cladding made of Nd:YAG crystal or YAG crystal was produced. The refractive index of Nd: GGG crystal is about 1.99, and the refractive index of Nd:YAG is 1.99.
84, and the refractive index of YAG is 1.82. Therefore, the structure shown in FIG. 1 can be formed using Nd:GGG as the core and Nd:YAG or YAG as the cladding. Also, in terms of softening temperature, GCiG has a softening temperature of 1750℃, Y
Since AG is at 1950° C., GGG placed inside softens first, which is advantageous for fiber drawing.

上述の各実施例において、Ndにかえ発光性元素として
Elを用いても、Ndを用いた場合〆と同様の効果が得
られる。
In each of the above embodiments, even if El is used as the luminescent element instead of Nd, the same effect as in the case of using Nd can be obtained.

本構造によ□っても、我々は単結晶ファイバ状のレーザ
用ロッドを得ることができ、高効率で低損失な値を実現
した。
With this structure, we were able to obtain a laser rod in the form of a single crystal fiber, achieving high efficiency and low loss.

[発明の効果] 以上説明したように、本発明によって、クラッド層を有
するレーザ用ロッドを容易に作製でき、低損失なレーザ
用ロッドを容易に得られる利点がある。また、厚いクラ
ッド層を形成することによって、コア径を小さくできし
たがって、発光部が小さく、単一モードと直接結合でき
るレーザ用ロッドを得られる。
[Effects of the Invention] As explained above, the present invention has the advantage that a laser rod having a cladding layer can be easily produced and a low-loss laser rod can be easily obtained. Furthermore, by forming a thick cladding layer, the core diameter can be made small, so that a laser rod with a small light emitting part and capable of direct coupling with a single mode can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A) 、 (B)は本発明の基本構成図を示し
、同図(A)はロッドの断面図、同図(B)は屈折率の
分布を示す図である。 1・・・発光性元素を含む丸棒状の結晶体(コア)、 2・・・結晶体より屈折率の小さな結晶層またはガラス
層。
FIGS. 1(A) and 1(B) show basic configuration diagrams of the present invention, FIG. 1(A) is a cross-sectional view of a rod, and FIG. 1(B) is a diagram showing a refractive index distribution. 1... A round rod-shaped crystal body (core) containing a luminescent element, 2... A crystal layer or a glass layer having a smaller refractive index than the crystal body.

Claims (1)

【特許請求の範囲】 1)発光性元素を含む丸棒状の結晶体の周囲に、屈折率
が該丸棒状結晶体より小さな結晶層またはガラス層を有
することを特徴とするレーザ用ロッド。 2)前記丸棒状の結晶体がYAG(Y_3Al_5O_
1_2)結晶体およびGGG(Gd_3Ga_5O_1
_2)結晶体のうちの一種であることを特徴とする特許
請求の範囲第1項記載のレーザ用ロッド。 3)前記発光性元素がNdまたはErであることを特徴
とする特許請求の範囲第1項記載のレーザ用ロッド。 4)前記屈折率の小さな結晶層がNdあるいはErを含
まないYAG結晶あるいはNdを含まないGGG結晶よ
り成ることを特徴とする特許請求の範囲第1項記載のレ
ーザ用ロッド。 5)前記屈折率の小さな結晶層がGeO_2を主成分と
するガラスより成ることを特徴とする特許請求の範囲第
1項記載のレーザ用ロッド。 6)前記丸棒状の結晶体の直径が0.5μm〜50μm
であることを特徴とする特許請求の範囲第1項記載のレ
ーザ用ロッド。 7)前記発光性元素を含む丸棒状の結晶体がNdを含む
GGG結晶であり、かつ前記屈折率の小さな結晶層がN
dを含むYAG結晶またはNdを含まないYAG結晶で
あることを特徴とする特許請求の範囲第1項記載のレー
ザ用ロッド。
[Claims] 1) A rod for a laser, comprising a round rod-shaped crystal containing a luminescent element, and a crystal layer or a glass layer having a refractive index smaller than that of the rod-shaped crystal. 2) The round rod-shaped crystal body is YAG (Y_3Al_5O_
1_2) Crystals and GGG (Gd_3Ga_5O_1
_2) The laser rod according to claim 1, which is a type of crystalline material. 3) The laser rod according to claim 1, wherein the luminescent element is Nd or Er. 4) The laser rod according to claim 1, wherein the crystal layer having a small refractive index is made of a YAG crystal that does not contain Nd or Er, or a GGG crystal that does not contain Nd. 5) The laser rod according to claim 1, wherein the crystal layer having a small refractive index is made of glass whose main component is GeO_2. 6) The diameter of the round rod-shaped crystal is 0.5 μm to 50 μm.
A laser rod according to claim 1, characterized in that: 7) The round rod-shaped crystal body containing the luminescent element is a GGG crystal containing Nd, and the crystal layer with a small refractive index is Nd.
2. The laser rod according to claim 1, which is a YAG crystal containing Nd or a YAG crystal not containing Nd.
JP61294977A 1986-12-12 1986-12-12 Laser rod Expired - Lifetime JPH0750806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294977A JPH0750806B2 (en) 1986-12-12 1986-12-12 Laser rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294977A JPH0750806B2 (en) 1986-12-12 1986-12-12 Laser rod

Publications (2)

Publication Number Publication Date
JPS63148691A true JPS63148691A (en) 1988-06-21
JPH0750806B2 JPH0750806B2 (en) 1995-05-31

Family

ID=17814756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294977A Expired - Lifetime JPH0750806B2 (en) 1986-12-12 1986-12-12 Laser rod

Country Status (1)

Country Link
JP (1) JPH0750806B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115274A (en) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ Fiber optical device
JPS60239076A (en) * 1984-05-11 1985-11-27 Toshiba Corp Solid-state laser oscillator
JPS6254986A (en) * 1985-09-04 1987-03-10 Fujikura Ltd Light amplifying element
JPS62140483A (en) * 1985-12-14 1987-06-24 Tohoku Metal Ind Ltd Solid-state laser rod and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115274A (en) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ Fiber optical device
JPS60239076A (en) * 1984-05-11 1985-11-27 Toshiba Corp Solid-state laser oscillator
JPS6254986A (en) * 1985-09-04 1987-03-10 Fujikura Ltd Light amplifying element
JPS62140483A (en) * 1985-12-14 1987-06-24 Tohoku Metal Ind Ltd Solid-state laser rod and manufacture thereof

Also Published As

Publication number Publication date
JPH0750806B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US3756690A (en) Optical waveguide light modulator
JP2008518443A (en) Double clad rare earth doped single polarization optical fiber with multiple air holes
KR950000588A (en) Manufacturing method of single mode optical fiber base material
Albert et al. Strong Bragg gratings in phosphate glass single mode fiber
US5037181A (en) Claddings for single crystal optical fibers and devices and methods and apparatus for making such claddings
US5077087A (en) Method of cladding single crystal optical fiber
ES496375A0 (en) AN IMPROVED METHOD FOR THE MANUFACTURE OF A FIBER OPTIC PREFORM
JPS63148691A (en) Rod for laser
JPH05238775A (en) Fluorophosphate glass single mode fiber
JP4114410B2 (en) Optical amplification glass fiber
JPH0627010B2 (en) Method of manufacturing polarization-maintaining optical fiber
JP3315786B2 (en) Optical amplifier type optical fiber
JP3358184B2 (en) Optical transmission line
JPH04243931A (en) Production of optical fiber preform
JPS6011241A (en) Manufacture of base material for optical fiber
JPH03149505A (en) Single crystal optical fiber
JPS58156904A (en) Polarization sustaining fiber
JPH02275732A (en) As-s glass fiber having core clad structure
JPH0383838A (en) Functional fiber
JPH038742A (en) Ge-as-s glass fiber having core-clad structure
JP2827231B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH03149504A (en) Manufacture of single-crystal optical fiber
JPH04238303A (en) Production of monocrystalline optical fiber
JPS61132531A (en) Production of optical fiber
JPH01203236A (en) Production of fiber laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term