JPS63143362A - Anomaly detecting device for introduction of secondary air - Google Patents

Anomaly detecting device for introduction of secondary air

Info

Publication number
JPS63143362A
JPS63143362A JP61288873A JP28887386A JPS63143362A JP S63143362 A JPS63143362 A JP S63143362A JP 61288873 A JP61288873 A JP 61288873A JP 28887386 A JP28887386 A JP 28887386A JP S63143362 A JPS63143362 A JP S63143362A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
secondary air
engine
air fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288873A
Other languages
Japanese (ja)
Other versions
JPH0772514B2 (en
Inventor
Hiroki Matsuoka
松岡 廣樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61288873A priority Critical patent/JPH0772514B2/en
Publication of JPS63143362A publication Critical patent/JPS63143362A/en
Publication of JPH0772514B2 publication Critical patent/JPH0772514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/14Systems for adding secondary air into exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To rapidly detect the anomaly of a secondary air introducing device by judging the generation of anomaly if the average value of the air fuel ratio correction coefficient supplied from an air fuel ratio feedback device is below a prescribed value, when the secondary air introducing device for supplying the secondary air into an exhaust system operates. CONSTITUTION:An air fuel ratio controller is equipped with an air fuel ratio feedback device 5 which controls the fuel quantity supplied into an engine on the basis of the air fuel ratio signal supplied from an air fuel ratio detector 4 arranged din an exhaust passage 3. Further, the controller is equipped with a secondary air introducing device 6 equipped with a secondary air control valve 8 which supplies the secondary air into the exhaust passage 3 from an intake passage 2, bypassing an engine 1, in the case when the engine temperature is low. In this case, an operation judging means 9 for judging the presence of the control valve operation signal supplied from the secondary air introducing device 6 is provided. When the secondary air introducing device operates, an anomaly judging means 10 judges anomaly when the average value of the air fuel ratio correction coefficient which is supplied from an air fuel ratio feedback device 5 is below a prescribed value, and an alarm signal is generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は機関低温の際のエンジン三元触媒暖機のため、
吸気系より排気系に2次空気を導入する、2次空気導入
装置の異常検出装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a three-way catalyst warm-up for an engine when the engine temperature is low.
The present invention relates to an abnormality detection device for a secondary air introduction device that introduces secondary air from an intake system to an exhaust system.

〔従来技術と問題点〕[Prior art and problems]

例えば02センサ等の空燃比検出器により排気ガス中の
残留02濃度を検知して、その信号をコントロールユニ
ットにフィードバックして機関への燃料供給量を制御す
る所謂、空燃比フィードバック装置においては、後処理
として理論空燃比返戻の範囲でCo 、IC等の排気ガ
スに対し高い浄化率を持つ排ガスコンバータ即ち、三元
触媒が装着されている。しかしながらこの三元触媒は、
機関が低温の際は浄化率が低下し、その結果排気ガスが
充分浄化されない傾向がある。このため低温時の三元触
媒暖機対策として、例えばエアクリーナ等の吸気系より
空気(2次空気)をバイパスさせて排気系に導入し、排
気中のHC,Coと酸化させ、その反応熱により三元触
媒を暖機状態にする2次空気導入装置が知られている。
For example, in a so-called air-fuel ratio feedback device that detects the residual 02 concentration in exhaust gas using an air-fuel ratio detector such as an 02 sensor and feeds back the signal to a control unit to control the amount of fuel supplied to the engine, As a treatment, an exhaust gas converter, that is, a three-way catalyst, is installed which has a high purification rate for exhaust gases such as Co and IC within the range of returning the stoichiometric air-fuel ratio. However, this three-way catalyst
When the engine is at a low temperature, the purification rate decreases, and as a result, the exhaust gas tends to not be sufficiently purified. Therefore, as a measure to warm up the three-way catalyst at low temperatures, air (secondary air) is bypassed from the intake system of an air cleaner, etc., and introduced into the exhaust system, where it is oxidized with HC and Co in the exhaust gas, and the reaction heat is A secondary air introduction device that warms up a three-way catalyst is known.

この2次空気導入装置には空気供給源で大別してエアポ
ンプによるエアインジェクション方式と排気の脈動を利
用して逆止弁(Asバルブ、と呼ぶ)を介して大気から
直接吸引するニアサクション(As)方式とがあるが双
方共、2次空気導入装置を作動したり又停止したりする
2次空気制御弁を有し機関温度に応じてコンピュータか
らの出力により制御されている。
This secondary air introduction device can be roughly divided into two types depending on the air supply source: an air injection method using an air pump, and a near suction (As) method that draws air directly from the atmosphere through a check valve (called an As valve) using the pulsation of exhaust air. Both types have a secondary air control valve that activates or deactivates the secondary air introduction device, and are controlled by output from a computer depending on the engine temperature.

ところで以上説明した2次空気導入装置を備えた内燃機
関に関し、機関低温時コンピュータから2次空気導入装
置作動の信号が出力されているにもかかわらず例えば耐
久時のトラブル等によりエアポンプあるいは、ASパル
プ及びその他の機構が作動せず、従って排気系に2次空
気が供給されないで排気ガス中のHC,Coが増加する
ことがある。係る現状に加えて従来より、2次空気導入
装置が正常に作動しているか否か判定できる異常検出装
置はなく、排ガス対策上好ましいとは言えなかった。本
発明は係る現状に鑑み2次空気導入装置が正常に作動し
ているか否かの異常検出装置を提供することを目的とす
る。
By the way, regarding the internal combustion engine equipped with the secondary air introduction device described above, even though the computer outputs a signal to activate the secondary air introduction device when the engine is low temperature, due to troubles during durability, etc., the air pump or AS pulp and other mechanisms do not operate, and therefore secondary air is not supplied to the exhaust system and HC and Co in the exhaust gas may increase. In addition to the current situation, there has been no abnormality detection device that can determine whether or not the secondary air introduction device is operating normally, which is not desirable in terms of exhaust gas countermeasures. In view of the current situation, it is an object of the present invention to provide an abnormality detection device for determining whether or not a secondary air introduction device is operating normally.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明によれば、空燃比検出
器からの空燃比信号に基づいて機関への燃料供給量を制
御する空燃比フィードバック装置と、機関低温時排気系
に2次空気を供給する2次空気導入装置とを備えた内燃
機関において、上記2次空気導入装置が作動状態か否か
を確認する、2次空気導入装置作動判定手段と、2次空
気導入装置作動の際上記空燃比フィードバック装置にお
いて空燃比補正係数の平均値が所定値以下の場合、異常
と判定し、信号を発生する異常判定手段とを含むことを
特徴とする2次空気導入異常検出装置が提供される。
In order to solve the above problems, the present invention provides an air-fuel ratio feedback device that controls the amount of fuel supplied to the engine based on an air-fuel ratio signal from an air-fuel ratio detector, and an air-fuel ratio feedback device that controls the amount of fuel supplied to the engine based on an air-fuel ratio signal from an air-fuel ratio detector, and a secondary air supply system that supplies secondary air to the exhaust system when the engine is low temperature. In an internal combustion engine equipped with a secondary air introduction device, the secondary air introduction device operation determination means is configured to check whether or not the secondary air introduction device is in an operating state; A secondary air introduction abnormality detection device is provided, comprising abnormality determination means for determining an abnormality and generating a signal when the average value of the air-fuel ratio correction coefficient is less than or equal to a predetermined value in the air-fuel ratio feedback device. .

〔作 用〕[For production]

機関冷間時、2次空気導入装置が作動しているにもかか
わらず、空燃比フィードバック装置における空燃比補正
係数FAFの平均値が所定値以下、即ち基本空燃比が過
濃側に補正されている場合、2次空気導入装置において
構造上、何らかのトラブルが発生し、そのため未燃■(
C,Co等が酸化されないことが予想される。本発明は
上記現象を利用して2次空気導入装置作動の異常を検出
する。
When the engine is cold, even though the secondary air introduction device is operating, the average value of the air-fuel ratio correction coefficient FAF in the air-fuel ratio feedback device is less than a predetermined value, that is, the basic air-fuel ratio is corrected to the rich side. If there is, some kind of structural trouble has occurred in the secondary air introduction device, and the
It is expected that C, Co, etc. will not be oxidized. The present invention utilizes the above phenomenon to detect an abnormality in the operation of the secondary air introduction device.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の内燃機関の2次空気導入異常検出装置
の全体を示す構成図である。
FIG. 1 is a block diagram showing the entire structure of a secondary air introduction abnormality detection device for an internal combustion engine according to the present invention.

1は内燃機関(燃焼室)、2は吸気通路、3は排気通路
を示しており、排気通路3内には空燃比検出器4が設け
られ、空燃比信号を空燃比フィードバック装置5に発信
することにより、該装置5は燃料供給量を制御する。6
は吸気通路2から機関1をバイパスして排気通路3へと
2次空気を導入するための2次空気導入装置であって、
バイパス路7を連通・遮断する2次空気制御弁8を開閉
制御する。又、9は上記2次空気導入装置6がらの制御
弁作動信号の有無を判定する2次空気導入装置作動判定
手段であって異常判定手段1oは空燃比フィードバック
装置5からの空燃比補正係数FAFの平均値と、2次空
気導入装置作動判定手段9からの信号とに基づき警告信
号を発信することになる。
1 is an internal combustion engine (combustion chamber), 2 is an intake passage, and 3 is an exhaust passage. An air-fuel ratio detector 4 is provided in the exhaust passage 3, and transmits an air-fuel ratio signal to an air-fuel ratio feedback device 5. Thereby, the device 5 controls the fuel supply amount. 6
is a secondary air introduction device for introducing secondary air from the intake passage 2 to the exhaust passage 3 bypassing the engine 1,
Opening/closing control of the secondary air control valve 8 that communicates/cuts off the bypass path 7 is performed. Reference numeral 9 denotes a secondary air introduction device operation determination means for determining the presence or absence of a control valve operation signal from the secondary air introduction device 6, and an abnormality determination means 1o detects the air-fuel ratio correction coefficient FAF from the air-fuel ratio feedback device 5. A warning signal is issued based on the average value of and the signal from the secondary air introduction device operation determination means 9.

第2図は本発明の具体的実施例として、電子制御燃料噴
射装置(フュエルインジェクタ)を備えた空燃比フィー
ドバック装置及びエアサクション方式の2次空気導入装
置を具備した内燃機関に本発明を適用した機関全体図で
ある。
FIG. 2 shows a specific embodiment of the present invention in which the present invention is applied to an internal combustion engine equipped with an air-fuel ratio feedback device equipped with an electronically controlled fuel injection device (fuel injector) and an air suction type secondary air introduction device. This is an overall diagram of the organization.

機関本体11に形成されたシリンダボア12内にはピス
トン13が摺動自在に収容され、このピストン13の上
方に燃焼室14が形成される。燃焼室14に接続される
吸気ボート15および排気ボート16は、それぞれ吸気
弁17および排気弁18により開閉される。
A piston 13 is slidably housed in a cylinder bore 12 formed in the engine body 11, and a combustion chamber 14 is formed above the piston 13. An intake boat 15 and an exhaust boat 16 connected to the combustion chamber 14 are opened and closed by an intake valve 17 and an exhaust valve 18, respectively.

吸気ボート15に連通ずる吸気通路21は、その最も上
流側にエアクリーナ22を有し、そのすぐ下流側にはエ
アフローメータ23が設けられる。
The intake passage 21 communicating with the intake boat 15 has an air cleaner 22 at its most upstream side, and an air flow meter 23 is provided immediately downstream thereof.

絞り弁24とエアフローメータ23の下流側に配設され
る。燃料噴射弁25は絞り弁24よりも下流側であって
吸気ボート15の近傍に設けられ、ポンプ26によりタ
ンク27から燃料を圧送されて吸気ボート15内に燃料
を噴射する。一方、排気ボート16に連通ずる排気通路
31には、三元触媒(排ガスコンバータ)32が配設さ
れ、この排ガスコンバータ32よりも上流側には排気ガ
ス中の酸素濃度を検出する01センサ33すなわち空燃
比検出器が設けられる。排気通路31内であってOtセ
ンサ33の上流側に形成された開口34は、エアクリー
ナ22に連結して設けられた2次空気制御弁35に供給
管36を介して接続される。なお、三元触媒32には触
媒の温度を検出する温度センサ37が取付けられる。デ
ィストリビュータ3.8は、機関本体11内に設けられ
たクランク軸(図示せず)に連結された軸39を備え、
またこの軸39を介してエンジン回転数を検出する回転
数センサ40を有する。
It is arranged downstream of the throttle valve 24 and the air flow meter 23. The fuel injection valve 25 is provided downstream of the throttle valve 24 and near the intake boat 15 , and injects fuel into the intake boat 15 by pressure-feeding fuel from a tank 27 by a pump 26 . On the other hand, a three-way catalyst (exhaust gas converter) 32 is disposed in the exhaust passage 31 communicating with the exhaust boat 16, and an 01 sensor 33 for detecting the oxygen concentration in the exhaust gas is located upstream of the exhaust gas converter 32. An air/fuel ratio detector is provided. An opening 34 formed in the exhaust passage 31 on the upstream side of the Ot sensor 33 is connected to a secondary air control valve 35 connected to the air cleaner 22 via a supply pipe 36. Note that a temperature sensor 37 is attached to the three-way catalyst 32 to detect the temperature of the catalyst. The distributor 3.8 includes a shaft 39 connected to a crankshaft (not shown) provided within the engine body 11,
It also has a rotation speed sensor 40 that detects the engine rotation speed via this shaft 39.

マイクロコンピュータを備えた電子制御(ECU)41
は、エアフローメータ23により検出された吸入空気量
Q、回転数センサ40により検出されたエンジン回転数
Nesおよび02センサ33により検出された排気ガス
の空燃比等に基いて燃料噴射量を制御する。またECU
 41は、触媒の温度が所定値より低い冷間時には、2
次空気制御弁35を開放し、触媒の暖機後、この制御弁
35を閉塞する。又、llIC041は、混合気が理論
空燃比になるようにフィードバック制御を行なう。
Electronic control (ECU) 41 with microcomputer
controls the fuel injection amount based on the intake air amount Q detected by the air flow meter 23, the engine rotation speed Nes detected by the rotation speed sensor 40, the air-fuel ratio of exhaust gas detected by the 02 sensor 33, etc. Also ECU
41 is 2 when the temperature of the catalyst is lower than a predetermined value.
Next, the air control valve 35 is opened, and after warming up the catalyst, the control valve 35 is closed. Further, the llIC041 performs feedback control so that the air-fuel mixture reaches the stoichiometric air-fuel ratio.

ECU 41は、各種の演算処理等を行なう中央演算処
理(COU) 42と、プログラムおよび各種定数を記
憶するり一ドオンリメモリ(ROM)43と、データを
一時的に記憶するランダムアクセスメモリ(RAM)4
4と、エアフローメータ23等から出力されたアナログ
信号をデジタル信号に変換するA/D変換器45と、回
転数センサ40等から出力されたデジタル信号を入力す
るとともに燃料噴射弁25および2次空気制御弁35へ
の指令信号を出力するための入出力(I 10)ボート
46と、これらを相互に接続するパスライン47とを備
え、また指令信号に基いて燃料噴射弁25および2次空
気制御弁35を駆動制御するための駆動回路48 、4
9を有する。
The ECU 41 includes a central processing unit (COU) 42 that performs various types of arithmetic processing, a ROM 43 that stores programs and various constants, and a random access memory (RAM) 4 that temporarily stores data.
4, an A/D converter 45 that converts the analog signal output from the air flow meter 23 etc. into a digital signal, and an A/D converter 45 which inputs the digital signal output from the rotation speed sensor 40 etc. It includes an input/output (I10) boat 46 for outputting a command signal to the control valve 35, and a pass line 47 that interconnects these, and also controls the fuel injection valve 25 and secondary air control based on the command signal. Drive circuits 48 and 4 for driving and controlling the valves 35
It has 9.

さて、燃料噴射量τは、 r=KXFAFXTP により計算される。ここでT、は基本噴射量を示し、(
吸入空気量Q)/(エンジン回転数Ne)により求めら
れる。FAFは空燃比補正係数を示し、0、センサ33
からの出力信号に基いて1.0の前後で変化する。Kは
修正係数であり、冷却水温および吸入空気温等によって
定まる。
Now, the fuel injection amount τ is calculated by r=KXFAFXTP. Here, T indicates the basic injection amount, and (
It is determined by intake air amount Q)/(engine rotation speed Ne). FAF indicates air-fuel ratio correction coefficient, 0, sensor 33
It changes around 1.0 based on the output signal from. K is a correction coefficient, which is determined by the cooling water temperature, intake air temperature, etc.

第3図は第2図に示した機関構成図において本発明を実
施するプログラム例のフローチャートである。尚、この
ルーチンは所定時間毎に割込み処理される。ステップ5
0では、温度センサ37からの信号に基いてECU 4
1の入出力ボート46から2次空気制御井35開弁信号
の有無、即ちエアサクシ、gン作動中か否かを判定しく
2次空気導入装置作動判定手段)、作動中であるならば
ステップ51に進み、作動中でなければステップ46に
進み、後述するリッチカウンタXをO(クリア)にして
このルーチンを終了する。一般にニアサクション方式の
2次空気導入では負圧波による吸引を利用しているため
機関が高負荷、高回転の場合、排気圧力が高くなって吸
引が困難となる。従ってステップ51及びステップ52
では2次空気が充分排気系に導入される領域であるか否
かを判定する。即ちステップ51ではエアフローメータ
23からの吸入空気i1Qと、ディストリビュータ38
の回転数センサ40からの機関回転数Neとにより機関
負荷Q/Neを算出して所定値A以下であるか否か、即
ち低負荷であるか高負荷であるかを判別し、A以下であ
るならばステップ52に進みAより大であるならばカウ
ンタXをクリアして、ルーチンを終了する。一般に空燃
比フィードバック制御は機関回転数が高い場合は、ドラ
イバビリティ確保上停止する。従ってステップ52では
機関回転数Neが所定値B以下であるか否か、即ち低回
転であるか高回転であるかを判別しB以下であるならば
ステップ53に進み、Bより大であるならばこのカウン
タXをクリアしてルーチンを終了する。一般に02セン
サ33は収納されるジルコニア素子(図示せず)がある
温度(例えば450℃)以上にならないと作動しないた
め、ステップ53では0□センサ33が活性化している
か否かを判定する。この02センサ33活性化は例えば
ECU 41から微少な電流を流すことにより発生する
電圧の大小により判定され、活性化していればステップ
54に進み、活性化していなければカウンタXをクリア
して、ルーチンを終了する。ステップ54では活性化し
た02センサ33の信号によりフィードバック制御をお
こなう場合の空燃比補正係数FAFの平均値(FAF)
が所定値C以下か否か、即ち空燃比がリッチ(過濃状態
)にあるためその結果FAFが減少し、FAFが所定値
C以下になるのか、或いはり−ン(希薄状H)にあるた
めFAFが増大し、FAFが所定値Cより大となってい
るかの判定をする。即ちここでFAFが所定値Cより大
ならばニアサクション(2次空気導入)が正常であり、
又機関低温時発生するHC,Coが酸化されていること
を示すためステップ56に進みカウンタXをクリアして
ルーチンを終了する。一方、FAFが所定値C以下であ
るならばエアサクションが異常であると判定し、ステッ
プ55に進み、リッチカウンタXに1を加算(インクリ
メント)する。一般に1回のリッチ判定だけでニアサク
ションの異常を判定すると誤判定になる場合が考えられ
る。そのため本ルーチンではリッチ判定が所定回数継続
した際、初めてエアサクションの異常を判定するように
する。従ってステップ57ではリッチカウンタXの値が
設定値より大きいか否かを判定し、設定値りより大なら
ばステップ58に進みニアサクション異常を記憶し、D
以下であるならばカウンタXをクリアせずこのルーチン
を終了し、次の実行へと進行する。
FIG. 3 is a flowchart of an example program for implementing the present invention in the engine configuration diagram shown in FIG. Note that this routine is interrupted at predetermined intervals. Step 5
0, the ECU 4 based on the signal from the temperature sensor 37
It is determined whether or not there is a valve opening signal for the secondary air control well 35 from the input/output boat 46 of No. 1, that is, whether or not the air sax is in operation (secondary air introduction device operation determination means). If it is in operation, step 51 If it is not in operation, the routine advances to step 46, where the rich counter X, which will be described later, is set to O (clear) and this routine ends. Generally, near-suction type secondary air introduction uses suction by negative pressure waves, so when the engine is under high load and rotation, the exhaust pressure becomes high and suction becomes difficult. Therefore step 51 and step 52
Then, it is determined whether the area is such that sufficient secondary air can be introduced into the exhaust system. That is, in step 51, the intake air i1Q from the air flow meter 23 and the distributor 38
The engine load Q/Ne is calculated based on the engine rotation speed Ne from the rotation speed sensor 40 of If so, the process advances to step 52, and if it is greater than A, the counter X is cleared and the routine ends. Generally, air-fuel ratio feedback control is stopped when the engine speed is high to ensure drivability. Therefore, in step 52, it is determined whether the engine rotation speed Ne is below a predetermined value B, that is, whether it is low rotation or high rotation. If it is below B, the process proceeds to step 53, and if it is greater than B, it is determined The tobacco counter X is cleared and the routine ends. Generally, the 02 sensor 33 does not operate unless the zirconia element (not shown) in which it is housed reaches a certain temperature (for example, 450° C.) or higher, so in step 53 it is determined whether the 0□ sensor 33 is activated. Activation of the 02 sensor 33 is determined by the magnitude of the voltage generated by passing a small current from the ECU 41, for example. If it is activated, the process proceeds to step 54; if it is not activated, the counter X is cleared and the routine end. In step 54, the average value (FAF) of the air-fuel ratio correction coefficient FAF when performing feedback control based on the signal of the activated 02 sensor 33 is determined.
is below a predetermined value C, that is, the air-fuel ratio is rich (excessively rich), resulting in a decrease in FAF, and the FAF becomes below a predetermined value C, or is it in a lean condition (H)? Therefore, it is determined whether FAF increases and FAF becomes larger than a predetermined value C. That is, if FAF is larger than the predetermined value C, near suction (secondary air introduction) is normal.
Further, in order to indicate that HC and Co generated when the engine temperature is low is oxidized, the routine proceeds to step 56, where the counter X is cleared and the routine is terminated. On the other hand, if FAF is less than the predetermined value C, it is determined that the air suction is abnormal, and the process proceeds to step 55, where the rich counter X is incremented by 1. In general, if a near suction abnormality is determined by just one rich determination, an erroneous determination may occur. Therefore, in this routine, air suction abnormality is determined only when the rich determination continues a predetermined number of times. Therefore, in step 57, it is determined whether the value of the rich counter
If it is below, this routine is ended without clearing the counter X, and the routine proceeds to the next execution.

ニアサクション異常を記憶した後はステップ59に進み
、ステップ56同様、リッチカウンタXをクリアして、
ステップ60にてダイアグランプを点燈することで、運
転者にエアサクション異常を警告する。
After memorizing the near suction abnormality, proceed to step 59, clear the rich counter X as in step 56, and
At step 60, a diagram lamp is turned on to warn the driver of the air suction abnormality.

第4図に第3図とは異なるプログラム例のフローチャー
トを示す。このルーチンは、第3図に示したルーチンが
リッチ判定゛の′m続回数でエアサクションの異常を判
定したのに対し、一定時間t0内におけるリッチ判定の
判定回数の大小で判定するプログラムである。尚、この
ルーチンは4定時間t。内において所定時間毎、割込み
処理される。
FIG. 4 shows a flowchart of an example program different from that shown in FIG. This routine is a program that determines air suction abnormality based on the number of rich determinations within a certain time t0, whereas the routine shown in Figure 3 determines air suction abnormality based on the number of consecutive rich determinations. . Note that this routine lasts for 4 fixed times t. Interrupt processing is performed at predetermined intervals within the time period.

ステップ61からステップ64までは第3図におけるス
テップ50からステップ53までの判定と同様であるが
、但し各ステップにおいてNOと判定された場合、それ
までのリッチカウンタXをクリアせず、ルーチンを終了
する。
Steps 61 to 64 are the same as the determinations from step 50 to step 53 in FIG. 3, but if the determination is NO at each step, the routine ends without clearing the rich counter X up to that point. do.

ステップ65では現在実行している時間tが4定時間t
0を超えているか否かの判定をし、超えているならばス
テップ66に進み、一定時間t0未満であるならばステ
ップ67に進む。ステップ66ではステップ57(第3
図)同様リッチカウンタXの値が設定値りより大きいか
否かを判定し、設定値りより大であるならばステップ6
8に進みエアサクション異常を記憶し、次いでステップ
69でリッチカウンタXをクリアして、ステップ71に
てダイアグランプを点燈し異常警告して本ルーチンを終
了する。一方ステップ66にて設定値り以下であるなら
ばニアサクション正常と判定し、ステップ70にてリッ
チカウンタXをクリアしてこのルーチンを終了する。
In step 65, the current execution time t is 4 fixed time t.
It is determined whether or not it exceeds 0. If it does, the process proceeds to step 66, and if it is less than a certain time t0, the process proceeds to step 67. In step 66, step 57 (third
Figure) Similarly, it is determined whether the value of the rich counter X is greater than the set value, and if it is greater than the set value, step 6
8, the air suction abnormality is stored, and then, in step 69, the rich counter X is cleared, and in step 71, the diagram lamp is turned on to warn of the abnormality, and this routine ends. On the other hand, if it is less than the set value in step 66, it is determined that the near suction is normal, and in step 70, the rich counter X is cleared and this routine is ended.

ステップ65にて4定時間t0未満であるならば、ステ
ップ67に進み02センサ33 (第2図)の信号によ
りFAFが例えば1なる所定値以下かに進み、リッチカ
ウンタXに1を加算してこのルーチンを終了し、所定値
C以上であればステップ73に進みそれまでのりッチカ
ウンタXを維持したままこのルーチンを終了する。
In step 65, if it is less than 4 predetermined time t0, the process proceeds to step 67, and the FAF advances to below a predetermined value, for example 1, according to the signal from the 02 sensor 33 (Fig. 2), and 1 is added to the rich counter X. This routine is terminated, and if the predetermined value C is exceeded, the routine proceeds to step 73, and this routine is terminated while maintaining the current stretch counter X.

以上、記述した本発明のプログラム例のフローチャート
においてニアサクション異常と判定するまでの状態例を
第3図のフローチャートに対して第5図、第4図のフロ
ーチャートに対して第6図、夫々のグラフに示す。
In the flowchart of the program example of the present invention described above, an example of the state until a near suction abnormality is determined is shown in FIG. 5 for the flowchart in FIG. 3, and FIG. 6 for the flowchart in FIG. 4, respectively. Shown below.

前述した様に本実施例では2次空気制御弁35の開弁時
、空燃比がリッチ状態にあれば混合気をリーン側へと変
化させ、リーン状態にあれば混合気をリッチ側へ変化さ
せ、フィードバック制御をするのでこのFAFはそれに
伴って増減する。従って本グラフにおいては三元触媒暖
機後のフィードバック制御中心値FAFを1としてこの
値を基本空燃比のリーン・リッチ間の境界値とする。
As described above, in this embodiment, when the secondary air control valve 35 is opened, if the air-fuel ratio is in a rich state, the air-fuel mixture is changed to the lean side, and if it is in a lean state, the air-fuel mixture is changed to the rich side. , since feedback control is performed, this FAF increases or decreases accordingly. Therefore, in this graph, the feedback control center value FAF after warming up the three-way catalyst is set to 1, and this value is used as the boundary value between lean and rich basic air-fuel ratios.

第5図に関し、エアサクションが正常に作動中であって
FAFが基本空燃比に対してリッチ側で補正をおこなっ
ている間(a −c )は、基本空燃比はニアサクショ
ンによりリーン状態を保持しておりプログラムはステッ
プ50〜54 、56の順に実行され、図中点線で示し
たFAFは所定値1よりも大きい。次にFAFが基本空
燃比に対してリーン側に補正すると(c−d)FAFは
1以下となり、ステップ50〜55 、57の順に実行
され、リッチカウンタXが2となるが、本グラフではエ
アサクション正常、異常間の判定をD=4と定めている
ため、異常と判定されない。そして再びFAFがリッチ
側に補正すると(d−e)、FAFも徐々に増加し1よ
り大となりリッチカウンタXもクリアされる。しかしな
がら次にFAFが基本空燃比に対してf・g間でリーン
側に補正出力すると、プログラムは、ステップ50〜5
5 、57の順に実行されリッチカウンタXがD−4の
値を超える時、さらにステップ5B 、 59 、60
が実行されることで初めてエアサクション異常記憶−警
告が実行される。
Regarding Figure 5, while the air suction is operating normally and the FAF is correcting the basic air-fuel ratio on the rich side (a-c), the basic air-fuel ratio is maintained in a lean state by near suction. The program is executed in the order of steps 50 to 54 and 56, and the FAF indicated by the dotted line in the figure is greater than the predetermined value 1. Next, when the FAF is corrected to the lean side with respect to the basic air-fuel ratio (c-d), the FAF becomes 1 or less, steps 50 to 55, and 57 are executed in order, and the rich counter X becomes 2, but in this graph, the Since the determination between suction normal and abnormal is set as D=4, it is not determined as abnormal. Then, when the FAF is corrected to the rich side again (de), the FAF gradually increases and becomes larger than 1, and the rich counter X is also cleared. However, next time the FAF outputs a correction to the lean side between f and g with respect to the basic air-fuel ratio, the program executes steps 50 to 5.
Steps 5 and 57 are executed in this order, and when the rich counter X exceeds the value of D-4, further steps 5B, 59, and 60 are executed.
The air suction abnormality memory/warning is executed only after the above is executed.

第6図に関しては、FAFが基本空燃比に対してリーン
側に補正出力し、一定時間t0内に何回所定値1以下に
なったか、その回数の大小でエアサクション異常を判定
するプログラムであるため、経過時間tのグラフを設け
る。尚、本図においても第5図同様、異常判定値をD=
4に、又、リーン・リッチを判定する境界としてのFA
F値を1.0に設定する。エアサクション作動であって
FAFがリッチ側で補正出力する間(h −i )は、
プログラムはステップ61〜65 、67 、73の順
に実行されリッチカウンタXは0の状態である。この時
FAFは所定値1.0より小さくなることはない。
Regarding Fig. 6, it is a program in which the FAF corrects the basic air-fuel ratio to the lean side and determines air suction abnormality based on how many times the ratio becomes less than a predetermined value 1 within a certain period of time t0. Therefore, a graph of elapsed time t is provided. In addition, in this figure as well as in Figure 5, the abnormality judgment value is D=
4. Also, FA as a boundary for determining lean/rich
Set the F value to 1.0. During air suction operation and while FAF outputs correction on the rich side (h - i),
The program is executed in the order of steps 61 to 65, 67, and 73, and the rich counter X is in the state of 0. At this time, FAF never becomes smaller than the predetermined value of 1.0.

次にFAFがリーン側で補正出力すると(i〜j)、プ
ログラムはステップ61〜65 、67 、72の順に
実行されリッチカウンタXは4となるが、時間tが4定
時間t0に到達した時(k)、プログラムはステップ6
1〜66 、70の順で実行され異常と判定されずリッ
チカウンタXをクリアしてルーチンを終了する。そして
次の4定時間t0内(j”k)で再びFAFがリーン側
で補正出力すると、この時リッチカウンタXはD=4を
超え、時間t0の到達時点(k)でステップ61〜66
 、6B 、 69 、71の順に実行され、エアサク
ション異常記憶−警告がなされることになる。
Next, when the FAF outputs a correction on the lean side (i to j), the program is executed in the order of steps 61 to 65, 67, and 72, and the rich counter X becomes 4, but when the time t reaches the 4 fixed time t0 (k), the program is step 6
1 to 66 and 70 are executed in this order, and the rich counter X is cleared without being determined to be abnormal and the routine ends. Then, within the next 4 fixed times t0 (j”k), when the FAF outputs a correction on the lean side again, the rich counter
, 6B, 69, and 71 are executed in this order, and an air suction abnormality memorization warning is issued.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば空燃比検出器の出力信号を利
用してその補正係数の制御中心値を検証することにより
2次空気導入装置作動の異常が警告されるため、運転者
は早期に2次空気導入装置を修理することができ、大気
中へのHC、Coの排出を最小限にすることが可能にな
る。又本システムは空燃比検出器の異常も検出すること
が可能であって、ダイアグランプ点燈時点検者は2次空
気導入装置及び空燃比検出器を点検することにより両者
いずれか、あるいは双方の故障を確認することが可能と
なる。
As described above, according to the present invention, an abnormality in the operation of the secondary air introduction device is warned by verifying the control center value of the correction coefficient using the output signal of the air-fuel ratio detector. The secondary air introduction device can be repaired in the future, making it possible to minimize the emissions of HC and Co into the atmosphere. This system is also capable of detecting abnormalities in the air-fuel ratio detector, and when the diagram lamp is turned on, the inspector can check the secondary air intake device and the air-fuel ratio detector to detect any abnormalities in either or both of them. It becomes possible to confirm the failure.

【図面の簡単な説明】 第1図は本発明の構成図;第2図は本発明の一実施例を
適用した内燃機関を示す断面図;第3図はエアサクショ
ン装置の異常判定プログラムのフローチャート;第4図
は第3図とは別の異常判定プログラムのフローチャート
;第5図は第3図のプログラム実行状態を示すグラフ;
第6図は第4図のプログラム実行状態を示すグラフ。 1・・・内燃機関、   4・・・空燃比検出器、5・
・・空燃比フィードバック装置、 6・・・2次空気導入装置、 7・・・バイパス路(6の部分)、 8・・・2次空気制御弁(6の部分)、9・・・2次空
気導入装置作動判定手段、10・・・異常判定手段。
[Brief Description of the Drawings] Figure 1 is a configuration diagram of the present invention; Figure 2 is a sectional view showing an internal combustion engine to which an embodiment of the present invention is applied; Figure 3 is a flowchart of an abnormality determination program for the air suction device ; FIG. 4 is a flowchart of an abnormality determination program different from that in FIG. 3; FIG. 5 is a graph showing the execution state of the program in FIG. 3;
FIG. 6 is a graph showing the program execution state of FIG. 4. 1... Internal combustion engine, 4... Air-fuel ratio detector, 5...
...Air-fuel ratio feedback device, 6...Secondary air introduction device, 7...Bypass path (part 6), 8...Secondary air control valve (part 6), 9...Secondary Air introduction device operation determination means, 10... abnormality determination means.

Claims (1)

【特許請求の範囲】[Claims] 1、空燃比検出器からの空燃比信号に基づいて機関への
燃料供給量を制御する空燃比フィードバック装置と、機
関低温時排気系に2次空気を供給する2次空気導入装置
とを備えた内燃機関において、上記2次空気導入装置が
作動状態か否かを確認する、2次空気導入装置作動判定
手段と、2次空気導入装置作動の際上記空燃比フィード
バック装置において空燃比補正係数の平均値が所定値以
下の場合、異常と判定し、信号を発生する異常判定手段
とを含むことを特徴とする2次空気導入異常検出装置。
1.Equipped with an air-fuel ratio feedback device that controls the amount of fuel supplied to the engine based on the air-fuel ratio signal from the air-fuel ratio detector, and a secondary air introduction device that supplies secondary air to the exhaust system when the engine is low temperature. In an internal combustion engine, a secondary air introduction device operation determination means for checking whether the secondary air introduction device is in an operating state; and an average of an air-fuel ratio correction coefficient in the air-fuel ratio feedback device when the secondary air introduction device is operating. A secondary air introduction abnormality detecting device comprising abnormality determining means for determining an abnormality and generating a signal when the value is less than or equal to a predetermined value.
JP61288873A 1986-12-05 1986-12-05 Secondary air introduction abnormality detection device Expired - Lifetime JPH0772514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288873A JPH0772514B2 (en) 1986-12-05 1986-12-05 Secondary air introduction abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288873A JPH0772514B2 (en) 1986-12-05 1986-12-05 Secondary air introduction abnormality detection device

Publications (2)

Publication Number Publication Date
JPS63143362A true JPS63143362A (en) 1988-06-15
JPH0772514B2 JPH0772514B2 (en) 1995-08-02

Family

ID=17735864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288873A Expired - Lifetime JPH0772514B2 (en) 1986-12-05 1986-12-05 Secondary air introduction abnormality detection device

Country Status (1)

Country Link
JP (1) JPH0772514B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119631A (en) * 1990-04-18 1992-06-09 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormalities in a secondary air supplier
US5325663A (en) * 1992-04-27 1994-07-05 Toyota Jidosha Kabushiki Kaisha Diagnostic system for a secondary air supplier in an engine
US5388401A (en) * 1992-09-10 1995-02-14 Nissan Motor Co., Ltd. System and method for controlling air/fuel mixture ratio for internal combustion engine with exhaust secondary air supply apparatus
US5412943A (en) * 1993-02-25 1995-05-09 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for introducing secondary air for cleaning exhaust emissions from internal combustion engine
EP0659986A1 (en) * 1993-12-21 1995-06-28 Robert Bosch Gmbh Method to monitor a secondary air system relating to the exhaust gas system of a motor vehicle
US6393833B2 (en) 2000-02-15 2002-05-28 Toyota Jidosha Kabushiki Kaisha Abnormality test method and apparatus for secondary air supply system of a vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119631A (en) * 1990-04-18 1992-06-09 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormalities in a secondary air supplier
US5325663A (en) * 1992-04-27 1994-07-05 Toyota Jidosha Kabushiki Kaisha Diagnostic system for a secondary air supplier in an engine
US5388401A (en) * 1992-09-10 1995-02-14 Nissan Motor Co., Ltd. System and method for controlling air/fuel mixture ratio for internal combustion engine with exhaust secondary air supply apparatus
US5412943A (en) * 1993-02-25 1995-05-09 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for introducing secondary air for cleaning exhaust emissions from internal combustion engine
EP0659986A1 (en) * 1993-12-21 1995-06-28 Robert Bosch Gmbh Method to monitor a secondary air system relating to the exhaust gas system of a motor vehicle
US5542292A (en) * 1993-12-21 1996-08-06 Robert Bosch Gmbh Method and device for monitoring a secondary-air system of a motor vehicle
US6393833B2 (en) 2000-02-15 2002-05-28 Toyota Jidosha Kabushiki Kaisha Abnormality test method and apparatus for secondary air supply system of a vehicle

Also Published As

Publication number Publication date
JPH0772514B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JP2724387B2 (en) Failure detection method for exhaust air supply system for internal combustion engine
US6830043B2 (en) Secondary air supply abnormality detection system
JPH0734934A (en) Air-fuel ratio controller of internal combustion engine
JPH0264249A (en) Device for controlling fuel
JPH04116241A (en) Performance monitor of hc sensor in internal combustion engine
JPH09137718A (en) Abnormality detecting device for air pump of internal combustion engine
KR940004347B1 (en) Fuel control system
JPS63143362A (en) Anomaly detecting device for introduction of secondary air
JPH0711257B2 (en) Self-diagnosis control device for internal combustion engine
JP2570287B2 (en) Function diagnosis display device for secondary air supply device
JP2505522B2 (en) Secondary air introduction device for internal combustion engine
JP3896936B2 (en) Secondary air supply abnormality detection device for internal combustion engine
JPH0315619A (en) Failure diagnosing device for secondary air induction system for internal combustion engine
JPS63124847A (en) Abnormality detecting method for exhaust gas concentration detecting system for internal combustion engine
JP2601383B2 (en) Self-diagnosis device in secondary air supply device of internal combustion engine
JPH07103831B2 (en) Exhaust gas recirculation control device
JPS6371538A (en) Trouble diagnosing device for o2 sensor
JPH04318250A (en) Self-diagnostic device in fuel supplier for internal combustion engine
JPS62170761A (en) Exhaust gas recirculating device for engine
JPH01138359A (en) Anomaly detecting device in egr system
JP2550560B2 (en) Catalyst overheat prevention device for internal combustion engine
JPH05263637A (en) Diagnostic device for secondary air supply device
JP2006009773A (en) Detection error preventing device of oxygen concentration sensor
JP2882182B2 (en) Diagnosis method of secondary air supply device
JPS63268948A (en) Air-fuel ratio control device for engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term