JPS63142832A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63142832A
JPS63142832A JP29095486A JP29095486A JPS63142832A JP S63142832 A JPS63142832 A JP S63142832A JP 29095486 A JP29095486 A JP 29095486A JP 29095486 A JP29095486 A JP 29095486A JP S63142832 A JPS63142832 A JP S63142832A
Authority
JP
Japan
Prior art keywords
layer
electrode wiring
wiring layer
metal layer
barrier metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29095486A
Other languages
Japanese (ja)
Inventor
Keikou Boku
朴 慶浩
Satoshi Mihara
智 三原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29095486A priority Critical patent/JPS63142832A/en
Publication of JPS63142832A publication Critical patent/JPS63142832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a flat surface in which the irregular thickness of an aluminum electrode wiring layer or the improper disconnection of wirings can be prevented by forming an intermetallic compound of a barrier metal layer and the aluminum electrode wiring layer in an electrode leading window by annealing to eliminate the stepwise difference from the surface of the barrier metal layer. CONSTITUTION:A polysilicon layer 3, a metal layer 4, and a barrier metal layer 5 are sequentially laminated in an electrode leading window 7 formed on a silicon oxide film 2 formed on a semiconductor substrate 1. When an annealing is executed, only the perpendicular surface of a barrier metal layer 5 made of TiN is varied in quality to be reacted with the aluminum of an aluminum electrode wiring layer 6 to form an intermetallic compound 8 made of aluminum titanium (AlTi), thereby filling a space surrounded by the sidewall of the layer 3 of the window 7. The first aluminum electrode wiring layer 6 is removed by selective etching to form the continuous surfaces of the layer 5 and the compound 8. A second aluminum electrode wiring layer 9 is eventually formed on the layer 5 and the compound 8 formed flatly.

Description

【発明の詳細な説明】 〔概要〕 半導体装置のアルミニウム電極配線層(以下AI!電極
配線層と略称する)の厚みの不拘−或いは断線不良を防
止するために、電極取り出し窓及びシリコン酸化膜の表
面に設けたバリアメタル層の表面に第1回目のM電極配
線層を形成し、次いでアニールにより電極取り出し窓内
にバリアメタル層とAl電極配線層との金属間化合物を
形成してバリアメタル層5の表面との段差をなくし、そ
の後バリアメタル層の表面に形成した第1回目のAl電
極配線層を選択エツチングにより除去し、最後にバリア
メタル層及び金属間化合物の表面に第2回目のAt電極
配線層を形成して、集積回路のアルミニウム電極配線を
平坦にするようにした半導体装置の製造方法。
[Detailed Description of the Invention] [Summary] In order to prevent the thickness of the aluminum electrode wiring layer (hereinafter abbreviated as AI!electrode wiring layer) of a semiconductor device from being unrestricted or disconnection failure, electrode extraction windows and silicon oxide film A first M electrode wiring layer is formed on the surface of the barrier metal layer provided on the surface, and then an intermetallic compound of the barrier metal layer and the Al electrode wiring layer is formed in the electrode extraction window by annealing to form a barrier metal layer. After that, the first Al electrode wiring layer formed on the surface of the barrier metal layer was removed by selective etching, and finally the second Al electrode wiring layer formed on the surface of the barrier metal layer and the intermetallic compound was removed. A method of manufacturing a semiconductor device in which an electrode wiring layer is formed to flatten aluminum electrode wiring of an integrated circuit.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法における電極配線の形
成に係り、特に微細な電極取り出し窓における電極配線
形成方法の改良に関するものである。
The present invention relates to the formation of electrode wiring in a method of manufacturing a semiconductor device, and particularly relates to an improvement in the method of forming electrode wiring in a fine electrode extraction window.

半導体装置の製造工程において、形成される電極配線の
厚みの不拘−或いは断線不良の防止のためには、電極形
成面の平坦化が必要であり、それを可能にする半導体装
置の製造方法が要望されている。
In the manufacturing process of semiconductor devices, it is necessary to flatten the electrode formation surface in order to prevent the thickness of the formed electrode wiring from being restricted or disconnection defects, and there is a demand for a semiconductor device manufacturing method that makes this possible. has been done.

〔従来の技術〕[Conventional technology]

従来の半導体装置のAt電極配線層の形成方法は、第2
図(a)に示すように半導体基板1の上に形成したシリ
コン酸化膜2に、電極取り出し窓17を形成する場合に
垂直の壁面を有する電極取り出し窓にすると、その後に
形成するAt’@極配線層の水平面と垂直面の交差部分
で層の厚みが薄くなり、M電極配線層の断線不良発生の
恐れがあるため、図示のようにテーパー状にして、その
表面にポリシリコン層13を形成している。
The conventional method for forming an At electrode wiring layer of a semiconductor device is the second method.
As shown in Figure (a), when an electrode extraction window 17 is formed in the silicon oxide film 2 formed on the semiconductor substrate 1, if the electrode extraction window 17 is made to have a vertical wall surface, the At'@ electrode formed thereafter The thickness of the layer becomes thinner at the intersection of the horizontal and vertical planes of the wiring layer, and there is a risk of disconnection failure in the M electrode wiring layer, so the polysilicon layer 13 is formed on the tapered shape as shown in the figure. are doing.

その後At蒸着により、Alををポリシリコン層13の
上に蒸着してM電極配線層19を形成している。
Thereafter, Al is deposited on the polysilicon layer 13 by At vapor deposition to form an M electrode wiring layer 19.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上説明の従来の半導体装置のAt電極配線層の形成で
問題となるのは、シリコン酸化膜の電極取り出し窓の形
状をテーパー状にして、M電極配線層の厚みの不拘−或
いは断線不良の防止を図ったり、又、At蒸着を行う際
にバイアス・スパッタを行って水平面とテーパー面での
M電極配線層の厚みの差を減少させるようにしているが
、電極取り出し窓の形状のテーパー化は技術的に難しく
、又Al蒸着を行う際のバイアス・スパッタ実施にも限
度があり、平坦なM電極配線層の形成が困難なことであ
る。
The problem in forming the At electrode wiring layer of the conventional semiconductor device described above is that the shape of the electrode extraction window of the silicon oxide film is tapered to prevent the thickness of the M electrode wiring layer from being restricted or disconnection defects. Also, bias sputtering is performed when performing At vapor deposition to reduce the difference in thickness of the M electrode wiring layer between the horizontal surface and the tapered surface, but the tapered shape of the electrode extraction window is This is technically difficult, and there are limits to bias sputtering when depositing Al, making it difficult to form a flat M electrode wiring layer.

更に電極取り出し窓7をテーパー状にするために、電極
取り出し窓70間隔を広くすることが必要になり、高い
集積度が要求される集積回路装置の製造の可能性を狭め
ている。
Furthermore, in order to make the electrode extraction windows 7 tapered, it is necessary to widen the interval between the electrode extraction windows 70, which narrows the possibility of manufacturing an integrated circuit device that requires a high degree of integration.

本発明は以上のような状況から、簡単に実施できるAt
電極配線層の平坦化による電極取り出し窓の微細化技術
の提供を目的としたものである。
In light of the above-mentioned circumstances, the present invention has been developed to provide an easy-to-implement At
The purpose is to provide a technology for miniaturizing electrode extraction windows by flattening the electrode wiring layer.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、電極取り出し窓及びシリコン酸化膜の表
面に設けたバリアメタル層の表面に第1のM電極配線層
を形成し、次いでアニールにより電極取り出し窓内のバ
リアメタル層とAt電極配線層との金属間化合物を形成
してバリアメタル層の表面との段差をなくし、その後バ
リアメタル層の表面に形成した第1のAt電極配線層を
選択エツチングにより除去し、最後にバリアメタル層及
び金属間化合物の表面に第2のAt電極配線層を形成し
て、M電極配線層の厚みの不拘−或いは断線不良の防止
が可能な、平坦な表面を形成するようにした本発明によ
る半導体装置の製造方法によって解決される。
The above problem can be solved by forming the first M electrode wiring layer on the surface of the barrier metal layer provided on the electrode extraction window and the surface of the silicon oxide film, and then annealing the barrier metal layer in the electrode extraction window and the At electrode wiring layer. After that, the first At electrode wiring layer formed on the surface of the barrier metal layer is removed by selective etching, and finally the barrier metal layer and the metal In the semiconductor device according to the present invention, a second At electrode wiring layer is formed on the surface of the intermediate compound to form a flat surface that can prevent the thickness of the M electrode wiring layer from being restricted or disconnection defects. The problem is solved by the manufacturing method.

〔作用〕[Effect]

即ち本発明においては、半導体基板上に形成したシリコ
ン酸化膜に垂直に形成した電極取り出し窓及びシリコン
酸化膜上に、ポリシリコン層と金属層とバリアメタル層
を順次形成し、その上に第1回目のAt電極配線層を形
成する。
That is, in the present invention, a polysilicon layer, a metal layer, and a barrier metal layer are sequentially formed on an electrode extraction window and a silicon oxide film formed perpendicularly to a silicon oxide film formed on a semiconductor substrate, and a first A second At electrode wiring layer is formed.

アニール処理により、電極取り出し窓内にバリアメタル
層とAt電極配線層との金属間化合物を形成させ、ポリ
シリコン層の側壁で囲まれた空間を金属間化合物によっ
て充満し、バリアメタル層の表面との段差をなくし、バ
リアメタル層の表面に形成した第1回目のアルミニウム
電極配線層を選択エツチングするので、第2回目のAt
電極配線層はバリアメタル層と金属間化合物の連続した
平坦な表面上に形成可能となる。
By annealing, an intermetallic compound between the barrier metal layer and the At electrode wiring layer is formed within the electrode extraction window, and the space surrounded by the side walls of the polysilicon layer is filled with the intermetallic compound, and the surface of the barrier metal layer and the At electrode wiring layer are filled with the intermetallic compound. Since the first aluminum electrode wiring layer formed on the surface of the barrier metal layer is selectively etched, the second At
The electrode wiring layer can be formed on the continuous, flat surface of the barrier metal layer and the intermetallic compound.

〔実施例〕〔Example〕

以下第1図について本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明による一実施例を工程順に示す側断面図
である。
FIG. 1 is a side sectional view showing an embodiment of the present invention in the order of steps.

第1図(a)に示すように、半導体基板lの上に形成さ
れたシリコン酸化膜2に設けた電極取り出し窓7には、
ポリシリコン層3、金属層4、バリアメタル層5が順次
積層して形成されている。
As shown in FIG. 1(a), an electrode extraction window 7 provided in a silicon oxide film 2 formed on a semiconductor substrate l has a
A polysilicon layer 3, a metal layer 4, and a barrier metal layer 5 are sequentially stacked.

本実施例では金属層4はチタン(Ti)、バリアメタル
層5は窒化チタン(TiN)である。
In this embodiment, the metal layer 4 is made of titanium (Ti), and the barrier metal layer 5 is made of titanium nitride (TiN).

先ず、この表面に第1回目のM電極配線層6を形成する
。このAl電極配線層6は図示のように電極取り出し窓
7の部分に窪みのある不均一な厚みの形状をしている。
First, a first M electrode wiring layer 6 is formed on this surface. As shown in the figure, this Al electrode wiring layer 6 has a shape with a uneven thickness and a depression at the electrode extraction window 7.

次に、アニール処理を行うと、第1図(b)に示すよう
に、TiNからなるバリアメタル層5の垂直面のみが質
的な変化を起こして、At電極配線層6のMと反応して
アルミニウムチタン(At’Ti)からなる金属間化合
物8を形成し、電極取り出し窓7のポリシリコン層3の
側壁で囲まれた空間を充満する。
Next, when annealing treatment is performed, only the vertical surface of the barrier metal layer 5 made of TiN undergoes a qualitative change and reacts with M of the At electrode wiring layer 6, as shown in FIG. 1(b). An intermetallic compound 8 made of aluminum titanium (At'Ti) is formed and fills the space surrounded by the side wall of the polysilicon layer 3 of the electrode extraction window 7.

この場合にバリアメタル層5の水平面は上記の質的な変
化が起こらないので、M電極配線層6と反応することな
く残存する。
In this case, the above-mentioned qualitative change does not occur on the horizontal surface of the barrier metal layer 5, so that it remains without reacting with the M electrode wiring layer 6.

次いで、第1図(C)に示すように第1回目のM’電極
配線層6を選択エツチングによって除去し、バリアメタ
ル層5と金属間化合物8の連続した表面を形成する。
Next, as shown in FIG. 1C, the first M' electrode wiring layer 6 is removed by selective etching to form a continuous surface of the barrier metal layer 5 and the intermetallic compound 8.

最後に、この平坦に形成されたパリアメクル層5と金属
間化合物8の上に第2回目のAt電極配線層9を形成す
る。
Finally, a second At electrode wiring layer 9 is formed on the parium metal layer 5 and the intermetallic compound 8 which have been formed flat.

このように、M電極配線層9とポリシリコン層3が直接
接触した場合に、反応を起こす障害防止のためのバリア
メタル層5と、第1回目のAI電極配線!6のAtが金
属間化合物8を垂直面のみに形成することを利用して、
電極取り出し窓7の内部のポリシリコンN3で囲まれた
空間を金属間化合物8で完全に充満させることが可能と
なり、その後に形成する第2回目の^l電極配′f!A
層9を平坦な表面上に形成できるので、Aj!電極配線
層9形成時に発生するAt電極配線層9の厚みの不拘−
或いは断線不良の防止が可能となる。
In this way, when the M electrode wiring layer 9 and the polysilicon layer 3 are in direct contact with each other, the barrier metal layer 5 is formed to prevent a reaction from occurring, and the first AI electrode wiring! Taking advantage of the fact that At of 6 forms intermetallic compound 8 only on the vertical plane,
It becomes possible to completely fill the space surrounded by polysilicon N3 inside the electrode extraction window 7 with the intermetallic compound 8, and the second electrode arrangement 'f! A
Since layer 9 can be formed on a flat surface, Aj! Inconsistency in the thickness of the At electrode wiring layer 9 that occurs when forming the electrode wiring layer 9
Alternatively, disconnection defects can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、集積度が高くなっ
てパターンが微細化した集積回路装置におけるAt電極
配線層を、極めて小さな間隔で形成することが可能にな
り、より一層集積度の高い半導体装置の製造が可能にな
る利点があり、著しい経済的及び、信頼性向上の効果が
期待でき工業的には極めて有用なものである。
As explained above, according to the present invention, it is possible to form At electrode wiring layers at extremely small intervals in integrated circuit devices with a higher degree of integration and finer patterns. It has the advantage of making it possible to manufacture semiconductor devices, and can be expected to have significant economical and reliability improvement effects, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の半導体装置の製造方法
を工程順に示す側断面図、 第2図は従来のAt電極配線層の形成方法を示す側断面
図、 である。 図において、 1は半導体基板、  2はシリコン酸化膜、3はポリシ
リコン層、4は金属層、 5はバリアメタル層、6はAt電極配線層、7は電極取
り出し窓、8は金属間化合物、9はAt電極配線層、 第1図
FIG. 1 is a side cross-sectional view showing the process order of a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a side cross-sectional view showing a conventional method for forming an At electrode wiring layer. In the figure, 1 is a semiconductor substrate, 2 is a silicon oxide film, 3 is a polysilicon layer, 4 is a metal layer, 5 is a barrier metal layer, 6 is an At electrode wiring layer, 7 is an electrode extraction window, 8 is an intermetallic compound, 9 is an At electrode wiring layer, Fig. 1

Claims (1)

【特許請求の範囲】 電極取り出し窓(7)及びシリコン酸化膜(2)の表面
に設けたバリアメタル層(5)の表面に第1のアルミニ
ウム電極配線層(6)を形成する工程と、アニールによ
り前記電極取り出し窓(7)内に前記バリアメタル層(
5)と前記アルミニウム電極配線層(6)との金属間化
合物(8)を形成する工程と、前記バリアメタル層(5
)の表面に形成した第1の前記アルミニウム電極配線層
(6)を選択エッチングして除去する工程と、 前記バリアメタル層(5)及び前記金属間化合物(8)
の表面に第2のアルミニウム電極配線層(9)を形成す
る工程と、 を含むことを特徴とする半導体装置の製造方法。
[Claims] A step of forming a first aluminum electrode wiring layer (6) on the surface of the barrier metal layer (5) provided on the surface of the electrode extraction window (7) and the silicon oxide film (2), and annealing. The barrier metal layer (
5) and the aluminum electrode wiring layer (6) to form an intermetallic compound (8), and the barrier metal layer (5).
) selectively etching and removing the first aluminum electrode wiring layer (6) formed on the surface of the barrier metal layer (5) and the intermetallic compound (8).
A method for manufacturing a semiconductor device, comprising: forming a second aluminum electrode wiring layer (9) on the surface of the semiconductor device.
JP29095486A 1986-12-05 1986-12-05 Manufacture of semiconductor device Pending JPS63142832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29095486A JPS63142832A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29095486A JPS63142832A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63142832A true JPS63142832A (en) 1988-06-15

Family

ID=17762622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29095486A Pending JPS63142832A (en) 1986-12-05 1986-12-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63142832A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720856A1 (en) * 1994-04-28 1995-12-08 Nippon Denso Co Wiring electrode for semiconductor device and its manufacturing process.
US5700718A (en) * 1996-02-05 1997-12-23 Micron Technology, Inc. Method for increased metal interconnect reliability in situ formation of titanium aluminide
US6242811B1 (en) 1989-11-30 2001-06-05 Stmicroelectronics, Inc. Interlevel contact including aluminum-refractory metal alloy formed during aluminum deposition at an elevated temperature
JP2002246607A (en) * 2001-02-05 2002-08-30 Samsung Electronics Co Ltd Thin film transistor substrate and its fabricating method
US6617242B1 (en) 1989-11-30 2003-09-09 Stmicroelectronics, Inc. Method for fabricating interlevel contacts of aluminum/refractory metal alloys
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242811B1 (en) 1989-11-30 2001-06-05 Stmicroelectronics, Inc. Interlevel contact including aluminum-refractory metal alloy formed during aluminum deposition at an elevated temperature
US6617242B1 (en) 1989-11-30 2003-09-09 Stmicroelectronics, Inc. Method for fabricating interlevel contacts of aluminum/refractory metal alloys
FR2720856A1 (en) * 1994-04-28 1995-12-08 Nippon Denso Co Wiring electrode for semiconductor device and its manufacturing process.
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
US6348735B1 (en) 1994-04-28 2002-02-19 Nippondenso Co., Lt. Electrode for semiconductor device and method for manufacturing same
US5700718A (en) * 1996-02-05 1997-12-23 Micron Technology, Inc. Method for increased metal interconnect reliability in situ formation of titanium aluminide
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime
US6908857B2 (en) 1999-08-20 2005-06-21 Denso Corporation Method of manufacturing semiconductor device
JP2002246607A (en) * 2001-02-05 2002-08-30 Samsung Electronics Co Ltd Thin film transistor substrate and its fabricating method

Similar Documents

Publication Publication Date Title
KR100291284B1 (en) Aluminum metal layer wiring method
JPS63142832A (en) Manufacture of semiconductor device
JPH07193024A (en) Semiconductor device and its manufacture
JPH045823A (en) Semiconductor device and its manufacture
JPH0273652A (en) Manufacture of semiconductor device
JPS59141232A (en) Manufacture of semiconductor device
JPH06232074A (en) Semiconductor device and its manufacture
JPS61214449A (en) Manufacture of semiconductor element
JPH07326668A (en) Manufacture of semiconductor device
JPH02156537A (en) Manufacture of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPH0118582B2 (en)
JPS59232443A (en) Manufacture of semiconductor device
JPS62108542A (en) Manufacture of semiconductor device
JP2674654B2 (en) Method for manufacturing semiconductor device
JPH03125469A (en) Structure for mim capacitor
JPH06151415A (en) Manufacturing method of semiconductor device
JPS6249735B2 (en)
JPH01239941A (en) Semiconductor device
JPS63177445A (en) Manufacture of semiconductor device
JPH033382B2 (en)
JPH01115137A (en) Formation of wiring
JPH0376127A (en) Manufacture of semiconductor device
JPH0273651A (en) Semiconductor device
JPH0379031A (en) Semiconductor device