JPS63140084A - Hard carbon coated parts - Google Patents

Hard carbon coated parts

Info

Publication number
JPS63140084A
JPS63140084A JP28439886A JP28439886A JPS63140084A JP S63140084 A JPS63140084 A JP S63140084A JP 28439886 A JP28439886 A JP 28439886A JP 28439886 A JP28439886 A JP 28439886A JP S63140084 A JPS63140084 A JP S63140084A
Authority
JP
Japan
Prior art keywords
hard carbon
diamond
base material
coating film
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28439886A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Akihiko Ikegaya
池ケ谷 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28439886A priority Critical patent/JPS63140084A/en
Publication of JPS63140084A publication Critical patent/JPS63140084A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent exfoliation of a carbon film from a base material in a hard carbon vapor synthesis method by forming the coating film of mixture composed of hard carbon and metal carbide. CONSTITUTION:A chip 1 made of a sintered hard alloy is held in a sample base 2 made of quartz and the inside of a vacuum vessel 3 of a diamond coating device is evacuated 4. A gas prepd. by mixing hydrogen, methane, and titanium tetrachloride at prescribed ratios is then introduced from a gas introducing pipe 5 into the vessel under about 150 Torr pressure. A tungsten filament 6 is electrically heated to about 2,000 deg.C and the chip 1 is held for about 10hr at about 1,050 deg.C by using an electric furnace 7. The coating film consisting of the mixture composed of the hard carbon (diamond) and the metal carbide (titanium carbide) is thereby formed on the chip 1. The volume ratio between the carbon film and the metal carbide is selected as desired according to the base material. The hard carbon-coated parts which are decreased in the difference in the coefft. of thermal expansion between the base materials and the coating film are thereby obtd. and the exfoliation of the coating film from the base material is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極めて耐摩耗性、耐蝕性に富む新規なひ質炭
素技伊部品に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel deep carbon technology component that is extremely wear resistant and corrosion resistant.

〔従来の技術〕[Conventional technology]

ダイヤモンドの合成法として、従来のように超高圧・高
温を用いずに気相合成する方法として、炭化水素を分解
し、加熱保持した基材の表面に合成被覆する方法があり
、例えば特公昭59−27755号公報、特願昭56−
204321号、特公昭61−2652号各公報をはじ
めとして、数多くの方法が知られている。
As a method of synthesizing diamond, there is a method of vapor phase synthesis without using ultra-high pressure and high temperature as in the past, which involves decomposing hydrocarbons and applying a synthetic coating to the surface of a heated and held substrate. -27755 Publication, Patent Application 1983-
Many methods are known, including those disclosed in Japanese Patent Publications No. 204321 and Japanese Patent Publication No. 61-2652.

この種の方法は、いずれも炭素含有化合物、一般には炭
化水素を水素で希釈した混合ガスを、高温もしくは電気
エネルギーを外部から付加することによってプラズマを
発生させる、又は外部より強力なる光、一般的にはエキ
シマレーザ−光を照射する等の手段によって、高エネル
ギー状態に励起し、これKより水素を原子状の水素に解
離させると共に、炭化水素よりメチルラジカルを生成さ
せ、このメチルラジカルが基材表面上にダイヤモンドと
して堆積し、同時に原子状の水素がダイヤモンドと共析
出するグラπイトを選択的にエツチングすることにより
、高純度のダイヤモンドを基材表面上に合成被覆するも
のである。
In all of these methods, plasma is generated by applying a high temperature or electric energy to a mixed gas of a carbon-containing compound, generally a hydrocarbon, diluted with hydrogen, or by applying a strong external light, generally is excited to a high energy state by means such as irradiation with excimer laser light, which dissociates hydrogen from K into atomic hydrogen, and generates methyl radicals from hydrocarbons, and these methyl radicals High-purity diamond is synthetically coated on the surface of a substrate by selectively etching graffite, which is deposited as diamond on the surface and at the same time atomic hydrogen is co-precipitated with the diamond.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来技術によれば、確かに基材の表面に純度の
高いダイヤモンドを合成・被覆することは可能である。
According to the above-mentioned conventional technology, it is certainly possible to synthesize and coat the surface of a base material with highly pure diamond.

しかしながら、通常の基材材料例えば切削工具に、この
種のダイヤモンド被覆の応用を考えると、ダイヤモンド
はその熱膨張係数が五〇×10″″’ /de gと極
めて小さく、切削工具に最適な超硬合金の熱膨張係数5
 X 10−@/clegの約1/2であることから、
一般に500℃〜1200℃である被覆時の高温から、
室温まで冷却した際に、ダイヤモンド被覆膜に高水準の
圧縮残留応力が生じ、該被覆膜が坐屈破壊することによ
シ基材から剥離してしまうという大きな問題があり、こ
れの解決が急がれている。
However, when considering the application of this type of diamond coating to a normal base material such as a cutting tool, diamond has an extremely small coefficient of thermal expansion of 50×10''''/deg, making it an ideal material for cutting tools. Thermal expansion coefficient of hard metal 5
Since it is about 1/2 of X 10-@/cleg,
From the high temperature during coating, which is generally 500°C to 1200°C,
There is a major problem in which a high level of compressive residual stress occurs in the diamond coating when it is cooled to room temperature, and the coating peels off from the base material due to buckling fracture. is urgently needed.

本発明はこのような現状に鑑みて表されたものであり、
基材からの剥離のない硬質炭素被覆部品を提供するもの
である。
The present invention was developed in view of the current situation, and
The present invention provides a hard carbon-coated component that does not peel off from a base material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は気相よシ加熱した基材の表面に、炭素含有化合
物を分解して硬質の炭素を合成・析出せしめ被覆膜とし
た硬質炭素被覆部品において、該被覆膜の一層もしくは
全層が硬質炭素と金属炭化物の混合物からなる硬質炭素
被覆部品である。
The present invention relates to a hard carbon-coated component in which a carbon-containing compound is decomposed and hard carbon is synthesized and precipitated on the surface of a base material heated in a gas phase. is a hard carbon coated part made of a mixture of hard carbon and metal carbide.

本発明においては、上記金属炭化物が炭化チタンである
ことが特に好ましい。
In the present invention, it is particularly preferable that the metal carbide is titanium carbide.

まず、本発明の基とした考え方から説明を始める。前記
したように、ダイヤモンドが他の物質に比べて極めて熱
膨張係数が小さいため、被覆終了後に冷却する際に、被
覆膜に大きな残留圧縮応力が生じて剥離が生じる。
First, the explanation will begin with the idea on which the present invention is based. As described above, since diamond has an extremely small coefficient of thermal expansion compared to other materials, when it is cooled after coating, a large residual compressive stress is generated in the coating film, resulting in peeling.

この問題を解決するには、要は該被覆膜に生じる応力を
緩和すればよい。そして、被覆膜に生じる残留応力は、
被覆膜物質であるダイヤモンドと基材物質との熱膨張係
数の差によるのであるから、被覆膜物質の熱膨張係数を
より大きくできればよいのである。
In order to solve this problem, the stress generated in the coating film can be alleviated. The residual stress generated in the coating film is
This is due to the difference in thermal expansion coefficient between diamond, which is the coating film material, and the base material, so it is only necessary to increase the thermal expansion coefficient of the coating film material.

ここで、混合物質の熱膨張係数は、近似的には混合膜が
成立すると考えられるので、ダイヤモンドと、ダイヤモ
ンドのそれよシ大きな熱膨張係数を有する物質との混合
膜を作成するならば、かかる問題を解決し得ると考え、
この考えを基にして研究を進め本発明に到達した。
Here, the coefficient of thermal expansion of the mixed substance is considered to approximately form a mixed film, so if a mixed film of diamond and a substance with a coefficient of thermal expansion larger than that of diamond is created, Thinking that the problem can be solved,
Based on this idea, we conducted research and arrived at the present invention.

本発明者らの研究によれば、ダイヤモンドとより熱膨張
係数の大きい物質との混合膜の熱膨張係数は、はソ混合
則に従がい、ダイヤモンドのそれより大きくなシ、基材
との熱膨張係数差を大巾に改善でき、これにより剥離の
問題を解決できることがわかった。
According to the research of the present inventors, the coefficient of thermal expansion of a mixed film of diamond and a substance with a higher coefficient of thermal expansion follows the law of mixtures, and the coefficient of thermal expansion of a mixed film of diamond and a substance with a higher coefficient of thermal expansion is larger than that of diamond. It was found that the difference in expansion coefficient could be significantly improved, and that this could solve the problem of peeling.

例えば炭化チタンは熱膨張係数が7.8X10″a/d
ogであることから、炭化チタンが42容積チ、ダイヤ
モンドが58容積鴫の混合膜を作成すると、その混合膜
の熱膨張係数は5.0X10″″@/1mgとなり、前
述した超硬合金のそれと全く一致するところから、残留
応力は生じない。
For example, titanium carbide has a coefficient of thermal expansion of 7.8 x 10" a/d.
Therefore, if a mixed film of 42 vol. titanium carbide and 58 vol. titanium carbide is created, the thermal expansion coefficient of the mixed film will be 5.0 x 10''@/1 mg, which is different from that of the cemented carbide mentioned above. Due to the exact match, no residual stress arises.

従って、被覆膜と基材とは極めてよく接着するところか
ら、本発明の被覆部品を切削工具、耐摩部品等に用いる
と非常に好結果が得られる。
Therefore, since the coating film and the base material adhere extremely well, very good results can be obtained when the coated parts of the present invention are used for cutting tools, wear-resistant parts, etc.

本発明において混合膜を形成させる、よシ熱膨張係数の
大きな物質としては、金属炭化物例えば炭化チタン、炭
化硼素、炭化硅素などが好ましい。
In the present invention, the material having a large coefficient of thermal expansion that forms the mixed film is preferably a metal carbide such as titanium carbide, boron carbide, silicon carbide, or the like.

本発明の硬質炭素被覆部品におけるダイヤモンド(硬質
炭素)と金属炭化物の容積比は特に限定されるところは
なく、基材に応じ任意に容積比を変えればよい。
The volume ratio of diamond (hard carbon) to metal carbide in the hard carbon-coated component of the present invention is not particularly limited, and the volume ratio may be arbitrarily changed depending on the base material.

本発明の硬質炭素被覆部品の製造方法としては、種々の
方法が採用できるが、従来の硬質炭素(ダイヤモンド)
気相合成法である、炭化水素と水素の混合ガスを励起し
た後、分解する方法において熱膨張係数のより大な他の
原料を混合ガス中に添加して、基材上に共析出させる方
法が、工業的にも最も容易である。
Various methods can be employed to manufacture the hard carbon-coated parts of the present invention, but conventional hard carbon (diamond)
A gas phase synthesis method in which a mixed gas of hydrocarbons and hydrogen is excited and then decomposed, in which other raw materials with a higher coefficient of thermal expansion are added to the mixed gas and co-precipitated on the base material. However, it is also the easiest industrially.

このような方法としては例えば熱OVD法、マイクロ波
プラズマ法などが挙げられる。
Examples of such methods include a thermal OVD method and a microwave plasma method.

熱av′D法による場合は、W、Ta等の金属フィラメ
ントを1800〜2500℃に加熱しておき、水素と炭
化水素の混合ガス、一般的には水素と11〜5容量チ好
ましくは(L5〜2容量チ程度のメタンとの混合ガスを
、該フィラメントで予熱することにより、金属フィラメ
ント直下に5〜50w程度離れて設けた基材表面上に、
炭化水素を熱分解してダイヤモンドを合成する。
In the case of the thermal av'D method, a metal filament such as W or Ta is heated to 1800 to 2500°C, and a mixed gas of hydrogen and hydrocarbon, generally hydrogen and 11 to 5 volumes of hydrogen, preferably (L5 By preheating a mixed gas with about 2 volumes of methane using the filament, it is applied to the surface of the base material provided directly below the metal filament at a distance of about 5 to 50 W.
Synthesize diamonds by thermally decomposing hydrocarbons.

なお雰囲気の圧力は1〜760 Torr、好ましくは
50〜500  Torr程度、基材表面温度は700
〜1500℃好ましくは850〜1100℃程度で行う
The pressure of the atmosphere is 1 to 760 Torr, preferably about 50 to 500 Torr, and the substrate surface temperature is 700 Torr.
The temperature is preferably about 850 to 1100°C.

マイクロ波プラズマOVD法による場合は、石英製の反
応管中に基板を設置し、該石英管外部よりマイクロ波を
、一般的には2.45 GHzもしくは915 MHz
を加え、マイクロ波無極放電によってプラズマと生じさ
せる。なおガス組成、圧力及び基体の表面温度は前記し
た熱OVD法の場合とほとんど同じでよい。
When using the microwave plasma OVD method, the substrate is placed in a quartz reaction tube, and microwaves are applied from outside the quartz tube, generally at 2.45 GHz or 915 MHz.
is added to generate plasma by microwave non-polar discharge. Note that the gas composition, pressure, and surface temperature of the substrate may be almost the same as in the case of the thermal OVD method described above.

上記のように雰囲気が炭化水素雰囲気であることから、
共析出する物質は、金属の炭化物と硬質炭素に必然的に
なるわけである。ここで硬質炭素としたのは、従来法の
ように純度の高いダイヤモンドは合成できず、若干のグ
ラファイトが共析出するためである。
As mentioned above, since the atmosphere is a hydrocarbon atmosphere,
The substances that co-precipitate are inevitably metal carbides and hard carbon. The reason why hard carbon was used here is that diamond of high purity cannot be synthesized using conventional methods, and some graphite is co-precipitated.

また、この金属炭化物と硬質炭素との混合物は被覆膜の
全部をこれにする要は必ずしもなく、基材と接する面の
みとし、かつ外部にむけて金属炭化物の存在量を順次減
少した層状構造にしてもよいことは、熱膨張係数の差に
よる残留応力の緩和という本発明の目的から、言うまで
もなく当然である。
Furthermore, this mixture of metal carbide and hard carbon does not necessarily have to cover the entire coating film, but only the surface in contact with the base material, and has a layered structure in which the amount of metal carbide is gradually decreased toward the outside. Needless to say, this may be done in view of the purpose of the present invention, which is to alleviate residual stress due to the difference in thermal expansion coefficients.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 第1図に概略の構成を示すダイヤモンド禎覆装置におい
て、超硬合金製チップ〔住友電工■製、材質H1、型番
8PG422)1を石英製試料台2に保持し、真空容器
S内を図示されていない真空排気装置にて排気4したの
ち、ガス導入管5より水素10 CC/ min eメ
タン(11cc/min 、四塩化チタンα02 CC
/ minを圧力150TOrr  にて導入すると共
に、タングステンフィラメント6を通電加熱して約20
00℃とし、電気炉7を用いて超硬合金製テップ1の温
度を1050℃に保った。この条件にて10時間被覆し
た後、試料を冷却した。
Example 1 In a diamond dispersion device whose schematic configuration is shown in FIG. After evacuating 4 using a vacuum evacuation device (not shown), 10 cc/min of hydrogen (11 cc/min), methane (11 cc/min), titanium tetrachloride α02 cc
/ min at a pressure of 150 TOrr, and the tungsten filament 6 was heated with electricity for about 20 TOrr.
The temperature of the cemented carbide step 1 was maintained at 1050°C using an electric furnace 7. After coating under these conditions for 10 hours, the sample was cooled.

冷却後との試料をX線回折にて調べたところ、ダイヤモ
ンドと炭化チタンの回折ピークが同定された。次に、オ
ージェ電子分光にて被覆膜の組成分析を行ったところ、
平均して炭化チタンが58容積チ、ダイヤモンドが62
容積チ存在していると推定された。々お、その分布は基
材に近い部分での炭化チタンの存在量が表面部より多か
った。又、被覆膜厚は約12μあることが判った。この
試料を本発明品Aとする。
When the sample after cooling was examined by X-ray diffraction, diffraction peaks of diamond and titanium carbide were identified. Next, we analyzed the composition of the coating film using Auger electron spectroscopy.
On average, titanium carbide has a volume of 58 cm and diamond has a volume of 62 cm.
It is estimated that there is a volume of As for the distribution, the amount of titanium carbide present in the portion close to the base material was greater than that in the surface portion. Further, it was found that the coating film thickness was approximately 12μ. This sample is referred to as Invention Product A.

上記と同様の装置を用い、同じ基材について、四塩化チ
タンの添加のみを行わず、他の条件はAの場合と同様に
同時間行ったところ、ダイヤモンドが約9μ厚さ被覆し
た試料が得られた。
Using the same equipment as above, the same substrate was treated with the same conditions as in case A, except that titanium tetrachloride was not added, and a sample coated with diamond to a thickness of about 9μ was obtained. It was done.

この比較品をそのまま2日間放置したところ、膜内に生
じた圧縮応力のため、被覆膜が剥離してしまった。
When this comparative product was left as it was for two days, the coating film peeled off due to compressive stress generated within the film.

本発明品A及び未被覆品について、以下の条件で切削テ
ストを行った。
A cutting test was conducted on the invention product A and the uncoated product under the following conditions.

被削材 1040丸棒 切削速度  3000悔/ min 送   シ   α20日/rev 切り込み  to− ホルダー  ?P21R−44ム 切削剤  使用せず 本発明品Aは、10分間切削してフランク摩耗が102
.であったのに対して、比較品である未被覆品、すなわ
ち基材は、14秒間切削して切刃が消滅してしまった。
Work material 1040 round bar Cutting speed 3000/min Feed α20 days/rev Depth of cut to holder? Product A of the present invention without P21R-44-mu cutting agent showed flank wear of 102 mm after cutting for 10 minutes.
.. On the other hand, in the comparative uncoated product, that is, the base material, the cutting edge disappeared after cutting for 14 seconds.

実施例2 真空容器内に実施例1と同じ超硬合金製チップを保持し
、系内に水素15CC/min、メタンQ、 I OC
/ In1n g四塩化チタンαOI CC/ win
を、40 Torrにて導入した後、2.a 5 GH
zのマイクロ波500Wを印加し、いわゆるマイクロ波
プラズマCvD法にて24時間被覆した。
Example 2 The same cemented carbide chip as in Example 1 was held in a vacuum container, and the system was supplied with hydrogen at 15 CC/min, methane Q, and IOC.
/ In1ng titanium tetrachloride αOI CC/win
was introduced at 40 Torr, and then 2. a5GH
z microwave of 500 W was applied, and coating was carried out for 24 hours by a so-called microwave plasma CvD method.

しかる後、試料を冷却して調べたところ、ダイヤモンド
が72容積チ、炭化チタン28容積チの混合膜が厚さ2
8μ被覆されていた。この試料を本発明品Bとする。
After that, when the sample was cooled and examined, a mixed film of 72 volumes of diamond and 28 volumes of titanium carbide was found to have a thickness of 2.
It was coated with 8μ. This sample is referred to as Invention Product B.

四塩化チタンの添加がない以外は全く同一の基材、装置
、条件にて12時間被覆したところ、厚さ8μのダイヤ
モンドが被覆された。
When coating was performed for 12 hours using the same substrate, equipment, and conditions except that titanium tetrachloride was not added, diamond with a thickness of 8 μm was coated.

しかしながら、4日後に後者のダイヤモンド被覆は剥離
してしまった。−力木発明品Bでは被覆膜の剥離は全く
認められ々かった。
However, after 4 days the latter diamond coating had peeled off. - In the strength wood invention product B, no peeling of the coating film was observed at all.

実施例3 実施例1と同じ構成にて、種々の条件にて表1に示す各
種の被覆膜を作成した後、実施例1と同一条件にて切削
テストを行った。この結果も表1にまとめて示すが、ダ
イヤモンドのみを被覆した比較品工〜には、いずれも膜
が初期に剥離してしまい、極めて短寿命であった。一方
、本発明品C−aは、10分間切削してもフランク摩耗
が[1m1〜Q、06■と非常に優れていた。
Example 3 With the same configuration as in Example 1, various coating films shown in Table 1 were created under various conditions, and then a cutting test was conducted under the same conditions as in Example 1. The results are also summarized in Table 1, and the comparative products coated only with diamond had a film that peeled off at an early stage and had an extremely short life. On the other hand, the product C-a of the present invention showed very good flank wear of [1 m1 to Q, 06 cm even after cutting for 10 minutes.

〔発明の効果〕〔Effect of the invention〕

本発明は、ダイヤモンドを気相より基材表面に析出させ
る、いわゆるダイヤモンドコーティング技術において、
金属炭化物、特に好ましくは炭化チタンを共析出させる
ことによって、該被覆膜の熱膨張係数をダイヤモンド膜
のそれより大きくして基材との差を殆んどなくすことが
できるので、基材との熱膨張係数の差により生じた膜中
の残留圧縮応力を緩和させることを可能とし、これによ
り被覆膜の剥離をなくすことができる。
The present invention is a so-called diamond coating technology in which diamond is deposited on the surface of a base material from a gas phase.
By co-precipitating a metal carbide, particularly preferably titanium carbide, the coefficient of thermal expansion of the coating film can be made larger than that of the diamond film and there is almost no difference between it and the base material. This makes it possible to alleviate the residual compressive stress in the film caused by the difference in the thermal expansion coefficients of the two, thereby eliminating peeling of the coating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の硬質炭素被覆部品を製造する一例の概
略説明図である。
FIG. 1 is a schematic explanatory diagram of an example of manufacturing a hard carbon-coated component of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)気相より加熱した基材の表面に、炭素含有化合物
を分解して硬質の炭素を合成・析出せしめ被覆膜とした
硬質炭素被覆部品に於て、該被覆膜の一層もしくは全層
が硬質炭素と金属炭化物の混合物からなる硬質炭素被覆
部品。
(1) In hard carbon-coated parts, a carbon-containing compound is decomposed and hard carbon is synthesized and precipitated on the surface of a base material heated in a gas phase. A hard carbon coated part whose layer consists of a mixture of hard carbon and metal carbide.
(2)金属炭化物が炭化チタンである特許請求の範囲第
(1)項記載の硬質炭素被覆部品。
(2) The hard carbon-coated component according to claim (1), wherein the metal carbide is titanium carbide.
JP28439886A 1986-12-01 1986-12-01 Hard carbon coated parts Pending JPS63140084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28439886A JPS63140084A (en) 1986-12-01 1986-12-01 Hard carbon coated parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28439886A JPS63140084A (en) 1986-12-01 1986-12-01 Hard carbon coated parts

Publications (1)

Publication Number Publication Date
JPS63140084A true JPS63140084A (en) 1988-06-11

Family

ID=17678055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28439886A Pending JPS63140084A (en) 1986-12-01 1986-12-01 Hard carbon coated parts

Country Status (1)

Country Link
JP (1) JPS63140084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246118A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Composite carbon coating film having high heat-resistance and production thereof
EP1384597A1 (en) 1989-01-31 2004-01-28 Dai Nippon Insatsu Kabushiki Kaisha Method for recording by thermal dye transfer
CN110878410A (en) * 2018-09-06 2020-03-13 深圳精匠云创科技有限公司 3D glass hard alloy die and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993869A (en) * 1982-11-19 1984-05-30 Sumitomo Electric Ind Ltd Structure coated with hard layer containing diamond
JPS59170261A (en) * 1983-03-14 1984-09-26 Mitsubishi Metal Corp Surface-coated tool member with superior wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993869A (en) * 1982-11-19 1984-05-30 Sumitomo Electric Ind Ltd Structure coated with hard layer containing diamond
JPS59170261A (en) * 1983-03-14 1984-09-26 Mitsubishi Metal Corp Surface-coated tool member with superior wear resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246118A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Composite carbon coating film having high heat-resistance and production thereof
EP1384597A1 (en) 1989-01-31 2004-01-28 Dai Nippon Insatsu Kabushiki Kaisha Method for recording by thermal dye transfer
CN110878410A (en) * 2018-09-06 2020-03-13 深圳精匠云创科技有限公司 3D glass hard alloy die and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
US6152977A (en) Surface functionalized diamond crystals and methods for producing same
US5028451A (en) Method of producing sintered hard metal with diamond film
JPH04228497A (en) Diamond thin sheet without base body and method and apparatus for preparation thereof
IE912496A1 (en) Cvd diamond coated twist drills
JPS62196371A (en) Diamond coated member having high adhesiveness
US5508071A (en) CVD diamond coating annulus components and method of their fabrication
CA2072326A1 (en) Method for selective cvd diamond deposition
JPS62138395A (en) Preparation of diamond film
EP0371145B1 (en) Process for vapor-phase synthesis of diamond
EP0469204B1 (en) Method for vapour deposition of diamond film
JPS63140084A (en) Hard carbon coated parts
WO1990005701A1 (en) Diamond production
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH06262405A (en) Coating part for tool
EP0534729A2 (en) Method for obtaining thick, adherent diamond coatings
JPS63286575A (en) Production of rigid carbon film
JP2585342B2 (en) Diamond vapor phase synthesis
JPH01201098A (en) Synthesis of diamond
JP2629939B2 (en) Diamond film manufacturing method
JPS61174378A (en) Production of rigid material coated with boron nitride
JPH01201479A (en) Diamond coated hydrogen embrittlement metal and its production
JPS61153279A (en) Production of material coated with hard boron nitride
JP2762561B2 (en) Method of synthesizing diamond film
JP2633656B2 (en) Method for producing diamond coating