JPS63134853A - Accumulator fuel injection device for diesel engine - Google Patents

Accumulator fuel injection device for diesel engine

Info

Publication number
JPS63134853A
JPS63134853A JP61280047A JP28004786A JPS63134853A JP S63134853 A JPS63134853 A JP S63134853A JP 61280047 A JP61280047 A JP 61280047A JP 28004786 A JP28004786 A JP 28004786A JP S63134853 A JPS63134853 A JP S63134853A
Authority
JP
Japan
Prior art keywords
fuel
chamber
pressure
valve
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61280047A
Other languages
Japanese (ja)
Other versions
JPH0735760B2 (en
Inventor
Masahiro Akeda
正寛 明田
Tetsuo Ikejima
池島 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP61280047A priority Critical patent/JPH0735760B2/en
Priority to US07/095,459 priority patent/US4807811A/en
Publication of JPS63134853A publication Critical patent/JPS63134853A/en
Publication of JPH0735760B2 publication Critical patent/JPH0735760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To make the precise determination of injection time possible by the simple composition of a fuel injection device by communicating a pressure relief fuel breathing chamber with the valve closing pressure fuel chamber of a fuel injector individually through the pressure relief passage of a pressure relief valve for determining injection time and a fuel return passage. CONSTITUTION:A pressure relief fuel breathing chamber 21 communicates with the valve closing pressure fuel chamber 85 of a fuel injector 29 individually through the pressure relief passages 59 for pressure relief valve 19 for determining injection time and a fuel return passage 22 to timingly interlock the pressure relief valve 19 with a crankshaft. The passages 59 causes the fuel chamber 85 to communicate with the fuel breathing chamber 21 during fuel injection, and the fuel in the fuel chamber 85 is therefore set free into the fuel breathing chamber 21 to reduce internal pressure in the fuel chamber 85. Thus since the injection time is determined in dependence of the valve opening time of the pressure relief valve 19 opened and closed with timing control made on the crankshaft, the injection time can be simply and precisely determined. In addition to that, the fuel return passage 22 causes the fuel breathing chamber 21 to communicate with the fuel chamber 85 after the fuel injection to discharge back the fuel in the fuel breathing chamber 21 into the fuel chamber 85.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ディーゼルエンジンの蓄圧型燃料噴射装置に
関し、特に、噴射量制御に誤差を生じることなく噴射時
期を高精度に決定でき、しかも、全体として構成が簡単
になるようにした、ディーゼルエンジンの蓄圧型燃料噴
射装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a pressure accumulation type fuel injection device for a diesel engine, and in particular, it is capable of determining injection timing with high precision without causing errors in injection amount control, and furthermore, This invention relates to a pressure accumulation type fuel injection device for a diesel engine, which has a simple structure as a whole.

く前提構造〉 この発明は、第1図に示すように、燃料タンクlを燃料
調量供給装置2及び燃料噴射ポンプ26を介して蓄圧式
燃料噴射器29に連通連結した蓄圧噴射式ディーゼルエ
ンジンを前提として発明されたものである。ここで、蓄
圧式燃料噴射器29とは、第11図に例示するように、
燃料を閉弁加圧用燃料室85及び逆止弁95を通って噴
射燃料蓄圧室86に圧入した後、閉弁加圧用燃料室85
の内圧を減圧し、閉弁加圧用燃料室85の内圧が所定値
を下回ると噴射燃料蓄圧室86の内圧が閉弁バネ91の
閉弁付勢力及び閉弁加圧用燃料室85の内圧に打ち勝っ
て噴射弁88を開弁させ、噴射燃料蓄圧室86内の燃料
が噴射孔87から噴射されるように成っている噴射器2
9を言う。この閉弁加圧用燃料室85は燃料噴射ポンプ
26のポンプ室82に連通されている。
As shown in FIG. It was invented as a premise. Here, the pressure accumulator fuel injector 29 is, as illustrated in FIG. 11,
After the fuel is pressurized into the injection fuel accumulating chamber 86 through the fuel chamber 85 for valve closing pressurization and the check valve 95, the fuel chamber 85 for pressurizing valve closing
When the internal pressure of the valve closing pressurizing fuel chamber 85 falls below a predetermined value, the internal pressure of the injected fuel accumulating chamber 86 overcomes the valve closing biasing force of the valve closing spring 91 and the internal pressure of the valve closing pressurizing fuel chamber 85. The injector 2 is configured to open the injection valve 88 and inject the fuel in the injection fuel pressure accumulation chamber 86 from the injection hole 87.
Say 9. This valve closing pressurizing fuel chamber 85 communicates with a pump chamber 82 of the fuel injection pump 26 .

〈従来の技術〉 従来、この閉弁加圧用燃料室85は、ポンプ室81から
逆止弁95を開いて燃料を噴射燃料蓄圧室86に圧入し
た後、燃料噴射ポンプ26のプランジャ81を上昇させ
ることよって減圧される。
<Prior Art> Conventionally, this valve-closing pressurization fuel chamber 85 opens the check valve 95 from the pump chamber 81 to pressurize fuel into the injection fuel pressure accumulation chamber 86, and then raises the plunger 81 of the fuel injection pump 26. Therefore, the pressure is reduced.

そして、第14図に示すように、プランジャ81の上昇
はクランク軸C(第2図に示す)に連動する燃料噴射カ
ム30によってカムフォロア31、ブツシュロッド32
、及びロッカーアーム33を介して制限される。
As shown in FIG. 14, the plunger 81 is raised by the cam follower 31 and the bushing rod 32 by the fuel injection cam 30 which is linked to the crankshaft C (shown in FIG. 2).
, and restricted via the rocker arm 33.

このような従来のディーゼルエンジンの蓄圧型燃料噴射
装置では、燃料噴射ポンプ26のポンプ室82に充填さ
れる燃料噴射量によってプランジャ81の下死点からの
上昇量が異なり、部分負荷状態では燃料噴射ポンプ26
を駆動する駆動装置5の部品間あるいは駆動装置5とプ
ランジャ81との間に隙間が生じることになる。その結
果、駆動装置5の部品どうしあるいは駆動装置5とプラ
ンジャ81とが打撃し合って運転騒音が発生することに
なる。また、そのような隙間が生じることにより駆動装
置5のカムフォロア31、ブツシュロッド32、ロッカ
ーアーム33等が振動して、噴射タイミング等の誤差が
発生し、噴射時期を高精度に決定できない欠点がある。
In such a conventional pressure accumulation type fuel injection device for a diesel engine, the amount of rise of the plunger 81 from the bottom dead center varies depending on the amount of fuel injected into the pump chamber 82 of the fuel injection pump 26. pump 26
A gap will be created between the parts of the drive device 5 that drives the drive device 5 or between the drive device 5 and the plunger 81. As a result, the parts of the drive device 5 or the drive device 5 and the plunger 81 hit each other, causing operational noise. Further, due to the occurrence of such a gap, the cam follower 31, bushing rod 32, rocker arm 33, etc. of the drive device 5 vibrate, causing errors in injection timing, etc., and there is a drawback that the injection timing cannot be determined with high precision.

このような問題を解決するために、駆動装置5の部品間
あるいは駆動装置5とプランジャ81との間にバネを介
在させる技術が知られている。
In order to solve this problem, a technique is known in which a spring is interposed between the parts of the drive device 5 or between the drive device 5 and the plunger 81.

この場合、上記のような隙間の発生がバネの伸縮により
解消され、打撃音の発生は十分に防止できるが、バネが
弾性変形するために、駆動装置5のカムフォロア31、
ブツシュロッド32、ロッカーアーム33等の振動を十
分に防止することができず、噴射タイミング等の誤差の
発生の防止という点では甚だ大きな不満が残され、噴射
時期決定の精度にも不満が残される。
In this case, the occurrence of the gap as described above is eliminated by the expansion and contraction of the spring, and the occurrence of impact noise can be sufficiently prevented, but since the spring is elastically deformed, the cam follower 31 of the drive device 5,
It is not possible to sufficiently prevent vibrations of the bushing rod 32, rocker arm 33, etc., and there remains a huge dissatisfaction in terms of preventing errors in injection timing, etc., and also in the accuracy of determining the injection timing.

く先行発明〉 本発明者は、本発明に先立って、第1図に示すように、
蓄圧式燃料噴射器29の閉弁加圧用燃料室85を噴射時
期決定用圧抜弁19に接続し、この圧抜弁19をクラン
ク軸Cに調時させて開弁させて閉弁加圧用燃料室85か
ら燃料を逃がすことにより、閉弁加圧用燃料室85の内
圧を減圧するようにしたディーゼルエンジンの蓄圧型燃
料噴射装置を発明した。この場合、燃料噴射カム30に
は燃料噴射器29への燃料の圧入を終了した後、燃料噴
射が終了するまで連続してカムリフト量が最大となるカ
ムプロフィルが与えらる。
Prior invention> Prior to the present invention, as shown in FIG.
The fuel chamber 85 for pressurizing valve closing of the pressure accumulation type fuel injector 29 is connected to the pressure relief valve 19 for determining injection timing, and the pressure relief valve 19 is opened in synchronization with the crankshaft C to close the fuel chamber 85 for pressurizing the valve. We have invented a pressure accumulation type fuel injection device for a diesel engine that reduces the internal pressure of the valve closing pressurizing fuel chamber 85 by releasing fuel from the valve closing pressurizing fuel chamber 85. In this case, the fuel injection cam 30 is given a cam profile that continuously maximizes the cam lift amount after the injection of fuel into the fuel injector 29 ends until the fuel injection ends.

この場合には、閉弁用加圧室85の減圧タイミングは、
圧抜弁19の開弁に依存して決定されるので、噴射時期
をクランク軸Cの回転に正確に調時させて高精度に噴射
時期を決定できる。
In this case, the pressure reduction timing of the valve closing pressurizing chamber 85 is as follows.
Since it is determined depending on the opening of the pressure relief valve 19, the injection timing can be accurately timed with the rotation of the crankshaft C, and the injection timing can be determined with high precision.

〈発明が解決しようとする問題点〉 しかしながら、この場合には、燃料噴射のために閉弁加
圧用燃料室85から燃料を逃す時に、閉弁加圧用燃料室
85に連通しているポンプ室82からも燃料が逃がされ
、プランジャ81を上昇させるときにポンプ室82に流
入する燃料が不足して、プランジャ81が上死点まで復
帰できなくなり、運転騒音や噴射時期の誤差が発生する
上、次回にtA量供給装置2から燃料を供給し、噴射器
29に圧入するときに燃料噴射器29に圧入される燃料
量が不足し、噴射量が不足するという問題を伴うことが
分かった。また、このような問題を解決するためには、
燃料噴射終了後に噴射時に逃された燃料に見合う量の燃
料を例えば調圧装置から閉弁加圧用燃料室85に補充す
る機構を付加する必要があり、構成が複雑になるという
問題が生じることがわかった。
<Problems to be Solved by the Invention> However, in this case, when releasing fuel from the valve-closing pressurizing fuel chamber 85 for fuel injection, the pump chamber 82 communicating with the valve-closing pressurizing fuel chamber 85 Fuel also escapes from the pump, and when the plunger 81 is raised, there is insufficient fuel flowing into the pump chamber 82, making it impossible for the plunger 81 to return to top dead center, causing operational noise and errors in injection timing. It has been found that the next time fuel is supplied from the tA amount supply device 2 and press-fitted into the injector 29, the amount of fuel press-fitted into the fuel injector 29 is insufficient, resulting in a problem that the injection quantity is insufficient. Also, in order to solve such problems,
After completion of fuel injection, it is necessary to add a mechanism for replenishing the valve closing pressurizing fuel chamber 85 from a pressure regulator, for example, with an amount of fuel corresponding to the fuel that escaped during injection, which may cause the problem of a complicated configuration. Understood.

本発明は、上記の事情を考慮してなされたものであって
、噴射゛時期を簡隼に高精度に決定することができ、ま
た、噴射時の閉弁加圧用蓄圧室からの圧抜きによる運転
騒音、噴射時期の誤差及び次回の噴射量不足の発生を防
止でき、しかも、構成が簡単になるようにした、ディー
ゼルエンジンの蓄圧型燃料噴射装置を提供することを目
的とするものである。
The present invention has been made in consideration of the above circumstances, and allows the injection timing to be determined easily and with high precision. To provide a pressure accumulation type fuel injection device for a diesel engine which can prevent the occurrence of operational noise, error in injection timing, and shortage of next injection amount, and has a simple configuration.

〈問題点を解決するための手段〉 本発明に係るディーゼルエンジンの蓄圧型燃料噴射装置
では、上記の前提構成を有するディーゼルエンジンの蓄
圧型燃料噴射装置において、上記の目的を達成するため
に、次のような技術的手段が講じられる。
<Means for Solving the Problems> In the pressure accumulation type fuel injection device for a diesel engine according to the present invention, in order to achieve the above object, in the pressure accumulation type fuel injection device for a diesel engine having the above-mentioned prerequisite configuration, Technical measures such as:

即ち、燃料噴射器29の閉弁加圧用燃料室85に噴射時
期決定用圧抜弁19の圧抜通路59と燃料戻し通路22
とを個別に介して圧抜燃料呼吸室21を連通し、圧抜弁
19をクランク軸Cに調時連動させ、燃料噴射時期には
圧抜通路59が閉弁加圧用燃料室85を圧抜燃料呼吸室
21に連通させ、開弁加圧用燃料室85の燃料を圧抜燃
料呼吸室21に逃がして開弁加圧用燃料室85の内圧を
降下させ、燃料噴射終了後には、燃料戻し通路22が圧
抜燃料呼吸室21を閉弁加圧用燃料室85に連通させて
圧抜燃料呼吸室21内の燃料を閉弁加圧用蓄圧室85に
吐き戻すように構成される。
That is, the pressure relief passage 59 of the injection timing determination pressure relief valve 19 and the fuel return passage 22 are connected to the fuel chamber 85 for closing and pressurizing the fuel injector 29 .
The depressurizing fuel breathing chamber 21 is connected to the depressurizing fuel breathing chamber 21 through the depressurizing fuel chamber 21 and the depressurizing fuel breathing chamber 21 is connected to the depressurizing fuel chamber 21 through the depressurizing fuel chamber 21 and the depressurizing fuel chamber 21 is connected to the depressurizing fuel chamber 21 through the depressurizing fuel chamber 21. The fuel chamber 85 for valve opening pressurization is communicated with the breathing chamber 21, and the fuel in the fuel chamber 85 for valve opening pressurization is released into the depressurizing fuel breathing chamber 21 to lower the internal pressure of the fuel chamber 85 for valve opening pressurization, and after the fuel injection is completed, the fuel return passage 22 is The depressurized fuel breathing chamber 21 is configured to communicate with the valve-closing pressurizing fuel chamber 85, and the fuel in the depressurizing fuel breathing chamber 21 is discharged back to the valve-closing pressurizing pressure accumulating chamber 85.

〈発明の作用) 上記の構成において、圧抜弁19がクランク軸Cに調時
連動して開弁されると、閉弁加圧用燃料室85内の高圧
の燃料が圧抜弁19を介して圧抜燃料呼吸室21に逃が
され、閉弁加圧用燃料室85の内圧が減圧され、噴射弁
88が開弁される。
<Operation of the invention> In the above configuration, when the pressure relief valve 19 is opened in synchronization with the crankshaft C, the high pressure fuel in the valve closing pressurization fuel chamber 85 is depressurized via the pressure relief valve 19. The fuel is released into the breathing chamber 21, the internal pressure of the valve closing pressurizing fuel chamber 85 is reduced, and the injection valve 88 is opened.

従って、噴射時期がクランク軸に調時して高精度に決定
されることになる。また、燃料噴射の終了後には、噴射
燃料呼吸室21が燃料戻し通路22を介して閉弁加圧用
燃料室85に連通される。燃料噴射時に燃料呼吸室21
に逃がされた燃料の圧力は燃料が噴射器29の噴射燃料
蓄圧室86の内圧とほぼ同し高圧で、噴射燃料蓄圧室2
1に圧入された燃料の密度は高いが、噴射燃料呼吸室2
1が燃料戻し通路22を介して閉弁加圧用燃料室85に
連通される吐戻し時には、プランジャ81の上昇に伴っ
て閉弁加圧用燃料室85の内圧が基準圧よりも低圧に減
圧されているので、噴射燃料呼吸室21を燃料戻し通路
22を介して閉弁加圧用燃料室85に連jmさせるだけ
で圧抜燃料噴射室21の燃料が膨張して閉弁加圧用燃料
室85に吐き戻される。そし、この吐き戻しによって、
閉弁加圧用燃料室85及びこれに連通ずるポンプ室81
内の燃料量が十分に回復され、プランジャ81が上死点
まで復帰されるとともに、時間の燃料噴射時の噴射量不
足が防止されることになる。
Therefore, the injection timing can be determined with high accuracy based on the crankshaft. Further, after the end of fuel injection, the injected fuel breathing chamber 21 is communicated with the valve closing pressurization fuel chamber 85 via the fuel return passage 22. Fuel breathing chamber 21 during fuel injection
The pressure of the released fuel is almost the same as the internal pressure of the injection fuel accumulation chamber 86 of the injector 29, and the pressure of the fuel is high.
Although the density of the fuel injected into 1 is high, the injected fuel breathing chamber 2
1 is communicated with the valve-closing pressurizing fuel chamber 85 via the fuel return passage 22, and as the plunger 81 rises, the internal pressure of the valve-closing pressurizing fuel chamber 85 is reduced to a pressure lower than the reference pressure. Therefore, simply by connecting the injected fuel breathing chamber 21 to the valve-closing pressurizing fuel chamber 85 via the fuel return passage 22, the fuel in the depressurized fuel injection chamber 21 expands and is discharged into the valve-closing pressurizing fuel chamber 85. be returned. And with this regurgitation,
A fuel chamber 85 for pressurizing valve closing and a pump chamber 81 communicating therewith.
The amount of fuel within is fully recovered, the plunger 81 is returned to the top dead center, and insufficient injection amount during fuel injection is prevented.

〈実施例〉 以下、本発明の実施例を図面に基づき説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

このディーゼルエンジンの燃料装置は、第1図に示すよ
うに、燃料タンク1内の燃料を調量供給装置2によりエ
ンジンの負荷条件に対応して5JtJfflし、タイミ
ング制?11複合弁装置3の供給時期決定弁18を介し
て所定のタイミングでユニットインジェクタ4に供給し
、燃料噴射ポンプ26を駆動装置5で駆動することによ
り蓄圧式燃料噴射器29に圧入した後、タイミング制御
複合弁装置3の噴射時期設定用圧抜弁19及び噴射時期
調節用進角弁20により蓄圧式燃料噴射器29の閉弁加
圧用燃料室85の燃料を圧抜燃料呼吸室21に逃がして
開弁加圧用燃料室85の内圧を減圧し、これにより噴射
弁88を開弁させて噴射燃料蓄圧室86から噴射孔87
を介して燃料を噴射させ、噴射終了後の所定のタイミン
グで、圧抜燃料呼吸室21内の燃料を圧抜燃料戻し通路
22を介してユニットインジェクタ4に吐き戻して圧抜
により減量された燃料をユニットインジェクタ4に戻し
、この後、タイミング制御複合弁装置3の初期圧供給路
23をユニットインジェクタ4に連通させてユニットイ
ンジェクタ4を初期状態に復帰させるようになっている
As shown in FIG. 1, this diesel engine fuel system uses a metering supply device 2 to supply 5 JtJffl of fuel in a fuel tank 1 according to the engine load conditions, and uses a timing control system. 11 Supply to the unit injector 4 at a predetermined timing via the supply timing determining valve 18 of the compound valve device 3, pressurize the fuel injection pump 26 with the drive device 5 to pressurize it into the accumulator fuel injector 29, and then set the timing. The pressure relief valve 19 for injection timing setting and the advance valve 20 for injection timing adjustment of the control complex valve device 3 release the fuel in the pressurizing fuel chamber 85 of the pressure accumulation type fuel injector 29 to the pressure relief fuel breathing chamber 21 and open it. The internal pressure of the valve pressurizing fuel chamber 85 is reduced, thereby opening the injection valve 88 and injecting fuel from the injection fuel accumulation chamber 86 to the injection hole 87.
At a predetermined timing after the end of injection, the fuel in the depressurized fuel breathing chamber 21 is discharged back to the unit injector 4 through the depressurized fuel return passage 22 to recover the fuel that has been reduced in volume due to depressurization. is returned to the unit injector 4, and thereafter, the initial pressure supply path 23 of the timing control compound valve device 3 is communicated with the unit injector 4 to return the unit injector 4 to its initial state.

上記調量供給装置2は、第2図に示すように、厚肉円筒
状のケーシング6内に組み込まれたトランスフプボンプ
IO1調圧装置12(第4図)、調量装置14及び圧送
ポンプ16を備え、燃料タンク1からトランスファポン
プ10で図示しない燃料パイプ、入口継手8 (第4図
)及び入口通路9 (第4図)を介して燃料を汲み出し
、トランスファボンブ10から吐出される燃料の圧力を
調圧装置12でエンジンの回転速度に対応して(例えば
、正比例させて)増減させ、調圧された燃料を調量装置
14でエンジンの負荷状態に対応して調量し、調圧・U
@Iされた燃料を圧送ポンプ16でタイミング制?11
1?J!合弁装置3に圧送するように構成されている。
As shown in FIG. 2, the metering supply device 2 includes a transfump pump IO1 pressure regulating device 12 (FIG. 4), a metering device 14, and a pressure pump 16 built into a thick-walled cylindrical casing 6. The transfer pump 10 pumps fuel from the fuel tank 1 through a fuel pipe (not shown), an inlet joint 8 (FIG. 4), and an inlet passage 9 (FIG. 4), and the pressure of the fuel discharged from the transfer bomb 10 is maintained. The pressure regulating device 12 increases or decreases the fuel in accordance with the rotational speed of the engine (for example, in direct proportion), and the regulated fuel is metered in the metering device 14 in accordance with the engine load condition, and the pressure is regulated. U
Is the timing system for @I fuel using pressure pump 16? 11
1? J! It is configured to be fed under pressure to the joint venture device 3.

トランスファポンプ10はケーシング6の前端部に形成
されたポンプ室34を有し、このポンプ室34内には、
第3図に示すように、ケーシング6を貫通する主軸7に
固定されるインナロータ35と、これに偏心状に噛み合
わされたアウタロータ36が挿入され、入口通路9から
吸入口37を経て燃料を両ロータ35,36の間に吸入
し、吐出口38から吐出通路11に吐出するようになっ
ている。
The transfer pump 10 has a pump chamber 34 formed at the front end of the casing 6, and inside this pump chamber 34,
As shown in FIG. 3, an inner rotor 35 fixed to the main shaft 7 passing through the casing 6 and an outer rotor 36 eccentrically meshed with the inner rotor 35 are inserted, and fuel is supplied to both rotors from the inlet passage 9 through the suction port 37. 35 and 36, and is discharged from the discharge port 38 into the discharge passage 11.

調圧装置12は、第4図に示すように、吐出通路11に
分岐接続され、ケーシング6に螺着された調圧プラグ3
9と、これに摺動可能に内嵌された調圧弁体40と、こ
の調圧弁体40を閉弁位置に付勢する閉弁バネ41とを
備える。調圧プラグ39の周壁には調圧弁孔42を開口
させてあり、この調圧弁孔42は入口通路9に連通され
る。上記トランスファポンプ1oの吐出圧はエンジンの
回転速度に対応して2次関数的に変化し、この吐出圧を
受けて調圧弁体40が閉弁バネ41に抗して開弁方向に
付勢される。この調圧装置12では、調圧弁体40の閉
弁位置がらの変位量に対する調圧弁孔42の開口面積を
適宜設定することによって、エンジンの回転速度に対応
して調圧装置12から入口通路9に逃される燃料量を調
節し、吐出通路11の内圧が正確にエンジンの回転速度
に正比例して増減されるようになっている。もっとも、
調圧装置12によって制御される吐出通路11の内圧と
エンジンの回転速度との対応関係は正比例に限定される
ものではなく、例えば、高速になるほど吐出通路11の
内圧の増加率が減少するように構成してもよく、逆に高
速になるほど吐出通路11の内圧の増加率が増大するよ
うに構成してもよい。尚、上記調圧プラグ39には、こ
れと調圧弁体42との間からリークした燃料を排出する
図示しないドレンパイプを接続するためのドレンバイブ
用継手43が連設されている。
As shown in FIG. 4, the pressure regulating device 12 includes a pressure regulating plug 3 that is branch-connected to the discharge passage 11 and screwed onto the casing 6.
9, a pressure regulating valve body 40 slidably fitted therein, and a valve closing spring 41 biasing the pressure regulating valve body 40 to the valve closing position. A pressure regulating valve hole 42 is opened in the peripheral wall of the pressure regulating plug 39, and this pressure regulating valve hole 42 communicates with the inlet passage 9. The discharge pressure of the transfer pump 1o changes quadratically in response to the rotational speed of the engine, and in response to this discharge pressure, the pressure regulating valve body 40 is urged in the valve opening direction against the valve closing spring 41. Ru. In this pressure regulating device 12, by appropriately setting the opening area of the pressure regulating valve hole 42 with respect to the amount of displacement of the pressure regulating valve body 40 from the closed position, the pressure regulating device 12 can be connected to the inlet passage 9 in response to the rotational speed of the engine. The internal pressure of the discharge passage 11 is increased or decreased in exact proportion to the rotational speed of the engine. However,
The correspondence relationship between the internal pressure of the discharge passage 11 controlled by the pressure regulator 12 and the engine rotational speed is not limited to being directly proportional; for example, the rate of increase in the internal pressure of the discharge passage 11 decreases as the speed increases. Alternatively, the rate of increase in the internal pressure of the discharge passage 11 may be increased as the speed increases. A drain vibe joint 43 is connected to the pressure regulating plug 39 to connect a drain pipe (not shown) for discharging leaked fuel from between the pressure regulating plug 39 and the pressure regulating valve body 42.

調量装置14は、第2図に示すように、主軸7の前半部
に進退可能に内嵌された調量ピストン44を備えている
。このiIi1mピストン44はエンジンの回転速度に
対応してフライウェイト45の推力によりガバナスプリ
ング46の圧力に抗して燃料減量方向(ここでは前方)
に駆動されるようになっている。主軸7の内周面には吐
出通路11に連通する調量弁孔47が開口され、これに
対向して調量ピストン44の周面にはその全周にわたっ
て調量弁体通路48が凹設されている。そして、エンジ
ンの回転速度に対応して調量ピストン44が進退するこ
とにより、調量弁孔47と調量弁体通路48との接続面
積を変更させることによりエンジンの回転速度に対応す
るように流量が調整され、主軸7及びケーシング6内に
形成された出口通路49を経て圧送ポンプ16に燃料が
導かれる。
As shown in FIG. 2, the metering device 14 includes a metering piston 44 fitted into the front half of the main shaft 7 so as to be movable forward and backward. This iIi1m piston 44 is moved in the direction of fuel reduction (in this case, forward) by the thrust of the flyweight 45 against the pressure of the governor spring 46 in accordance with the rotational speed of the engine.
It is designed to be driven by A metering valve hole 47 that communicates with the discharge passage 11 is opened in the inner peripheral surface of the main shaft 7, and a metering valve body passage 48 is recessed in the circumferential surface of the metering piston 44 over its entire circumference. has been done. By moving the metering piston 44 forward and backward in response to the rotational speed of the engine, the connecting area between the metering valve hole 47 and the metering valve body passage 48 is changed to correspond to the rotational speed of the engine. The flow rate is regulated and the fuel is led to the pressure pump 16 via the main shaft 7 and the outlet passage 49 formed in the casing 6.

尚、ガバナスプリング46の圧力は速度設定レバー50
を揺動操作して変更設定できるようになっている。
The pressure of the governor spring 46 is controlled by the speed setting lever 50.
The settings can be changed by rotating the .

圧送ポンプ16は、第2図及び第5図に示すように、主
軸7の周面に形成された駆動カム51によりスイングア
ーム52を介して駆動されるプランジャ53と、プラン
ジャ53の進退に伴って容積が変化するポンプ室54と
を備えている。また、この圧送ポンプ16は上記プラン
ジャ53のストロークをトルク特性設定装置55により
変更設定することによりエンジンの用途に適した種々の
トルク特性に対応するポンプ特性を得られるように構成
されている。
As shown in FIGS. 2 and 5, the pressure pump 16 includes a plunger 53 that is driven via a swing arm 52 by a drive cam 51 formed on the circumferential surface of the main shaft 7, and a plunger 53 that moves forward and backward as the plunger 53 moves back and forth. A pump chamber 54 whose volume changes. Further, the pressure pump 16 is configured so that the stroke of the plunger 53 can be changed and set by a torque characteristic setting device 55 to obtain pump characteristics corresponding to various torque characteristics suitable for the application of the engine.

タイミング制御複合弁装置3は、小型化及びコンパクト
化を図るために、第2図及び第6図〜第8図に示すよう
に調量供給装置2の内部に組み込まれる。このタイミン
グ制御複合弁装置3は、本質的には第1図に示すように
それぞれ独立して設けることが可能な供給時期決定弁1
8と、噴射時期設定用圧抜弁19と、噴射時期調整用進
角弁20と、圧抜燃料呼吸室21とを、小型化及びコン
バクト化を図るために一体的に組み合わせたものである
In order to achieve miniaturization and compactness, the timing control compound valve device 3 is incorporated into the metering supply device 2 as shown in FIG. 2 and FIGS. 6 to 8. This timing control composite valve device 3 essentially consists of supply timing determining valves 1 that can be provided independently, as shown in FIG.
8, a pressure relief valve 19 for setting injection timing, an advance valve 20 for adjusting injection timing, and a pressure relief fuel breathing chamber 21 are integrally combined in order to achieve downsizing and compactness.

即ち、第2図、第6図〜第8図に示すように、各ユニッ
トインジェクタ4に燃料を圧送するタイミングを決定す
る供給時期決定弁18と、噴射時期設定用圧抜弁19は
ケーシング6の後半部からなる共通の弁箱56と、主軸
7の後半部からなる共通の弁体57とを備える。ケーシ
ング6の内周面の後端部には調量供給装置2の圧送ポン
プ16から導出された圧送通路17が開口され、その少
しffl方に各ユニットインジェクタ4への出入通路(
分配通路)24が周方向に等間隔をおいて開口させであ
る。上記圧送通路17に対向する主軸7の部分には供給
時期決定用弁体通路58の連通溝部58aが全周にわた
って凹設され、この連通溝部58aの周方向の1箇所か
ら出入通路24の通過軌跡lに対向する主軸7外周面の
部分まで周面に沿って軸心方向に供給時期決定溝部58
bが連出される。そして、主軸7が図示しないクランク
軸に連動して回転し、供給時期決定溝部58bが出入通
路24とが内外に重なり合って連通ずることにより圧送
通路17から供給時期決定用弁体通路58を介して出入
通路24に調圧・調量された燃料が圧入されるようにな
っている。また、出入通路24の通過軌跡iに対向する
主軸7外周面の部分には、供給時期決定溝部58aより
も後の所定のタイミングで出入通路24と連通される圧
抜弁19の圧抜用弁体通路59が開口される。
That is, as shown in FIGS. 2 and 6 to 8, the supply timing determining valve 18 that determines the timing of pumping fuel to each unit injector 4 and the pressure relief valve 19 for setting the injection timing are located in the rear half of the casing 6. A common valve body 56 consisting of the main shaft 7 and a common valve body 57 consisting of the rear half of the main shaft 7 are provided. A pressure feeding passage 17 led out from the pressure pump 16 of the metering supply device 2 is opened at the rear end of the inner peripheral surface of the casing 6, and an inlet/outlet passage to each unit injector 4 (
Distribution passages 24 are opened at equal intervals in the circumferential direction. A communication groove 58a of a valve body passage 58 for supply timing determination is recessed over the entire circumference in the part of the main shaft 7 facing the pressure feeding passage 17, and the passage path of the inlet/outlet passage 24 starts from one point in the circumferential direction of the communication groove 58a. A supply timing determining groove portion 58 extends in the axial direction along the circumferential surface up to the portion of the outer circumferential surface of the main shaft 7 opposite to l.
b is taken out consecutively. Then, the main shaft 7 rotates in conjunction with a crankshaft (not shown), and the supply timing determining groove portion 58b communicates with the inlet/outlet passage 24 by overlapping inside and outside, so that the supply timing determining groove portion 58b communicates with the inlet/outlet passage 24 from the pressure feeding passage 17 via the valve body passage 58 for determining the supply timing. Pressure-regulated and metered fuel is forced into the inlet/outlet passage 24. In addition, a pressure relief valve element of a pressure relief valve 19 that communicates with the entrance and exit passage 24 at a predetermined timing after the supply timing determining groove 58a is provided on the outer circumferential surface of the main shaft 7 facing the passage path i of the entrance and exit passage 24. Passage 59 is opened.

供給時期決定弁18と噴射時期設定用圧抜弁19との共
通の弁体57である主軸7の後半部は更に噴射時期調節
用進角弁20の弁箱としての役目を有している。即ち、
主軸7の後半部内にはこれと同心状に円筒形の進角用弁
室60が形成され、この進角用弁室60に進角用弁体6
1が主軸7の軸心方向に進退可能に収納される。上記弁
体57には、その内周面における開口位置が主軸7の回
転方向及び軸心方向に異なる3本の圧抜用弁体通路59
がその周壁を貫通するように形成され、進角用弁体61
の周面には、その3本の圧抜用弁体通路59のうちの1
本または隣合う2本に連通する進角用弁体通路62が形
成される。この進角用弁体通路62は進角用弁体61の
周面の全周にわたり凹設された周溝で構成されている。
The rear half of the main shaft 7, which is the common valve body 57 of the supply timing determining valve 18 and the pressure relief valve 19 for setting the injection timing, also serves as a valve box for the advance valve 20 for adjusting the injection timing. That is,
A cylindrical advance valve chamber 60 is formed concentrically within the rear half of the main shaft 7, and an advance valve body 6 is formed in this advance valve chamber 60.
1 is housed so that it can move forward and backward in the axial direction of the main shaft 7. The valve body 57 has three pressure relief valve body passages 59 whose opening positions on the inner circumferential surface are different in the rotational direction and the axial direction of the main shaft 7.
is formed so as to pass through its peripheral wall, and the advancing valve body 61
One of the three pressure relief valve body passages 59 is provided on the circumferential surface of the
An advance valve body passage 62 is formed that communicates with one or two adjacent valves. The advance valve body passage 62 is constituted by a circumferential groove recessed over the entire circumference of the advance valve body 61 .

進角用弁室60は進角用弁体61によって進角用受圧室
63と遅角付勢室64とに区画される。そして、進角用
受圧室63を調圧装置12により調圧される吐出通路1
1に連通させ、遅角付勢室64をほぼ定圧に保持される
入口通路9に連通させ、また、遅角付勢室64の内部に
は、進°角用弁体61を遅角方向に付勢する遅角付勢子
一段65を収納して、後述するように、進角用弁体61
の位置をエンジンの回転速度に対する調圧特性に依存し
て高精度に制御できるように構成される。
The advance valve chamber 60 is divided into an advance pressure receiving chamber 63 and a retard biasing chamber 64 by an advance valve body 61 . Then, the pressure in the advance pressure receiving chamber 63 is adjusted by the pressure regulating device 12 in the discharge passage 1.
1, and the retard angle biasing chamber 64 is communicated with the inlet passage 9 which is maintained at a substantially constant pressure.Inside the retard angle biasing chamber 64, an advance angle valve body 61 is arranged in the retard direction. A retard energizer stage 65 for energizing is housed, and an advance valve body 61 is installed as described later.
The position of the engine is configured to be able to be controlled with high precision depending on the pressure regulation characteristics with respect to the rotational speed of the engine.

尚、ここでは進角用弁体61が軸心方向に移動されて圧
抜用弁体通路59に選択的に連通されるようになってい
るが、エンジンの回転速度に対応して進角用弁体61が
軸心回りに回転して圧抜用弁体通路59に選択的に連通
されるように構成することも可能である。
Here, the advance valve body 61 is moved in the axial direction to selectively communicate with the pressure relief valve body passage 59, but the advance angle valve body 61 is moved in the axial direction to selectively communicate with the pressure relief valve body passage 59. It is also possible to configure the valve body 61 to rotate around the axis and selectively communicate with the pressure relief valve body passage 59.

圧抜燃料呼吸室21は、小型化及びコンパクト化を図る
ために進角用弁体61の内部に形成される。即ち、進角
用弁体61の内部は段付円筒状の空洞66が形成され、
この空洞66はこれの内部に摺動可能に内嵌されたピス
トン67により圧抜燃料呼吸室21と吐き戻し付勢室6
8とに区画される。吐き戻し付勢室68は、遅角付勢室
64を介して入口通路9に連通され、その内部に吐き戻
し付勢手段69を収納している。圧抜燃料呼吸室21は
、呼吸通路70により進角用弁体通路62に連通されて
いる。そして、出入通路24が圧抜用弁体通路59、進
角用弁体通路62及び呼吸通路70を介して圧抜燃料呼
吸室21に連通ずると、出入通路24例の燃料圧によっ
てピストン67が吐き戻し付勢室68側に押し込められ
、圧抜燃料呼吸室21に燃料が圧入される。これにより
、出入通路24に連通している蓄圧式燃料噴射器29の
閉弁加圧用燃料室85の内圧が減圧され、噴射弁87が
開弁されて燃料が噴射されるようになっている。
The depressurizing fuel breathing chamber 21 is formed inside the advance valve body 61 in order to achieve miniaturization and compactness. That is, a stepped cylindrical cavity 66 is formed inside the advance valve body 61.
This cavity 66 is formed into a depressurizing fuel breathing chamber 21 and a discharge biasing chamber 6 by a piston 67 slidably fitted inside the cavity 66.
It is divided into 8. The retardation biasing chamber 68 communicates with the inlet passage 9 via the retardation biasing chamber 64, and accommodates a retrieval biasing means 69 therein. The pressure relief fuel breathing chamber 21 is communicated with the advance valve body passage 62 through a breathing passage 70 . When the inlet/outlet passage 24 communicates with the depressurizing fuel breathing chamber 21 via the pressure relief valve body passage 59, the advance valve body passage 62, and the breathing passage 70, the piston 67 is moved by the fuel pressure in the inlet/outlet passages 24. The fuel is pushed into the discharge biasing chamber 68 side, and the fuel is pressurized into the depressurized fuel breathing chamber 21. As a result, the internal pressure of the valve-closing pressurizing fuel chamber 85 of the pressure accumulation type fuel injector 29 communicating with the inlet/outlet passage 24 is reduced, and the injection valve 87 is opened to inject fuel.

出入通路24の通過軌跡lに対向する主軸7の周壁の部
分に、圧抜用弁体通路59よりも後の所定のタイミング
で出入通路24と連通される圧抜燃料戻し通路22が形
成されている。そして、圧抜燃料呼吸室21が呼吸通路
70、進角用弁体通路62及び圧抜燃料戻し通路22を
介して出入通路24に連通されることにより、吐き戻し
付勢手段69がピストン67を圧抜燃料呼吸室21側に
押し戻し、圧抜燃料呼吸室21に圧入された燃料が出入
通路24を経てユニットインジェクタ4に吐き戻される
ようになっている。
A depressurizing fuel return passage 22 is formed in a portion of the peripheral wall of the main shaft 7 facing the passage path l of the inlet/outlet passage 24, and communicates with the inlet/outlet passage 24 at a predetermined timing after the pressure relief valve body passage 59. There is. Then, the depressurized fuel breathing chamber 21 is communicated with the inlet/outlet passage 24 via the breathing passage 70 , the advance valve body passage 62 , and the depressurized fuel return passage 22 , so that the discharge biasing means 69 pushes the piston 67 . The fuel that is pushed back toward the depressurized fuel breathing chamber 21 and pressurized into the depressurized fuel breathing chamber 21 is discharged back to the unit injector 4 through the inlet/outlet passage 24.

更に、出入通路24の通過軌跡lに対向する主軸7周壁
の部分に、圧抜燃料戻し通路22よりも後の所定のタイ
ミングで出入通路24と連通される初期圧供給路23が
凹設されている。この初期圧供給路23は、調圧装置1
2によって調圧されている吐出通路11に連通されてい
る。
Further, an initial pressure supply passage 23 is recessed in a portion of the peripheral wall of the main shaft 7 facing the passage locus l of the inlet/outlet passage 24, and communicates with the inlet/outlet passage 24 at a predetermined timing after the depressurization fuel return passage 22. There is. This initial pressure supply path 23 is connected to the pressure regulating device 1
It communicates with a discharge passage 11 whose pressure is regulated by 2.

ユニットインジェクタ4は、第1図及び第11図に示す
ように、出入通路3に接続される複合遮断弁25と燃料
噴射ポンプ26と、ポンプ復動用蓄圧室27と、遮断弁
復動用蓄圧室28と、蓄圧式燃料噴射器29とからなり
、燃料噴射ポンプ26は噴射器29のボディ83に内蔵
され、複合遮断弁25は更に燃料噴射ポンプ26のプラ
ンジャ81内に内蔵される。
As shown in FIGS. 1 and 11, the unit injector 4 includes a compound cutoff valve 25 connected to the inlet/outlet passage 3, a fuel injection pump 26, a pressure accumulation chamber 27 for double-action pump operation, and a pressure accumulation chamber 28 for double-operation cutoff valve. and a pressure accumulator fuel injector 29, the fuel injection pump 26 is built into the body 83 of the injector 29, and the compound cutoff valve 25 is further built into the plunger 81 of the fuel injection pump 26.

即ち、燃料噴射ポンプ26は、ボディ83の一側に噴射
管84と平行に、かつ、昇降可能に内嵌されたプランジ
ャ81と、ボディ84及びプランジャ81によって区画
されたポンプ室82を有する。プランジャ81は両端が
閉塞された中空筒状に形成され、その内部空間が複合遮
断弁25の弁室71を構成している。この弁室71には
スプール72が摺動可能に挿入され、このスプール72
によって弁室71がスプール72の移動ストロークの下
死点側のポンプ復動用蓄圧室27と、その上死点側の遮
断弁復動用付勢室73に区画される。
That is, the fuel injection pump 26 has a plunger 81 fitted on one side of the body 83 in parallel with the injection pipe 84 and movable up and down, and a pump chamber 82 partitioned by the body 84 and the plunger 81. The plunger 81 is formed into a hollow cylindrical shape with both ends closed, and its internal space constitutes the valve chamber 71 of the composite shutoff valve 25. A spool 72 is slidably inserted into this valve chamber 71.
As a result, the valve chamber 71 is divided into a pressure accumulation chamber 27 for pump return movement on the bottom dead center side of the movement stroke of the spool 72, and a biasing chamber 73 for shutoff valve return movement on the top dead center side.

この遮断弁復動用付勢室73は遮断弁復動用蓄圧室28
、に連通されている。プランジャ81の周壁の中間高さ
部には出入通路24に連通ずる内部出入通路74が開口
され、その下部にはポンプ室82に連通ずるポンプ連通
路75が開口され、その上部には遮断弁復動用蓄圧室2
8及び遮断弁復動用付勢室73に連通ずる蓄圧連通路7
6が開口されている。スプール72には、その下端面か
ら上部に延びる中空孔77が形成され、スプール72の
周壁にはその中間高さから周面に延びて、常時内部出入
通路74に連通ずる連通孔78と、その下部から周面に
延びて、スプール72が上死点よりも下方に位置すると
きにポンプ連jm路75に連通されるポンプ弁孔79と
、その上端部から周面に延びて、スプール72が上死点
及び下死点に位置するときに蓄圧連通路76に連通され
る蓄圧弁孔80とが形成されている。
This biasing chamber 73 for shutoff valve double operation is the pressure accumulator chamber 28 for double operation of the shutoff valve.
, is communicated with. An internal inlet/outlet passage 74 communicating with the inlet/outlet passage 24 is opened at the intermediate height of the peripheral wall of the plunger 81, a pump communication passage 75 communicating with the pump chamber 82 is opened at the lower part thereof, and a shutoff valve is connected at the upper part thereof. Dynamic pressure storage chamber 2
8 and the pressure accumulation communication passage 7 that communicates with the biasing chamber 73 for double operation of the shutoff valve.
6 is open. The spool 72 is formed with a hollow hole 77 extending upward from its lower end surface, and the peripheral wall of the spool 72 is provided with a communication hole 78 extending from an intermediate height to the peripheral surface and always communicating with the internal entrance/exit passage 74. A pump valve hole 79 extends from the lower part to the circumferential surface and communicates with the pump communication path 75 when the spool 72 is located below the top dead center; A pressure accumulation valve hole 80 is formed which communicates with the pressure accumulation communication passage 76 when the vehicle is located at the top dead center and the bottom dead center.

蓄圧式燃料噴射器29は、ボディ83の他側部に内嵌さ
れた噴射管84を備え、この噴射管84内の下半部に閉
弁加圧用燃料室85と第1蓄圧室96が上下一連に形成
され、噴射管84の下端部に1個または複数個(ここで
は2個)の噴射孔87が形成される。噴射孔87の近傍
で第1蓄圧室96と噴射孔87との接続を遮断する噴射
弁88はニードル弁で構成され、その弁軸89の上端部
は、噴射管84の上半部内に形成された閉弁バネ室90
に突入させである。閉弁バネ室90には噴射弁88を閉
弁付勢する閉弁バネ91が収納され、この閉弁バネ91
の付勢力を調整する調整ナツト92は、噴射管84の上
端部に油密状に螺着されるカバーナツト93により覆わ
れる。カバーナツト93の内部空間94は閉弁バネ室9
1と連通され、これとともに遮断弁復動用蓄圧室28を
構成している。閉弁加圧用燃料室85と第1蓄圧室96
とは逆止弁95により区画される。この逆止弁95は弁
軸89の一部分を拡径して形成した弁座100と、これ
の板面に接離する円環状の弁体101と、これを閉弁付
勢する閉弁ハネ102からなる。また、噴射管84の中
間高さ部の周囲には、これとボディ83により区画され
た円環状の第2蓄圧室97が設けられ、この第2蓄圧室
97は燃料噴射ポンプ26と反対側のボディ83内部に
配置された第2蓄圧室用逆止弁98及び第2N圧室用蓄
圧設定弁99により第1I王室96に接続され、第1蓄
圧室とともに噴射燃料蓄圧室86を構成している。尚、
第1蓄圧室96は比較的小容積に形成され、第2蓄圧室
97は比較的大容積に形成されている。
The pressure accumulation type fuel injector 29 includes an injection pipe 84 fitted inside the other side of the body 83, and a fuel chamber 85 for valve closing pressurization and a first pressure accumulation chamber 96 are arranged in the lower half of the injection pipe 84, which are arranged vertically. One or more (here, two) injection holes 87 are formed in a series at the lower end of the injection pipe 84 . The injection valve 88 that cuts off the connection between the first pressure accumulation chamber 96 and the injection hole 87 near the injection hole 87 is composed of a needle valve, and the upper end of the valve shaft 89 is formed in the upper half of the injection pipe 84. Valve closing spring chamber 90
Let's rush into it. A valve-closing spring 91 that biases the injection valve 88 to close is housed in the valve-closing spring chamber 90 .
An adjustment nut 92 that adjusts the biasing force is covered by a cover nut 93 that is screwed onto the upper end of the injection pipe 84 in an oil-tight manner. The internal space 94 of the cover nut 93 is the valve closing spring chamber 9
1, and together with this, constitutes a pressure accumulation chamber 28 for double operation of the shutoff valve. Valve closing pressurization fuel chamber 85 and first pressure accumulation chamber 96
and are separated by a check valve 95. This check valve 95 includes a valve seat 100 formed by enlarging the diameter of a portion of the valve shaft 89, an annular valve body 101 that approaches and separates from the plate surface of the valve seat 100, and a valve closing spring 102 that urges the valve to close. Consisting of Further, a second pressure accumulation chamber 97 in an annular shape is provided around the middle height portion of the injection pipe 84 and the body 83, and this second pressure accumulation chamber 97 is located on the opposite side from the fuel injection pump 26. It is connected to the 1I royal house 96 by a second pressure accumulation chamber check valve 98 and a second N pressure chamber pressure accumulation setting valve 99 arranged inside the body 83, and forms the injection fuel pressure accumulation chamber 86 together with the first pressure accumulation chamber. . still,
The first pressure accumulation chamber 96 is formed to have a relatively small volume, and the second pressure accumulation chamber 97 is formed to have a relatively large volume.

尚、上記吐出通路11は調量装置12の直前部分で緊急
停止用電磁弁13により遮断できるように成っており、
また、出口通路49は手動停止弁15によって遮断でき
るように成っている。
The discharge passage 11 can be shut off by an emergency stop solenoid valve 13 immediately before the metering device 12.
Further, the outlet passage 49 can be shut off by a manual stop valve 15.

次に、この燃料装置の動作を説明する。Next, the operation of this fuel system will be explained.

第12図(1)に示すように、初期状態では、プランジ
ャ81は上死点に位置し、スプール72は下死点に位置
させられる。また、遮断弁復動用蓄圧室28、ポンプ復
動用蓄圧室27、遮断弁復動用付勢室73及びポンプ室
82の内圧は調圧装置12により調圧された基準圧にな
っている。ここで、第13図(1)〜第13図(6)の
a時点[以下、単にa時点という。第13図(1)ない
し第13図(6)の他の時点についても同様とする]か
らb時点にわたって供給時期決定弁18の供給時期決定
溝58aと出入通路24が連通され、調量・調圧された
燃料Vinがユニットインジェクタ4に圧入される。こ
の燃料Vinはまず第12図(2)に示すようにポンプ
復動用蓄圧室27に圧入され、スプール72は下死点か
ら中間高さまで押し上げられる。この後のC時点から駆
動装置5によってプランジャ81が下降させられると、
ポンプ室82、ポンプ復動用蓄圧室27、遮断弁復動用
付勢室73及び遮断弁復動用蓄圧室28の内圧がしだい
に上昇し、第12図(3)に示すように、ポンプ室82
からポンプ復動用蓄圧室27に最大噴射11V■δXと
等しい壇の燃料が圧入されたとき、すなわち、プランジ
中81の残りのストロークでポンプ室82から押し出さ
れる燃料の量が圧入された燃料Vinと等しくなったと
きにスプール72が上死点まで上昇させられる・。C時
点からスプール72が上死点に達するd時点までのプラ
ンジャ81の下降ストローク中は燃料噴射器29の逆止
弁95が閉弁されており、燃料噴射器29には燃料が圧
入されないので、無効ストロークと呼ぶ。スプール72
が上死点に達するとポンプ室82の内圧が逆止弁95の
開弁圧に達するとともにポンプ連通路75とポンプ弁孔
79とが遮断される。また、蓄圧弁孔80が蓄圧連通路
76と連通され、ポンプ復動用蓄圧室27の内圧が遮断
弁復動用蓄圧室28及び遮断弁復動用付勢室73の内圧
と一致するように補正される。そして、このd時点以後
、プランジャ81が下降してポンプ室82の内圧が更に
上昇するに連れ、燃料Vinが噴射燃料蓄圧室86に圧
入される。噴射燃料蓄圧室86に圧入される燃料は、そ
の圧力が第2蓄圧室97の内圧に達するe時点までは専
ら第1蓄圧室98に圧入され、その圧力が第2蓄圧室9
7の内圧を上回ると第2蓄圧室用逆止弁98が開弁され
て第2蓄圧室97にも圧入される。第2蓄圧室97の内
圧が蓄圧設定弁99の設定圧以上になると蓄圧設定弁9
9が開弁され、逆止弁98は閉弁される。第12図(4
)に示すようにプランジャ81が下死点に到達するf時
点では、燃料の圧力上昇が止まり、逆止弁95が閉弁さ
れて噴射燃料蓄圧室86に燃料Vinが高圧で蓄圧され
る。そして、この後の所定のg時点で、出入通路24が
圧抜用弁体通路59、進角用弁体通路62及び呼吸通路
70を介して圧抜燃料呼吸室21に連通され、出入通路
24の内圧が減圧され始める。この減圧開始のタイミン
グは、進角用弁体通路62に連通している圧抜用弁体通
路59が出入通路24に連通ずることにより設定される
ので、エンジンの回転速度が速い場合には標準的なタイ
ミングよりも速くなり、エンジンの回転速度が遅い場合
には標準的なタイミングよりも遅(なる。
As shown in FIG. 12(1), in the initial state, the plunger 81 is located at the top dead center, and the spool 72 is located at the bottom dead center. Further, the internal pressures of the shutoff valve double-acting pressure storage chamber 28, the pump double-acting pressure storage chamber 27, the shutoff valve double-acting biasing chamber 73, and the pump chamber 82 are at the reference pressure regulated by the pressure regulating device 12. Here, time a in FIGS. 13(1) to 13(6) [hereinafter simply referred to as time a]. The same applies to the other points in FIG. 13(1) to FIG. 13(6)] to point b, the supply timing determining groove 58a of the supply timing determining valve 18 and the inlet/outlet passage 24 are communicated, and metering/adjustment is performed. The pressurized fuel Vin is press-fitted into the unit injector 4. This fuel Vin is first pressurized into the pump double-acting pressure storage chamber 27 as shown in FIG. 12(2), and the spool 72 is pushed up from the bottom dead center to an intermediate height. When the plunger 81 is lowered by the drive device 5 from the subsequent time point C,
The internal pressures of the pump chamber 82, the pressure accumulation chamber 27 for double action of the pump, the biasing chamber 73 for double action of the cutoff valve, and the pressure storage chamber 28 for double action of the cutoff valve gradually rise, and as shown in FIG. 12(3), the pressure in the pump chamber 82
When a level of fuel equal to the maximum injection 11V δX is injected into the pump reciprocating pressure accumulator 27 from When they are equal, the spool 72 is raised to top dead center. During the downward stroke of the plunger 81 from time C to time d when the spool 72 reaches the top dead center, the check valve 95 of the fuel injector 29 is closed and no fuel is pressurized into the fuel injector 29. This is called an invalid stroke. Spool 72
When the pump reaches the top dead center, the internal pressure of the pump chamber 82 reaches the opening pressure of the check valve 95, and the pump communication passage 75 and the pump valve hole 79 are cut off. Further, the pressure accumulation valve hole 80 is communicated with the pressure accumulation communication passage 76, and the internal pressure of the pump double-action pressure accumulation chamber 27 is corrected to match the internal pressure of the shutoff valve double-stroke pressure storage chamber 28 and the shutoff valve double-stroke biasing chamber 73. . After time d, as the plunger 81 descends and the internal pressure of the pump chamber 82 further increases, the fuel Vin is pressurized into the injected fuel pressure accumulation chamber 86. The fuel pressurized into the injected fuel accumulator 86 is exclusively pressurized into the first pressure accumulator 98 until the time e when its pressure reaches the internal pressure of the second pressure accumulator 97, and the fuel is pressurized into the second pressure accumulator 98.
When the internal pressure exceeds 7, the second pressure accumulation chamber check valve 98 is opened and the second pressure accumulation chamber 97 is also pressurized. When the internal pressure of the second pressure accumulation chamber 97 exceeds the set pressure of the pressure accumulation setting valve 99, the pressure accumulation setting valve 9
9 is opened, and check valve 98 is closed. Figure 12 (4
), at time point f when the plunger 81 reaches the bottom dead center, the fuel pressure stops rising, the check valve 95 is closed, and the fuel Vin is accumulated at high pressure in the injected fuel pressure accumulation chamber 86. Then, at a predetermined time g thereafter, the inlet/outlet passage 24 is communicated with the pressure relief fuel breathing chamber 21 via the pressure relief valve body passage 59, the advance valve body passage 62, and the breathing passage 70, and the inlet/outlet passage 24 The internal pressure begins to decrease. The timing for starting this pressure reduction is set by communicating the pressure relief valve body passage 59, which communicates with the advance valve body passage 62, with the inlet/outlet passage 24, so it is standard when the engine rotation speed is high. The timing will be faster than the standard timing, and if the engine speed is slow, it will be slower than the standard timing.

即ち、エンジンの回転速度が高くなるとエンジンの回転
速度に正比例して進角用受圧室63の内圧が高まり、進
角用弁体61が進角方向に移動され、最も主軸7の回転
上手側の圧抜用弁体通路59と進角用弁体通路62が連
通することにより、中央の圧抜用弁体通路59と進角用
弁体通路62が連通する場合よりも早く出入通路24が
圧抜用弁体通路59を介して進角用弁体通路62に連通
され、噴射時期が早められるようになっている。
That is, when the engine rotational speed increases, the internal pressure of the advance pressure receiving chamber 63 increases in direct proportion to the engine rotational speed, and the advance valve body 61 is moved in the advance direction, causing By communicating the pressure relief valve body passage 59 and the advance valve body passage 62, the pressure in the inlet/outlet passage 24 is reduced earlier than when the central pressure relief valve body passage 59 and the advance valve body passage 62 communicate with each other. It communicates with the advance valve body passage 62 via the extraction valve body passage 59, so that the injection timing can be advanced.

また、エンジンの回転速度が低くなると、最も主軸7の
回転下手側の圧抜用弁体通路59と進角用弁体通路62
が連通することにより、中央の圧抜用弁体通路59と進
角用弁体通路62が連通ずる場合よりも遅く出入通路2
4が圧抜用弁体通路59を介して進角用弁体通路62に
連通され、噴射時間が遅れるようになっている。中間の
速度では中央の圧抜用弁体通路59と進角用弁体通路6
2が連通し、標準的なタイミングで出入通路24が圧抜
用弁体通路59を介して進角用弁体通路62に連通され
、標準的なタイミングで噴射用の圧抜きが行われる。進
角用弁体通路62は、各圧抜用弁体通路59に択一的に
連通ずるだけでなく、それらに対応する回転数領域の過
渡領域では中央と最も上手の圧抜用弁体通路59あるい
は中央と最も下手の圧抜用弁体通路59の2本の圧抜用
弁体通路59と同時に連通でき、両正抜用弁体通路59
との接続面積の割合によって圧抜の立ち上がり特性が変
化するようになっている。このようにして、進角用弁体
61の位置を調圧装置12のエンジン回転速度に対する
調圧特性に依存して簡単に高精度に制御できるので、進
角時期を簡単に高精度に制御できることになる。
Furthermore, when the engine speed becomes low, the pressure relief valve passage 59 and the advance angle valve passage 62 on the rotationally downstream side of the main shaft 7 are
By communicating with each other, the entrance/exit passage 2 is opened later than when the center pressure relief valve body passage 59 and the advance valve body passage 62 communicate with each other.
4 is communicated with the advance valve body passage 62 via the pressure relief valve body passage 59, so that the injection time is delayed. At intermediate speeds, the central pressure relief valve passage 59 and the advance angle valve passage 6
2 are in communication, the inlet/outlet passage 24 is communicated with the advance valve element passage 62 via the pressure relief valve element passage 59 at standard timing, and pressure relief for injection is performed at standard timing. The advance valve body passage 62 not only selectively communicates with each pressure relief valve body passage 59, but also communicates with the central and most advanced pressure relief valve body passages in the transient region of the corresponding rotational speed region. 59 or the two pressure relief valve body passages 59, the center and the lowest pressure relief valve body passages 59, can be communicated simultaneously, and both the positive pressure relief valve body passages 59
The rise characteristics of pressure relief change depending on the ratio of the connection area with the In this way, the position of the advance valve body 61 can be easily and highly accurately controlled depending on the pressure regulation characteristics of the pressure regulator 12 with respect to the engine rotational speed, so the advance timing can be easily and highly accurately controlled. become.

スプール72が上死点からしだいに下降し、ポンプ弁孔
79とポンプ連通路75の連通が回復されるh時点から
閉弁加圧用燃料室85の内圧が急激に減圧し、所定の開
弁圧まで閉弁加圧用燃料室85の内圧が降下したi時点
から逆止弁95に作用する差圧が閉弁バネ91の付勢力
に打ち勝って噴射弁88が開弁される。
From the time h when the spool 72 gradually descends from the top dead center and the communication between the pump valve hole 79 and the pump communication passage 75 is restored, the internal pressure of the fuel chamber 85 for valve closing pressurization decreases rapidly, and the predetermined valve opening pressure is reached. From time point i, when the internal pressure of the fuel chamber 85 for valve closing pressurization has dropped to the point i, the differential pressure acting on the check valve 95 overcomes the biasing force of the valve closing spring 91, and the injection valve 88 is opened.

上述のように、スプール72が上死点に達したときに、
蓄圧弁孔80と蓄圧連通路76とが連通されるので、噴
射器29への燃料圧入時にポンプ室82からポンプ復動
用蓄圧室27へのリーク燃料によって生じるポンプ復動
用蓄圧室27の内圧の上昇が補正され、圧抜時にポンプ
連通路75とポンプ弁孔79とが連通ずるタイミングが
遅れることが防止される。そして、この連通の遅れによ
る噴射タイミングの誤差(遅れ)の発生が防止される。
As mentioned above, when the spool 72 reaches the top dead center,
Since the pressure accumulation valve hole 80 and the pressure accumulation communication passage 76 are communicated with each other, the internal pressure of the pump double-action pressure storage chamber 27 is increased due to leakage of fuel from the pump chamber 82 to the pump double-stroke pressure storage chamber 27 when fuel is pressurized into the injector 29. is corrected, and the timing at which the pump communication passage 75 and the pump valve hole 79 communicate with each other during pressure relief is prevented from being delayed. This prevents an error (delay) in injection timing from occurring due to this communication delay.

ここでは、ポンプ連通路75が上下に並ぶ小径ポンプ連
通路75Bと大径ポンプ連通路75bとで構成され、ス
プール72が下死点から下降し始めて先に小径ポンプ連
通路75aがポンプ弁孔79に連通し、閉弁加圧用蓄圧
室86の内圧の減少を比較的緩慢に抑えて、噴射弁88
の開弁量を小さく制限し、燃料噴射量を少量に抑えると
ともに、燃料噴射による噴射燃料蓄圧室86の内圧の減
圧が小さく抑えられる。そして、スプール72がさらに
下降して、例えば、定格回転速度における着火時点に相
当するj時点に達すると、大径ポンプ連通路75bがポ
ンプ弁孔79に連通し、急激に閉弁加圧用燃料室85の
内圧が減圧され、噴射弁88が急激に大きく開弁され、
多量の燃料が高圧で勢いよく噴射されることになる。こ
のように、着火前の燃料噴射量を少量に抑えることによ
り着火時の爆発音を減少させて運転騒音を防止すること
ができる。また、着火時以降に高圧で多量の燃料を噴射
することにより運転騒音の減少をはかる上で許される限
り最大の熱効率を得ることができる。また、噴射圧は噴
射燃料蓄圧室86の内圧が高圧であるので、所定量の燃
料Vinを短時間で噴射しきることができる。そして、
噴射燃料蓄圧室86の内圧が第2蓄圧室用蓄圧設定弁9
9の設定圧以下になるに時点以後は、この蓄圧設定弁9
9が閉弁され、第2蓄圧室97の内圧はその設定圧以上
に保持される。一方、噴射孔87に連通ずる噴射燃料蓄
圧室86の容積は、実質上、第1蓄圧室96のそれに減
少され、僅かな量の燃料が噴射されても大きく第1蓄圧
室96の内圧が減圧され、短時間でこの内圧が所定の閉
弁圧まで減圧されて噴射弁88が閉弁される(1時点)
、従って、噴射時間を大幅に短縮するとかでき、エンジ
ンの高速化を図る上で有利になる。燃料噴射が終了した
後、所定のm時点になると、駆動値25の燃料噴射カム
30のカムリフトが減少し始め、ポンプ室82の内圧に
よりプランジャ81が駆動装置5のロッカーアーム33
に押し当てられつつ上昇する。
Here, the pump communication passage 75 is composed of a small diameter pump communication passage 75B and a large diameter pump communication passage 75b arranged vertically, and when the spool 72 starts to descend from the bottom dead center, the small diameter pump communication passage 75a first connects to the pump valve hole 79. The injection valve 88 is connected to
The valve opening amount is limited to a small value, the fuel injection amount is suppressed to a small amount, and the decrease in the internal pressure of the injected fuel pressure accumulation chamber 86 due to fuel injection is suppressed to a small value. Then, when the spool 72 further descends and reaches, for example, time j corresponding to the ignition time at the rated rotational speed, the large diameter pump communication passage 75b communicates with the pump valve hole 79, and the valve suddenly closes and the pressurizing fuel chamber is closed. The internal pressure of 85 is reduced, and the injection valve 88 is suddenly opened widely.
A large amount of fuel is injected with high pressure and force. In this way, by suppressing the amount of fuel injected before ignition to a small amount, it is possible to reduce the explosion noise at the time of ignition and prevent operational noise. In addition, by injecting a large amount of fuel at high pressure after ignition, it is possible to obtain the maximum thermal efficiency allowed while reducing operating noise. Furthermore, since the internal pressure of the injection fuel accumulating chamber 86 is high, a predetermined amount of the fuel Vin can be completely injected in a short time. and,
The internal pressure of the injected fuel pressure accumulation chamber 86 is set to the second pressure accumulation chamber pressure accumulation setting valve 9.
After the point in time when the pressure falls below the set pressure of 9, this pressure accumulation setting valve 9
9 is closed, and the internal pressure of the second pressure accumulating chamber 97 is maintained above its set pressure. On the other hand, the volume of the injected fuel pressure accumulation chamber 86 communicating with the injection hole 87 is substantially reduced to that of the first pressure accumulation chamber 96, and even if a small amount of fuel is injected, the internal pressure of the first pressure accumulation chamber 96 is greatly reduced. This internal pressure is reduced to a predetermined valve closing pressure in a short period of time, and the injection valve 88 is closed (time 1).
Therefore, the injection time can be significantly shortened, which is advantageous in increasing the speed of the engine. At a predetermined time point m after the fuel injection ends, the cam lift of the fuel injection cam 30 with a drive value of 25 begins to decrease, and the internal pressure of the pump chamber 82 causes the plunger 81 to move toward the rocker arm 33 of the drive device 5.
It rises while being pressed against.

プランジ中81が上昇するに連れポンプ室82の容積が
拡大され、ポンプ室82、ポンプ復動用蓄圧室27の内
圧°が減圧されるので、遮断弁復動用付勢室73の圧力
によってスプール72が下降させられ、ポンプ復動用蓄
圧室27からポンプ室82に最大噴射量Vmaxに等し
い量の燃料が圧入されるまでポンプ復動用蓄圧室27か
らポンプ室82に燃料が押し込められる。
As the plunger 81 rises, the volume of the pump chamber 82 is expanded, and the internal pressure of the pump chamber 82 and the pressure accumulation chamber 27 for double action of the pump is reduced, so that the spool 72 is The pump is lowered, and fuel is forced into the pump chamber 82 from the pump reciprocating pressure accumulator 27 until an amount of fuel equal to the maximum injection amount Vmax is pressurized from the pump reciprocating pressure accumulator 27 into the pump chamber 82 .

ところで、g時点以後の圧抜の期間に、ポンプ復動用蓄
圧室27から圧抜燃料呼吸室21側に燃料が逃されるこ
とから、そのままスプール72を下死点まで下降させた
とすればタイミング制御複合弁装置3からユニットイン
ジェクタ4側に封入された燃料の量は初期状態よりも少
なくなり、次に調圧・IN!された燃料をユニットイン
ジェクタ4に圧入するとスプール72がその圧入量に対
応して上昇すべき高さよりも低い位置までしか上昇せず
、運転騒音や噴射時期制御の誤差を生じる上、次回の燃
料噴射量が不足するといった不都合が生じることになる
By the way, during the pressure relief period after time g, fuel is released from the pump double-acting pressure accumulation chamber 27 to the pressure relief fuel breathing chamber 21 side, so if the spool 72 is lowered to the bottom dead center, the timing control complex The amount of fuel injected from the valve device 3 into the unit injector 4 side becomes smaller than the initial state, and then the pressure is regulated and IN! When the spool 72 is pressurized into the unit injector 4, the spool 72 rises only to a lower position than it should rise in response to the amount of fuel injected, which causes operational noise and errors in injection timing control, and also causes problems during the next fuel injection. Inconveniences such as insufficient quantity will occur.

そこで、スプール72が下死点の近傍まで下降するn時
点で、圧抜燃料呼吸室21が呼吸通路70、圧抜燃料戻
し通路22を介して出入通路24に連通され、吐き戻し
付勢手段69によって圧抜燃料呼吸室21に圧抜のため
に押し込められていた燃料が出入通路24に吐き戻され
、更に、ポンプ復動用蓄圧室27及びポンプ室82に吐
き戻される。このようにして吸い出された燃料をユニッ
トインジェクタ4に吐き戻すことにより、次回の噴射時
の燃料不足の発生が防止される。しかし、圧抜燃料呼吸
室21に封じ込められていた燃料は初期圧よりも高圧で
あるために、ポンプ復動用蓄圧室27及びポンプ室82
の内圧は初期状態よりも高圧になり、スプール72は下
死点の近傍から少しだけ上死点側に移動させられる。従
って、この状態から初期状態に戻すために、最後に所定
の0時点において、初期圧供給路23が出入通路24に
連通され、遮断弁復動用蓄圧室28、ポンプ復動用蓄圧
室27、遮断弁復動用付勢室73及びポンプ室82の内
圧が調圧装置12により調圧された基準圧に戻され、ス
プール72が下死点に戻される。
Therefore, at time point n when the spool 72 descends to the vicinity of the bottom dead center, the depressurized fuel breathing chamber 21 is communicated with the inlet/outlet passage 24 via the breathing passage 70 and the depressurized fuel return passage 22, and the discharge urging means 69 As a result, the fuel that had been forced into the depressurizing fuel breathing chamber 21 for depressurization is discharged back into the inlet/outlet passage 24, and is further discharged into the pump reciprocating pressure accumulating chamber 27 and the pump chamber 82. By spitting out the fuel sucked out in this way back to the unit injector 4, occurrence of fuel shortage during the next injection is prevented. However, since the pressure of the fuel contained in the depressurized fuel breathing chamber 21 is higher than the initial pressure,
The internal pressure becomes higher than the initial state, and the spool 72 is moved slightly from the vicinity of the bottom dead center toward the top dead center. Therefore, in order to return from this state to the initial state, finally at a predetermined time point 0, the initial pressure supply path 23 is communicated with the inlet/outlet passage 24, and the shutoff valve double-acting pressure accumulator 28, the pump double-acting pressure accumulator 27, and the shutoff valve The internal pressures of the double-acting biasing chamber 73 and the pump chamber 82 are returned to the reference pressure regulated by the pressure regulating device 12, and the spool 72 is returned to the bottom dead center.

ところで、遮断弁復動用蓄圧室28及び遮断弁復動用付
勢室73の内圧は、第2蓄圧室97からの燃料リークに
より増圧されたり、圧抜時にポンプ復動用蓄圧室27へ
のリークにより減圧されたりすることが考えられる。遮
断弁復動用蓄圧室28及び遮断弁復動用付勢室73の内
圧が増大すれば、次回にiPI量供給装置2から燃料が
圧入されるときに遮断弁復動用蓄圧室28の内圧によっ
てスプール72の上昇ガ妨げられ、ポンプ復動用蓄圧室
27の蓄圧容積が狭められる。その結果、燃料を噴射器
29に圧入した後、プランジャ81の上昇時にポンプ復
動用蓄圧室27からポンプ室82に圧入される燃料の量
が不足してプランジャ81が上死点まで上昇できなくな
り、運転騒音が発生することになる。また、遮断弁復動
用蓄圧室28及び遮断弁復動用付勢室73の内圧が減少
すれば、次回に調量供給装置2から燃料が圧入され、プ
ランジャ81を下降させるときにポンプ連通路75とポ
ンプ弁孔79とが遮断されるタイミングが遅れ、燃料噴
射量が減少することになる。
By the way, the internal pressures of the shutoff valve double-acting pressure accumulator 28 and the shutoff valve double-actuate biasing chamber 73 are increased due to fuel leak from the second pressure accumulator 97, or due to leakage to the pump double-acting pressure accumulator 27 when the pressure is released. It is possible that the pressure is reduced. If the internal pressures in the pressure accumulation chamber 28 for shutoff valve return operation and the biasing chamber 73 for return operation of the cutoff valve increase, the spool 72 will be increased by the internal pressure of the pressure accumulation chamber 28 for return operation of the cutoff valve when fuel is pressurized from the iPI quantity supply device 2 next time. , and the pressure accumulation volume of the pressure accumulation chamber 27 for pump double action is narrowed. As a result, after fuel is pressurized into the injector 29, when the plunger 81 rises, the amount of fuel pressurized from the pump reciprocating pressure accumulation chamber 27 into the pump chamber 82 is insufficient, and the plunger 81 cannot rise to the top dead center. Operation noise will be generated. Furthermore, if the internal pressures of the shutoff valve double-acting pressure accumulation chamber 28 and the shutoff valve double-acting energizing chamber 73 decrease, fuel will be pressurized from the metering supply device 2 next time, and when the plunger 81 is lowered, the pump communication passage 75 will be The timing at which the pump valve hole 79 is shut off is delayed, and the amount of fuel injection is reduced.

ここでは、スプール72が下死点に戻されると、蓄圧弁
孔80が再び蓄圧連通路76と連通し、遮断弁復動用蓄
圧室28及び遮断弁復動用付勢室73の内圧が基準圧(
初期圧)に補正されるので、これらの内圧の増圧による
運転騒音の発生や、減圧による噴射量の誤差(減少)の
発生が防止されることになるのである。
Here, when the spool 72 is returned to the bottom dead center, the pressure accumulation valve hole 80 communicates with the pressure accumulation communication passage 76 again, and the internal pressures of the pressure accumulation chamber 28 for shutoff valve return operation and the biasing chamber 73 for cutoff valve return operation are set to the reference pressure (
Since the internal pressure is corrected to the initial pressure, it is possible to prevent the occurrence of operational noise due to an increase in these internal pressures and the occurrence of an error (reduction) in the injection amount due to a decrease in pressure.

〈発明の効果〉 以上のように、本発明に係るディーゼルエンジンの蓄圧
型燃料噴射装置によれば、噴射時期がクランク軸に調時
して開閉される噴射時期決定用圧抜弁の開弁時期に依存
して決定されるので、簡単に高精度に噴射時期を決定で
きる。また、閉弁加圧用蓄圧室の内圧を減圧させるため
に閉弁加圧用蓄圧室、燃料噴射ポンプ及びポンプ復動用
蓄圧室から逃がされた燃料が噴射終了後に圧抜燃料呼吸
室から閉弁加圧用蓄圧室、燃料噴射ポンプ及びポンプ復
動用蓄圧室に吐き戻されるので、プランジャの上昇不足
やこれによる運転騒音や噴射タイミングの誤差の発生を
防止できるとともに、次回の噴射燃料不足の発生を防止
できる。しかも、構成が簡単な上、圧抜燃料呼吸室の動
作は閉弁加圧用蓄圧室等と圧抜燃料呼吸室との燃料圧の
差を利用して行われるので、圧抜のために特別のエネル
ギ源を必要としないという効果も得られる。
<Effects of the Invention> As described above, according to the pressure accumulation type fuel injection device for a diesel engine according to the present invention, the injection timing is adjusted to the opening timing of the pressure relief valve for determining the injection timing, which opens and closes in time with the crankshaft. Since the injection timing is determined depending on the injection timing, the injection timing can be easily determined with high precision. In addition, in order to reduce the internal pressure of the valve-closing pressurizing pressure accumulator, the fuel released from the valve-closing pressurizing pressure accumulating chamber, the fuel injection pump, and the pump reciprocating pressure accumulating chamber is released from the depressurizing fuel breathing chamber after the valve-closing pressurization is applied. Since it is discharged back to the pressure accumulator, the fuel injection pump, and the pump reciprocating pressure accumulator, it is possible to prevent insufficient rise of the plunger and the occurrence of operating noise and errors in injection timing due to this, and it is also possible to prevent the next injection fuel shortage from occurring. . Moreover, the configuration is simple, and the operation of the depressurizing fuel breathing chamber is performed using the difference in fuel pressure between the pressure accumulating chamber for closing the valve and the depressurizing fuel breathing chamber. Another advantage is that no energy source is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るディーゼルエンジンの
蓄圧型燃料噴射装置の全体構成を示す等価回路図、第2
図はその燃料調量供給装置の縦断面図、第3図はそのト
ランスファポンプの縦断正面図、第4図はその調圧装置
の縦断正面図、第5図はその圧送ポンプの縦断正面図、
第6図はそのタイミング制fi複合弁装置の縦断側面図
、第7図はそのタイミング制御複合弁装置の縦断正面図
、/θ 第8図はその共通弁体の斜視図、第1図はその共通弁体
の周面に形成された各弁体通路、圧抜燃料戻し通路及び
初期圧供給路の配lを示す展開図、デ 第一図はその進角調整用弁体の一部分を切除した斜視図
、第11図はそのユニットインジェクタの縦断面図、第
12図(1)〜第12図(4)はそのポンプ復動用蓄圧
室の動作を順を追っ°て示す各模式図、第13図(1)
〜第13図(6)はユニットインジェクタの各部分の動
作タイミング、圧力変化及びタイミング制御複合弁装置
の動作タイミングの関係を示す各タイミング図、第14
図は従来の燃料噴射ポンプ用駆動装置及び進角装置の構
成図である。 l・・・燃料タンク、2・・・燃料ll量供給装置、1
9・・・噴射時期決定用圧抜弁、20・・・噴射時期調
整用進角弁、21・・・圧抜燃料呼吸室、26・・・燃
料噴射ポンプ、29・・・蓄圧式燃料噴射器、85・・
・閉弁加圧用蓄圧室、C・・・クランク軸。 特 許 出 願 人  久保田鉄工株式会社代    
理    人   北  谷   寿  、: 、’j
: ” 1.)、第3図 第4図 第5図 第6図 第10図 第12図(1ン 昂 第12図(2) B \n0 第14図
FIG. 1 is an equivalent circuit diagram showing the overall configuration of a pressure accumulation type fuel injection device for a diesel engine according to an embodiment of the present invention, and FIG.
FIG. 3 is a longitudinal sectional view of the fuel metering supply device, FIG. 3 is a longitudinal sectional front view of the transfer pump, FIG. 4 is a longitudinal sectional front view of the pressure regulating device, and FIG. 5 is a longitudinal sectional front view of the pressure pump.
Fig. 6 is a longitudinal sectional side view of the timing control fi compound valve device, Fig. 7 is a longitudinal sectional front view of the timing control compound valve device, /θ Fig. 8 is a perspective view of the common valve body, and Fig. 1 is its A developed view showing the arrangement of each valve body passage, depressurizing fuel return passage, and initial pressure supply passage formed on the circumferential surface of the common valve body. Figure 1 shows a portion of the advance angle adjustment valve body removed. FIG. 11 is a vertical sectional view of the unit injector, FIGS. 12 (1) to 12 (4) are schematic diagrams showing the operation of the pump reciprocating pressure accumulator chamber, and FIG. 13 is a perspective view. Figure (1)
~Figure 13 (6) is a timing diagram showing the relationship between the operation timing of each part of the unit injector, pressure change, and operation timing of the timing control compound valve device, Fig. 14
The figure is a configuration diagram of a conventional fuel injection pump drive device and advance device. l...Fuel tank, 2...Fuel quantity supply device, 1
9...Pressure relief valve for determining injection timing, 20...Advance valve for adjusting injection timing, 21...Pressure relief fuel breathing chamber, 26...Fuel injection pump, 29...Pressure accumulation type fuel injector , 85...
・Pressure accumulation chamber for pressurizing valve closing, C...Crankshaft. Patent applicant: Kubota Iron Works Co., Ltd.
Professor Hisashi Kitatani: ,'j
: ” 1.), Figure 3, Figure 4, Figure 5, Figure 6, Figure 10, Figure 12 (1) Figure 12 (2) B\n0 Figure 14

Claims (1)

【特許請求の範囲】 1、燃料タンク1を燃料調量供給装置2、供給時期決定
弁18及び燃料噴射ポンプ26を介して蓄圧式燃料噴射
器29に連通連結してなる、ディーゼルエンジンの蓄圧
型燃料噴射装置において、 燃料噴射器29の閉弁加圧用燃料室85に噴射時期決定
用圧抜弁19の圧抜通路59と燃料戻し通路22とを個
別に介して圧抜燃料呼吸室21を連通し、圧抜弁19を
クランク軸Cに調時連動させ、燃料噴射時期には圧抜通
路59が閉弁加圧用燃料室85を圧抜燃料呼吸室21に
連通させて開弁加圧用燃料室85の燃料を圧抜燃料呼吸
室21に逃がして開弁加圧用燃料室85の内圧を降下さ
せ、燃料噴射終了後には、燃料戻し通路22が圧抜燃料
呼吸室21を閉弁加圧用燃料室85に連通させて圧抜燃
料呼吸室21内の燃料を閉弁加圧用蓄圧室85に吐き戻
すように構成した事を特徴とする、ディーゼルエンジン
の蓄圧型燃料噴射装置
[Claims] 1. A pressure accumulation type diesel engine in which a fuel tank 1 is connected in communication with a pressure accumulation type fuel injector 29 via a fuel metering supply device 2, a supply timing determining valve 18, and a fuel injection pump 26. In the fuel injection device, the depressurized fuel breathing chamber 21 is communicated with the valve closing pressurizing fuel chamber 85 of the fuel injector 29 via the depressurizing passage 59 of the injection timing determining depressurizing valve 19 and the fuel return passage 22, respectively. The pressure relief valve 19 is timed and linked to the crankshaft C, and at the time of fuel injection, the pressure relief passage 59 communicates the fuel chamber 85 for valve closing pressurization with the pressure relief fuel breathing chamber 21, so that the pressure relief valve 19 communicates with the pressure relief fuel chamber 85 for valve opening pressurization. The fuel is released to the depressurized fuel breathing chamber 21 to lower the internal pressure of the valve-open pressurizing fuel chamber 85, and after fuel injection is completed, the fuel return passage 22 releases the depressurized fuel breathing chamber 21 to the valve-closing pressurizing fuel chamber 85. A pressure accumulation type fuel injection device for a diesel engine, characterized in that the fuel in the pressure relief fuel breathing chamber 21 is discharged back to the valve closing pressurization pressure accumulation chamber 85 through communication.
JP61280047A 1986-09-13 1986-11-25 Accumulation fuel injection device for diesel engine Expired - Lifetime JPH0735760B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61280047A JPH0735760B2 (en) 1986-11-25 1986-11-25 Accumulation fuel injection device for diesel engine
US07/095,459 US4807811A (en) 1986-09-13 1987-09-11 Accumulator fuel injector for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280047A JPH0735760B2 (en) 1986-11-25 1986-11-25 Accumulation fuel injection device for diesel engine

Publications (2)

Publication Number Publication Date
JPS63134853A true JPS63134853A (en) 1988-06-07
JPH0735760B2 JPH0735760B2 (en) 1995-04-19

Family

ID=17619555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280047A Expired - Lifetime JPH0735760B2 (en) 1986-09-13 1986-11-25 Accumulation fuel injection device for diesel engine

Country Status (1)

Country Link
JP (1) JPH0735760B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250783B1 (en) 1997-04-25 2001-06-26 Britax Vision Systems (North America) Inc. Exterior rear view mirror integral warning light
US7052149B2 (en) 2002-12-20 2006-05-30 Murakami Corporation Exterior vehicle mirror with auxiliary mirror having position marker indicating position of vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6250783B1 (en) 1997-04-25 2001-06-26 Britax Vision Systems (North America) Inc. Exterior rear view mirror integral warning light
US6517227B2 (en) 1997-04-25 2003-02-11 Britax Vision Systems (North America) Inc. Exterior rear view mirror integral warning light
US6644838B2 (en) 1997-04-25 2003-11-11 Schefenacker Vision Systems Usa Inc. Exterior rear view mirror integral warning light
US6905235B2 (en) 1997-04-25 2005-06-14 Schefenacker Vision Systems Usa Inc. Exterior rear view mirror integral warning light
US7108410B2 (en) 1997-04-25 2006-09-19 Schefenacker Vision Systems Usa Inc. Exterior rear view mirror integral warning light
US7052149B2 (en) 2002-12-20 2006-05-30 Murakami Corporation Exterior vehicle mirror with auxiliary mirror having position marker indicating position of vehicle

Also Published As

Publication number Publication date
JPH0735760B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US4099894A (en) Fuel injection for diesel engines having controlled-rate pressure relief means
JPH0267456A (en) Fuel injector, particularly pump nozzle for internal combustion engine
JPH0214542B2 (en)
JPH0765550B2 (en) Accumulation type fuel injection device
US4681080A (en) Device for the temporary interruption of the pressure build-up in a fuel injection pump
JPS5939963A (en) Fuel injector
JPS61157754A (en) Fuel injection pump for internal combustion engine
JPS63134853A (en) Accumulator fuel injection device for diesel engine
US4509491A (en) Overflow valve for distributor-type fuel injection pumps
US5558067A (en) Double pulsing electronic unit injector solenoid valve to fill timing chamber before metering chamber
JPS63134851A (en) Accumulator fuel injection device for diesel engine
JPS63134852A (en) Spark advance device for accumulator injection diesel engine
JPH0735758B2 (en) Accumulation type fuel injector for diesel engine
JPS6146459A (en) Fuel jet pump of internal combustion engine
JPS63134854A (en) Spark advance device for accumulator injection diesel engine
JPH07117011B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JPS6394068A (en) Accumulator type fuel injection nozzle
JPH0521659Y2 (en)
JPS63289232A (en) Injection controller of accumulator fuel injection device for diesel engine
JPH01159440A (en) Injection controller in accumulator fuel injection system for diesel engine
JPH02264148A (en) Injection control device for pressure accumulation type fuel injecting device for diesel engine
JPH0612102B2 (en) Accumulation type fuel injection device
JPH07109183B2 (en) Injection control device for accumulator fuel injection device for diesel engine
JPS5859362A (en) Fuel injection device
JPH0454273A (en) Pressure storage type unit injector