JPS6313446Y2 - - Google Patents

Info

Publication number
JPS6313446Y2
JPS6313446Y2 JP1981021775U JP2177581U JPS6313446Y2 JP S6313446 Y2 JPS6313446 Y2 JP S6313446Y2 JP 1981021775 U JP1981021775 U JP 1981021775U JP 2177581 U JP2177581 U JP 2177581U JP S6313446 Y2 JPS6313446 Y2 JP S6313446Y2
Authority
JP
Japan
Prior art keywords
light
mirror
receiving surface
light source
observed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981021775U
Other languages
Japanese (ja)
Other versions
JPS57134612U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981021775U priority Critical patent/JPS6313446Y2/ja
Priority to US06/348,086 priority patent/US4547073A/en
Publication of JPS57134612U publication Critical patent/JPS57134612U/ja
Application granted granted Critical
Publication of JPS6313446Y2 publication Critical patent/JPS6313446Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は、ほぼ鏡面状であり、凹凸の非常に小
さい精度の高い表面の微小凹凸を精度高く検出す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for highly accurately detecting minute irregularities on a surface that is substantially mirror-like and has extremely small irregularities.

従来より、例えば半導体装置に使用するシリコ
ンウエハーの鏡面状態を検査する装置は種々提案
され、又、市販されている。それらの一つは、例
えば、細く(数十ミクロン)絞つたレーザー光を
鏡面上に投射し、反射してくるレーザー光の位置
をイメージセンサーで受光し、その位置ずれよ
り、反射面の角度を算出し、この操作を次々に横
に繰り返してゆくことで表面の状態を知る方法で
ある。この方法では、現在、緩やかな約0.5μmま
での凹凸を検出することができるが、それ以下の
凹凸の検出は難しく、又、一直線上の凹凸の検出
は容易であるが、面としての凹凸の検出や汚れの
検出は難しく、高精度の調整と習熟が必要であ
り、又、価格も高く操作も非常に難しい。
2. Description of the Related Art Conventionally, various apparatuses for inspecting the mirror surface condition of silicon wafers used in semiconductor devices, for example, have been proposed and are commercially available. One of them is, for example, to project a narrow laser beam (several tens of microns) onto a mirror surface, to detect the position of the reflected laser beam using an image sensor, and to calculate the angle of the reflective surface based on the positional deviation. This is a method of calculating and repeating this operation horizontally one after another to find out the state of the surface. With this method, it is currently possible to detect gentle irregularities up to approximately 0.5 μm, but it is difficult to detect irregularities smaller than that, and although it is easy to detect irregularities on a straight line, it is difficult to detect irregularities that are smaller than that. Detection and detection of dirt is difficult, requires highly accurate adjustment and skill, and is also expensive and extremely difficult to operate.

他の方法としては、細いレーザー光を拡大し拡
大した平行光線として鏡面上に照射し、その反射
光を前記の平行光線と重ねて受光面に投影するこ
とによつて、干渉を生じしめ、生じた縞模様から
表面の凹凸を知る方法である。この方法によれ
ば、面として全体の凹凸状態を一度に容易に観察
でき傷などの検出には有力であるが、高低差
0.5μm程度の巾3〜10mmの緩かな凹凸や汚れの検
出は非常に難しく、装置の調整や保守が非常に難
しく且つ高価である。
Another method is to magnify a narrow laser beam and irradiate it onto a mirror surface as an enlarged parallel beam, and then project the reflected light onto the light-receiving surface overlapping the parallel beam to cause interference. This is a method of determining surface irregularities from the striped pattern. According to this method, it is possible to easily observe the entire uneven state of the surface at once, which is effective for detecting scratches, etc.;
It is very difficult to detect gentle unevenness or dirt with a width of about 0.5 μm and a width of 3 to 10 mm, and the adjustment and maintenance of the device is very difficult and expensive.

簡便な方法として提案されているのは、古来よ
り魔鏡として知られている現象を利用するもので
ある。この方法では、第1図に示すように、点光
源11よりの光束12は、集光レンズ13により
集束され、絞り14を通過し、鏡面15上で反射
し、受光面16に投影される。鏡面15上に凸部
(凸)があれば、凸部よりの反射光は拡大してゆ
く光束17になり受光面16に投影される。その
ため凸部の中心部は、投影像の明暗を示す受光面
16上部に示す概略図にあるように暗部Dとな
り、凸部の反射光の外縁部は、例えば凸部周辺部
の平旦な面より反射してくる反射光18と重なる
ため、Bに示すように回りよりも明るくなる。凹
部が鏡面上にあつた場合、上記と全く反対の明暗
が生ずる。この方法は簡単であるとともに、
0.5μm以下の緩かな凹凸や傷、反射係数の異なる
汚れなどを感度よく検出できるといつた特長を有
している。ところが、第1図からも判るように、
単に鏡面15の反射光を投影しているため、例え
ば反射光17及び18の分離が容易でなく、解像
度が非常に悪いという欠点がある。この欠点を改
善するためには、非常に絞つた点光源(例えば1
mm径以下)を使い、しかも、光源11と鏡面15
及び鏡面15と受光面16の距離をできるだけ離
す(例えば各各2m)必要があり、装置が大きく
なると共に現実的でない強力な光源を使用する
か、暗室中でも50〜100Wの光源を使用し、しか
も高感度のフイルム上に受光させる必要があるな
どの欠点がある。
A simple method that has been proposed is to utilize a phenomenon known since ancient times as a magic mirror. In this method, as shown in FIG. 1, a light beam 12 from a point light source 11 is focused by a condenser lens 13, passes through an aperture 14, is reflected on a mirror surface 15, and is projected onto a light receiving surface 16. If there is a convex portion (convex) on the mirror surface 15, the reflected light from the convex portion becomes an expanding light beam 17 and is projected onto the light receiving surface 16. Therefore, the center of the convex part becomes a dark area D as shown in the schematic diagram above the light-receiving surface 16 that shows the brightness and darkness of the projected image, and the outer edge of the reflected light of the convex part is, for example, darker than the flat surface around the convex part. Since it overlaps with the reflected light 18, it becomes brighter than the surrounding area, as shown in B. If the concave portion is on a mirror surface, the opposite brightness and darkness will occur. This method is simple and
It has the advantage of being able to sensitively detect mild irregularities and scratches of 0.5 μm or less, dirt with different reflection coefficients, etc. However, as can be seen from Figure 1,
Since the reflected light from the mirror surface 15 is simply projected, it is difficult to separate the reflected lights 17 and 18, for example, and the resolution is very poor. In order to improve this drawback, it is necessary to use a very narrow point light source (for example, 1
mm diameter or less), and the light source 11 and mirror surface 15
Also, it is necessary to keep the distance between the mirror surface 15 and the light receiving surface 16 as far as possible (for example, 2 m each), and as the device becomes larger, it is necessary to use an impractically powerful light source, or to use a 50 to 100 W light source even in a dark room. There are drawbacks such as the need to receive the light on a highly sensitive film.

上述のように、いずれも方法に欠点が多く、簡
便でかつこのような欠点の改善された装置が望ま
れていた。
As mentioned above, both methods have many drawbacks, and there has been a desire for a simple device that can improve these drawbacks.

本考案は、このような欠点を改善した優れた装
置を提供するものである。本考案は、第2、第3
図にその一実施例の概略を示すように、第1図の
魔鏡による方法を取り入れ、かつこれに大巾な改
善を施したものである。
The present invention provides an excellent device that overcomes these drawbacks. This invention is based on the second and third
As shown in the outline of one embodiment of this method, the method using the magic mirror of FIG. 1 is adopted and has been greatly improved.

本考案は、基本的には、点光源より拡大してく
る光束を集束する光学部の少なくとも最終部分
が、鏡面より反射してくる反射光を受光しかつ集
束せしめる集光々学系の少なくとも一部を兼ねて
働いており、さらに、集光々学系によつて縮小さ
れて受光面上に投影する機能を有する装置であ
る。本考案の一実施例を第2図に示す。点光源2
1よりの光束22は、集光レンズ23(必らずし
も必要でないが、これを用いると輝度を向上させ
ることができる)で集束され、ハーフミラー2m
で光束22の方向を変え、投光兼集光々学系であ
る凸レンズ29を通つてさらに集束され、たとえ
ばシリコンウエハ表面等の鏡面25に投光され
る。その反射光を、前記投光兼集光々学レンズ2
9によつて受光し、さらに集束せしめて受光面2
6上に投影する。この装置では、光の往複部分が
共通に使えるため、第1図のものに比べ、大きさ
が半分になつた。さらに第1図において明白なよ
うに、投影像は斜めに歪む。たとえば、円は楕円
に歪む。これに対して、第2図の構成では、この
ような歪は全て解消される。
The present invention basically consists of at least the final part of the optical part that focuses the light beam expanding from a point light source, and at least one part of the optical focusing system that receives and focuses the reflected light reflected from the mirror surface. This device also has the function of projecting the image onto a light-receiving surface after being reduced in size by a condensing optical system. An embodiment of the present invention is shown in FIG. Point light source 2
The light beam 22 from 1 is focused by a condensing lens 23 (not necessarily required, but the brightness can be improved by using this), and a half mirror 2 m
The direction of the light beam 22 is changed at , and it is further focused through a convex lens 29 which is a light projecting and focusing optical system, and is projected onto a mirror surface 25 such as the surface of a silicon wafer. The reflected light is transmitted to the light projecting and condensing optical lens 2.
9 receives the light and further focuses it on the light receiving surface 2.
Project onto 6. In this device, the size is halved compared to the one in Figure 1 because the light reciprocating parts can be used in common. Furthermore, as is evident in FIG. 1, the projected image is obliquely distorted. For example, a circle is distorted into an ellipse. In contrast, in the configuration of FIG. 2, all such distortions are eliminated.

しかも像の明るさは、ハーフミラー2mによる
輝度の損失を入れても、装置全体を小さくできた
ことと、受光面26の像の大きさを鏡面の1/3に
することによつて、第1図のものに比べて約9倍
になり、暗室でなくとも、通常の明るさの部屋内
でも観察できるようになつた。なお受光面26を
スリガラスで形成したような場合には、ガラス面
での外光の散乱を防ぐため、第2図に示すように
一部に覆いをつけるか、外光が直接に当らないよ
うにするのが望ましい。又、点光源の大きさも解
像度を上げるために、ピンホールによつて非常に
小さく絞つてもよく、前述のように径1mm以下が
望ましい。
Moreover, the brightness of the image can be improved by making the entire device smaller, and by making the size of the image on the light-receiving surface 26 1/3 that of the mirror surface, even including the loss of brightness due to the 2m half mirror. It is about 9 times larger than the one in Figure 1, and can now be observed not only in a dark room but also in a room with normal brightness. If the light-receiving surface 26 is made of frosted glass, in order to prevent outside light from scattering on the glass surface, cover a portion of it as shown in Figure 2, or protect it from direct exposure to outside light. It is desirable to do so. Further, in order to increase the resolution, the point light source may be narrowed down to a very small size using a pinhole, and as mentioned above, a diameter of 1 mm or less is desirable.

本考案の別の実施例の装置は、例えば第3図に
示すものである。第3図において、31は点光
源、32は光束、33は集光レンズ、34は絞
り、35は鏡面、36は受光面である。この第3
図では投光兼集光々学系に凹面鏡39を使用して
いるため、光路がさらに半分に即ち長さがさらに
1/2に縮まり、ハーフミラーがないため明るさが
4倍になり、さらに明るい像が得られるものであ
る。受光面36に、前述のスリガラスに替えて写
真機や、テレビカメラをおいた場合には、0.1W
程度の非常に暗い点光源を使用しても明白に鏡面
35の表面状態を観察できた。なお、受光面36
のスリガラスなしに直接に鏡面35を見ると、点
光源31の像がポツンと見えるのみである。受光
面36として、スリガラスやフイルム又はテレビ
カメラの受光面において始めて全像が見られるも
のである。
Another embodiment of the present invention is shown in FIG. 3, for example. In FIG. 3, 31 is a point light source, 32 is a light beam, 33 is a condenser lens, 34 is an aperture, 35 is a mirror surface, and 36 is a light receiving surface. This third
In the figure, since a concave mirror 39 is used in the light emitting and condensing optical system, the optical path is further halved, that is, the length is further shortened to 1/2, and since there is no half mirror, the brightness is quadrupled. A bright image can be obtained. If a camera or television camera is placed on the light-receiving surface 36 instead of the above-mentioned ground glass, the power output will be 0.1W.
Even when using a very dim point light source, the surface condition of the mirror surface 35 could be clearly observed. Note that the light receiving surface 36
If you look directly at the mirror surface 35 without using the ground glass, you will only see the image of the point light source 31. As the light receiving surface 36, the entire image can be seen for the first time on the light receiving surface of ground glass, film, or a television camera.

次に本考案の装置で実現された凹凸による明暗
の検出能力を向上する機能を第4図の原理図によ
つて簡単に説明する。簡単のため鏡面45から完
全な平行光線が反射されてくると考えれば、これ
らの平行光線は当然、レンズの焦点50一点に集
まる。ところが鏡面45上に凹凸があり、平行か
らずれた光47が発生したとすれば焦点50を通
らない。焦点からわずか離れた点Aに受光面46
を置いたとすれば、わずかにずれた光47の受光
面46上の点は、鏡面45の投影像の外側にまで
拡大されてしまう。実際には、このような極端な
ことはせず、B点に受光面46を置くので上述の
ように極端に大きな拡大は行われないが、短かい
焦点距離内で大きく拡大する傾向はすぐにうなず
けよう。第4図では凸レンズ1枚で画いたが、複
数のレンズ系や凹レンズでも同様のことが成り立
ち、又、平行光線でなくとも成り立つている。
Next, the function of improving the ability to detect brightness and darkness due to unevenness, achieved by the device of the present invention, will be briefly explained with reference to the principle diagram of FIG. For the sake of simplicity, if we assume that perfectly parallel rays are reflected from the mirror surface 45, these parallel rays naturally converge at a single focal point 50 of the lens. However, if there are irregularities on the mirror surface 45 and the light 47 is generated out of parallel, it will not pass through the focal point 50. The light receiving surface 46 is located at a point A slightly away from the focal point.
, the point on the light receiving surface 46 of the slightly shifted light 47 will be expanded to the outside of the projected image of the mirror surface 45. In reality, we do not do something extreme like this and place the light receiving surface 46 at point B, so extremely large magnification does not occur as described above, but there is a tendency for large magnification within a short focal length to occur. Let's nod. In Fig. 4, a single convex lens is used, but the same thing holds true for a plurality of lens systems or a concave lens, and also holds true even for non-parallel rays.

次に、本考案及び従来の例との比較実験例を示
す。
Next, an example of a comparative experiment between the present invention and a conventional example will be shown.

〔本考案に係る具体例〕[Specific example of the present invention]

0.1Wの点光源を有する第2図に示すような装
置を用いて、3インチシリコン単結晶ウエハー6
0の表面を観察した。このウエハー表面は鏡面状
であり、レーザー干渉装置でみると、全体に5μm
位の大きな「ソリ」があるのが認められたが、表
面欠陥や凹凸は全く認められなかつた。しかる
に、このウエハーを本考案を用いた装置で観察す
ると、第5図に示すように0.2〜0.3μmに相当する
微小な凹凸61が縞状に観察されており、又、ス
ポツト状の凹み62(0.3〜0.5μmの凹部径約2
mm)が白点として現われている。黒い直線63は
20mm長の傷を示している。なお、ウエハー60表
面の下部にみられる黒い「かたまり」は試料番号
である。第5図はウエハー60の表面の写真を図
示したもので、写真撮影に際しては、受光面のス
リガラスをとり、写真器を直接に受光面に設置
し、焦点を前方30cmに合わせ、露光時間は10秒で
ある。
Using a device as shown in Fig. 2 with a 0.1W point light source, a 3-inch silicon single crystal wafer 6
The surface of 0 was observed. The surface of this wafer is mirror-like, and when viewed with a laser interference device, the entire surface is 5μm.
Although some large "warps" were observed, no surface defects or irregularities were observed at all. However, when this wafer is observed using an apparatus using the present invention, as shown in FIG. Approximately 2 concave diameters of 0.3 to 0.5 μm
mm) appears as a white spot. The black straight line 63 is
It shows a 20mm long wound. Note that the black "lump" seen at the bottom of the surface of the wafer 60 is the sample number. FIG. 5 shows a photograph of the surface of the wafer 60. When taking a photograph, remove the ground glass from the light-receiving surface, place the camera directly on the light-receiving surface, set the focus 30 cm in front of the light, and set the exposure time to 10 cm. Seconds.

〔従来法を用いた例〕[Example using conventional method]

前述した同一のウエハー60を第1図に示すよ
うな方法で観察した。すなわち、0.1Wの点光源
で被写体を照射したが、スクリーン上には、完全
な暗室内に拘らず、像は認められなかつた。フイ
ルムをスクリーンに変えて、露光を10分行つた
所、何とか像を得たが、解折できる強度ではなか
つた。
The same wafer 60 described above was observed by the method shown in FIG. In other words, although the subject was illuminated with a 0.1W point light source, no image was visible on the screen even though the room was completely dark. After replacing the film with a screen and exposing it to light for 10 minutes, I managed to get an image, but it was not strong enough to be resolved.

以上の様に本考案を用いた装置では、従来検出
できなかつた0.2〜0.3μmの凹凸が縞状、同心円状
に数mm毎にある様子を観察することができ、半導
体基板表面等の鏡面の状態観察、良否の判定等に
すぐれた効果を発揮することができる。なお、以
上の説明では、簡単のために、光学系を1枚のレ
ンズや凹面鏡などで代表させたが、勿論、複数の
レンズや鏡を使うことは、特に収差などをなくす
ためさらに装置の大きさを小さくするために有効
であることは云うまでもない。
As described above, with the device using the present invention, it is possible to observe unevenness of 0.2 to 0.3 μm, which could not be detected conventionally, in stripes or concentric circles every few mm, and to improve the appearance of mirror surfaces such as semiconductor substrate surfaces. It can be highly effective in observing conditions, determining pass/fail, etc. In the above explanation, the optical system is represented by a single lens or a concave mirror for the sake of simplicity, but of course, using multiple lenses and mirrors will further increase the size of the device, especially in order to eliminate aberrations. Needless to say, this is effective for reducing the size.

以上のように、本考案は、従来の魔鏡を用いた
方法に比べ、1/2以下の小さい装置であり、かつ、
鏡面の表面状態(巾3〜10mmの高低差0.2〜0.3μm
の至る緩かな微小凹凸、傷、汚れなど)を感度よ
くしかも従来法では出来なかつた明るい部屋で簡
便に観察し得る視感度を向上させた装置を得るこ
とができる。しかも加工精度や装置機構の調整精
度は低くすみ、それでも非常に高精度でもつて表
面状態を表示しうる従来みられない優れた装置で
ある。
As described above, the present invention is a device that is less than half the size of the conventional method using a magic mirror, and
Mirror surface condition (width 3-10mm height difference 0.2-0.3μm
It is possible to obtain a device with improved visibility that allows for easy observation in a bright room, which was not possible with conventional methods. In addition, the processing accuracy and the adjustment accuracy of the device mechanism are low, but it is an unprecedented device that can display the surface condition with very high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来より伝わる魔鏡の原理を示す図、
第2、第3図は本考案の実施例の観察装置を示す
概略図、第4図は本考案の装置による凹凸を拡大
して検出する機能を説明する図、第5図は本考案
の装置で得られたウエハーの表面状態図である。 21,31……点光源、22,32……光束、
23,33……集光レンズ、2m……ハーフミラ
ー、25,35……鏡面、26……受光面、2
9,39……投光兼集光光学系(29……凸レン
ズ、39……凹面鏡)、6……シリコンウエハ。
Figure 1 is a diagram showing the principle of the magic mirror that has been passed down from the past.
2 and 3 are schematic diagrams showing an observation device according to an embodiment of the present invention, FIG. 4 is a diagram illustrating the function of magnifying and detecting irregularities by the device of the present invention, and FIG. 5 is a diagram showing the apparatus of the present invention. FIG. 3 is a surface state diagram of the wafer obtained in FIG. 21, 31... point light source, 22, 32... luminous flux,
23, 33... Condensing lens, 2 m... Half mirror, 25, 35... Mirror surface, 26... Light receiving surface, 2
9, 39... Light projecting and focusing optical system (29... Convex lens, 39... Concave mirror), 6... Silicon wafer.

Claims (1)

【実用新案登録請求の範囲】 (1) 点光源と、この点光源から拡大する光束を集
束して被観察試料表面に投光し且つ前記被観察
試料表面よりの反射光を集光する投光兼集光光
学系と、前記試料表面からの反射光が前記光学
系にて縮小され投影されるとともに前記光学系
の焦点からずれた位置に設置された受光面とを
備え、前記試料表面の凹凸を、前記受光面に投
影像の明暗として検出することを特徴とした表
面観察装置。 (2) 被観察試料が半導体基板よりなることを特徴
とする実用新案登録請求の範囲第1項に記載の
表面観察装置。
[Claims for Utility Model Registration] (1) A point light source, and a light projection that focuses the expanding light beam from the point light source and projects it onto the surface of the sample to be observed, and also focuses the reflected light from the surface of the sample to be observed. a light-receiving surface installed at a position shifted from the focal point of the optical system, the reflected light from the sample surface being reduced and projected by the optical system; A surface observation device characterized in that the surface observation device detects this as the brightness and darkness of a projected image on the light receiving surface. (2) The surface observation device according to claim 1, wherein the sample to be observed is made of a semiconductor substrate.
JP1981021775U 1981-02-17 1981-02-17 Expired JPS6313446Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1981021775U JPS6313446Y2 (en) 1981-02-17 1981-02-17
US06/348,086 US4547073A (en) 1981-02-17 1982-02-11 Surface examining apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981021775U JPS6313446Y2 (en) 1981-02-17 1981-02-17

Publications (2)

Publication Number Publication Date
JPS57134612U JPS57134612U (en) 1982-08-21
JPS6313446Y2 true JPS6313446Y2 (en) 1988-04-16

Family

ID=29819619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981021775U Expired JPS6313446Y2 (en) 1981-02-17 1981-02-17

Country Status (1)

Country Link
JP (1) JPS6313446Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4105256B2 (en) * 1997-07-29 2008-06-25 株式会社ナノシステムソリューションズ Light irradiation device and surface inspection device
JP6697285B2 (en) * 2015-02-25 2020-05-20 株式会社昭和電気研究所 Wafer defect inspection system
JP6595951B2 (en) * 2016-05-19 2019-10-23 株式会社神戸製鋼所 Method and apparatus for estimating roughness of metal plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815998A (en) * 1972-10-30 1974-06-11 Ibm Surface contrast system and method
JPS55101002A (en) * 1979-01-26 1980-08-01 Hitachi Ltd Inspecting method for mirror face body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815998A (en) * 1972-10-30 1974-06-11 Ibm Surface contrast system and method
JPS55101002A (en) * 1979-01-26 1980-08-01 Hitachi Ltd Inspecting method for mirror face body

Also Published As

Publication number Publication date
JPS57134612U (en) 1982-08-21

Similar Documents

Publication Publication Date Title
US4547073A (en) Surface examining apparatus and method
EP0856728B1 (en) Optical method and apparatus for detecting defects
JP3483948B2 (en) Defect detection device
JPH0754684B2 (en) electronic microscope
JP2009092426A (en) Surface inspection method and surface inspection device
US4428676A (en) Optical system for oblique viewing
JP3417736B2 (en) Optical member inspection device
JP2008157788A (en) Surface inspection method and device
JPS6313446Y2 (en)
JPS58120106A (en) Detecting device for focal point
JP3886619B2 (en) Object defect inspection method and inspection apparatus
JPH01318908A (en) Inspecting apparatus of surface of specular body
JP2705764B2 (en) Defect detection device for transparent glass substrate
JPH03276005A (en) Shape measuring device
JPH044526B2 (en)
US7164470B2 (en) Depth of field enhancement for optical comparator
JPS58109805A (en) Detecting device for micro-declination of optical path
JPS6316964Y2 (en)
JPS6319001B2 (en)
JPH10221270A (en) Foreign matter inspection device
JP3583772B2 (en) Surface defect inspection equipment
JP2579977Y2 (en) Auxiliary floodlight for distance measurement
JPH03296649A (en) Apparatus for detecting flaw in transparent body
KR100487261B1 (en) Object defect inspection method and inspection device
JPH03154854A (en) Detecting device for extremely small defect of thin wire