JPS63134108A - Automatic cutting device for surface flaw of bar wire material - Google Patents

Automatic cutting device for surface flaw of bar wire material

Info

Publication number
JPS63134108A
JPS63134108A JP27645486A JP27645486A JPS63134108A JP S63134108 A JPS63134108 A JP S63134108A JP 27645486 A JP27645486 A JP 27645486A JP 27645486 A JP27645486 A JP 27645486A JP S63134108 A JPS63134108 A JP S63134108A
Authority
JP
Japan
Prior art keywords
workpiece
cutting
flaw
cutting tool
tools
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27645486A
Other languages
Japanese (ja)
Other versions
JPH0431803B2 (en
Inventor
Tetsuya Oba
大庭 哲哉
Takayuki Ueda
登侑 上田
Ryoichi Sato
陵一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27645486A priority Critical patent/JPS63134108A/en
Publication of JPS63134108A publication Critical patent/JPS63134108A/en
Publication of JPH0431803B2 publication Critical patent/JPH0431803B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To promote the stability of quality and its improvement in automatically cutting a surface flaw, by providing die guides, which form an internal diameter almost equal to the diameter of a workpiece cutting portions cutting tools interfere, and three sets or more of the respectively separate longitudinally movable cutting tools which form their point ends into a recessed cutting edge being displaced in the axial direction around the workpiece. CONSTITUTION:A flaw detector 3 detects depth of a flaw and its position (distance and angle) on a strand wire 2, which passes through die guides 8A-8C, to be respectively transmitted as an electric signal. A device, which synchronizes these three signals, feeds an operation instruction to tools 10A-10C provided with a space of 120 deg. further with a space in the lengthwise direction. And the device, which cuts a flaw in a part P by actuating the tools 10C and 10A while a flaw in a part P1 and a part P2 by respectively actuating the tools 10A and 10C, 10C and 10B, always fixes an operative range (depth of cut, cutting angle) of each tool 10A-10C. In this way, the device, which can prevent a workpiece from its deflection when the workpiece is cut, enables automatic cutting of stable quality to be performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、線あるいは棒状材の表面疵を除去するに当り
、被削体の横ぶれがなく安定して切削除去できる棒線材
表面疵自動切削装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an automatic method for removing surface flaws from a wire or rod, which can be stably removed without horizontal wobbling of the workpiece. This invention relates to a cutting device.

(従来の技術) バネ鋼、軸受鋼、ステンレス鋼等のような特殊棒鋼や線
材製品の製造にあたっては、熱延前、素材の表面疵を充
分に除去した後、熱延処理に付してコイル化している。
(Prior technology) When manufacturing special steel bars and wire rod products such as spring steel, bearing steel, stainless steel, etc., before hot rolling, surface flaws on the material are thoroughly removed, and then the material is hot rolled and coiled. It has become

しかし、その素材での疵取りは完全に除去することは不
可避であり、従って、熱延処理後のコイルの表面にはそ
の深さ最大0.2U程度の疵が部分的に点在しているこ
とがあり、その表面疵の除去が必要である。
However, it is unavoidable to completely remove the flaws in the material, and therefore, the surface of the coil after hot rolling is partially dotted with flaws with a maximum depth of about 0.2U. Surface defects may need to be removed.

従来、このような疵の除去手段として、人手によるグラ
インダー手入れが特公昭59−50453号、特開昭5
6−114618号、特公昭58−24201号、特開
昭59−142054号等の各公報にて提案されている
方法および装置がある。
Conventionally, as a means of removing such scratches, manual grinder maintenance was proposed as disclosed in Japanese Patent Publication No. 59-50453 and Japanese Patent Application Laid-open No. 59-50.
There are methods and devices proposed in various publications such as Japanese Patent Publication No. 6-114618, Japanese Patent Publication No. 58-24201, and Japanese Patent Application Laid-Open No. 59-142054.

(本発明が解決しようとする問題点) 人手による手入れは冷間コイルを解きほぐし、棒、線材
の4周全体を目視して探傷するので作業性がきわめて悪
く能率的にも好ましくなく、人件費が大巾にアップする
不利が生じる。
(Problems to be Solved by the Present Invention) Manual maintenance involves untying the cold coil and visually inspecting the entire four circumferences of the rod or wire, which is extremely inefficient and undesirable in terms of efficiency, resulting in high labor costs. There is a disadvantage of uploading it to a large width.

そのため省力化、自動化をはかった手段として、最も有
望な手段とみられる前記の特公昭59−50453号公
報についてみれば、以下のような欠点がみうけられる。
For this reason, the above-mentioned Japanese Patent Publication No. 59-50453, which is considered to be the most promising means for labor saving and automation, has the following drawbacks.

すなわち1 、(1)切削力は受はローラ(理論的には1点)で受け
ており、走行方向において切削バイト先端位置と受はロ
ーラ回転中心を合せる必要があるが、部品のガタ、摩耗
等があり、この調整が極めて難かしく、特に細物材にお
いて切削閑さ変動の要因となる。
In other words, (1) The cutting force is received by the roller (theoretically at one point), and it is necessary to align the tip position of the cutting tool with the center of rotation of the roller of the receiver in the running direction. etc., making this adjustment extremely difficult and causing fluctuations in cutting clearance, especially when working with thin materials.

(2)被削体の受はローラは1点ローラ(同一円周では
1点)で受けるため、表面疵切削時切削方向に対して被
削体が横振れし、表面疵の取り残し、あるいは切削面形
状の不具合などの原因となる。
(2) Since the workpiece is supported by a roller at one point (one point on the same circumference), the workpiece may oscillate laterally in the cutting direction when cutting surface flaws, resulting in surface flaws being left behind or cutting. This may cause problems with the surface shape.

また他の公知手段によれば、切削面積の増大は避けられ
ず歩留を大巾に低下させてしまう欠点がある。
In addition, other known means have the disadvantage that the cutting area inevitably increases, which greatly reduces the yield.

本発明は以上の問題点を解決するためなされたものであ
る。
The present invention has been made to solve the above problems.

(問題点を解決するための手段) 本発明は棒鋼あるいは線材等の棒線材を被削体とするも
のであって、かかる被削体を長手方向に走行させる走行
通路上に被削体の周方向及び長手方向の疵の位置を検出
する探傷器を設けるとともに、被削体の走行速度検出器
を設け、探傷器による疵の情報と、走行速度検出器によ
る速度情報により切削バイト部を作動せしめて被削体の
疵部分のみを効率的に削除しようとするものであり、被
削体の直径とほぼ等しい最小内径を有し、且つ切削バイ
トが被削体に向かう際切削バイトが干渉する部分を切欠
したダイスガイドが、該被削体の長手方向に間隔をおい
て設け、該ダイスガイドと対応する位置に先端が凹入状
の切刃を有する切削バイトが被削体に向かってそれぞれ
独立して進退自在に設けられ、該切削バイトは被削体の
回わりにあって、且つ被削体の軸方向にずらされて3組
以上配置して全円周の切削を可能に構成したものである
(Means for Solving the Problems) The present invention uses a rod or wire rod such as a steel bar or a wire rod as a workpiece, and the workpiece is placed on a traveling path in which the workpiece is run in the longitudinal direction. A flaw detector is provided to detect the position of flaws in the direction and longitudinal direction, and a traveling speed detector of the workpiece is also provided, and the cutting tool is operated based on flaw information from the flaw detector and speed information from the traveling speed detector. It is intended to efficiently remove only the flawed part of the workpiece, and has a minimum inner diameter approximately equal to the diameter of the workpiece, and the part that the cutting tool interferes with when heading toward the workpiece. A die guide with a notch is provided at intervals in the longitudinal direction of the workpiece, and a cutting tool having a concave cutting edge at a position corresponding to the die guide is provided independently toward the workpiece. The cutting tool is arranged so as to be able to move forward and backward, and the cutting tools are arranged around the workpiece and are arranged in three or more sets offset in the axial direction of the workpiece to enable cutting around the entire circumference. be.

(実施例) 以下、本発明の実施例を図面に基づいて詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明の全体構成を示す説明図、第2図はその
要部詳細を示す正面図%第3図は第2図の部分側面図、
第4図は第2図のA−A断面図、第5図(A)は第2図
a部の拡大図、第5図の(B)は同図(A)のB−B[
i面図である。
Fig. 1 is an explanatory diagram showing the overall configuration of the present invention, Fig. 2 is a front view showing details of its main parts, Fig. 3 is a partial side view of Fig. 2,
Figure 4 is a sectional view taken along the line AA in Figure 2, Figure 5 (A) is an enlarged view of section a in Figure 2, and Figure 5 (B) is the BB [
It is an i-side view.

第1図は本発明の全体構成を概略示しており。FIG. 1 schematically shows the overall configuration of the present invention.

1はサプライスタンドであり、これにコイル状に架装さ
れた被削体である素線2は巻取機100に巻取られる過
程において、公知の回転プローブ形渦巻探傷器等の探傷
器3でその表面疵が検出される。
Reference numeral 1 denotes a supply stand, and a wire 2, which is a workpiece mounted in a coil shape on this stand, is wound with a flaw detector 3 such as a known rotating probe type vortex flaw detector in the process of being wound up by a winder 100. The surface flaws are detected.

また、その素線2の走行速度は速度計4で検出されると
ともに制御装置5により切削マシン6、の駆動装置7(
7A、7B、7C)を制御可能としている。
Further, the running speed of the wire 2 is detected by a speedometer 4, and the control device 5 controls the driving device 7 (of the cutting machine 6).
7A, 7B, 7C) can be controlled.

すなわち、被削体素線2の円周方向及び長手方向の疵の
位置を探傷器3で検出し、該検出信号の疵の深さ信号に
より切削マシン6の切削バイトに予じめ付与されている
切込量とバイト進退タイミングを演算されている走行速
度にあわせてバイト駆動装置t7A〜7Cを制御するこ
とにより、被削体である素線2の走行通路長手方向に配
置した切削バイトによって疵箇所のみ切削し除去するも
のである。
That is, the position of the flaw in the circumferential direction and longitudinal direction of the workpiece strand 2 is detected by the flaw detector 3, and the flaw depth signal of the detection signal is used to detect the position of the flaw applied in advance to the cutting tool of the cutting machine 6. By controlling the cutting tool drive devices t7A to 7C in accordance with the calculated cutting speed and the advancing/retracting timing of the cutting tool, the cutting tool placed in the longitudinal direction of the traveling path of the wire 2, which is the workpiece, cuts the flaws. Only the parts are cut and removed.

ここで本発明の特徴とするところは、ダイスガイドと組
合せた切削バイトを3組以上設けて素線の全周の切削を
可能に可成した点にある。すなわち、切削バイトが被削
体に向かって出入できるように該切削バイトが干渉する
部分を切欠したダイスガイドに、独立して進退動作する
切削バイトを組合せてそれぞれ3組以上設けて素材の全
周を切削可能としている。
The feature of the present invention is that three or more sets of cutting tools combined with die guides are provided to enable cutting of the entire circumference of the wire. In other words, three or more sets of cutting tools that move forward and backward independently are installed on a die guide in which the part where the cutting tool interferes is notched so that the cutting tool can go in and out toward the workpiece, and the cutting tool can be moved in and out of the workpiece. It is possible to cut.

第2図以下をも参照すると切削マシン6の詳細が示され
、被削体である素線2の走行ライン即ち、走行通路上に
はその送り方向に間隔をおいてダイスガイド8人、8B
、8Cが3個設けられている。
The details of the cutting machine 6 are shown by referring also to FIG.
, 8C are provided.

そのダイスガイド8人、8B、8Cはダイスガイド8人
で代表して第5図(A)、(B入 第6図(人)。
The 8 dice guides, 8B, and 8C are represented by 8 dice guides in Figure 5 (A) and (B included Figure 6 (person)).

(B)に示す如く被削体素線2の直径とほぼ等しい最小
内径を有し、切削バイト10人が被削体に向って進退で
きるように該切削バイト10人が干渉する部分を切欠さ
れている。そのダイスガイド8Aは押え板ツとポル1−
24によりダイス箱9に固定され、さらにボルト6とナ
ツト26で支持腕18に固定されている。ダイスガイド
8人の材質は伸線ダイスと同様に超硬合金等を使用する
とよい。
As shown in (B), it has a minimum inner diameter that is almost equal to the diameter of the work piece strand 2, and the part where the 10 cutting tools interfere is cut out so that the 10 cutting tools can move forward and backward toward the workpiece. ing. The die guide 8A is presser plate tsu and pole 1-
24 to the die box 9, and further fixed to the support arm 18 with bolts 6 and nuts 26. As for the material of the eight die guides, it is preferable to use cemented carbide or the like, similar to the wire drawing die.

一方、切削バイトIOA 、 IOB 、 IOCはダ
イスガイド8A、8B 、8C内を案内される被削体に
対向して伸縮シリンダで示す駆動装置7A、7B。
On the other hand, the cutting tools IOA, IOB, and IOC are driven by telescopic cylinders 7A and 7B that face the workpiece guided within the die guides 8A, 8B, and 8C.

7Cによりそれぞれ独立して半径方向に進退自在とされ
、該切削バイトIOA 、 IOB 、 IOCは素材
2の送り方向に対して間隔をおいて設けられ、円周方向
に等間隔に、本実施例では120度毎に設けである。な
お、切削バイトはその個数が4個の場合には(4)度間
隔で、また、切削バイト個数が6個の場合にはω度間隔
で設けられ、切削バイト10人。
The cutting tools IOA, IOB, and IOC are arranged at intervals in the feeding direction of the material 2, and are arranged at equal intervals in the circumferential direction. It is provided every 120 degrees. Note that when the number of cutting tools is 4, the cutting tools are provided at (4) degree intervals, and when the number of cutting tools is 6, they are provided at ω degree intervals, and 10 cutting tools are provided.

10B 、 100にそれぞれ対応してダイスガイド8
A。
Dice guide 8 corresponds to 10B and 100 respectively.
A.

8B、8Cが設けである。8B and 8C are provided.

切削バイトは第8図(A) 、 (B)に要部のみ拡大
して示す如く、被削体2の外周形状に沿う凹入状刃先1
1人、 IIB 、 IICを有する。本実施例では円
弧形の凹入状とされた所鯖平バイトであり、各刃先11
A 、 IIB 、 IICのそれぞれは第9図、第1
0図に示す如く切削時において被削体2の軸方向からみ
て周方向に互いに重なり合う部分11A’ 、 oEr
 。
The cutting tool has a concave cutting edge 1 that follows the outer circumferential shape of the workpiece 2, as shown in FIGS. 8(A) and 8(B) with only the main parts enlarged.
1 person has IIB and IIC. In this example, it is a mackerel bit with an arcuate concave shape, and each cutting edge 11
A, IIB, and IIC are shown in Figure 9 and 1, respectively.
As shown in Fig. 0, portions 11A' and oEr that overlap each other in the circumferential direction when viewed from the axial direction of the workpiece 2 during cutting.
.

11C′が形成されており、被削体2の全周をかこみう
るようにされている。
11C' is formed so as to surround the entire circumference of the workpiece 2.

そして、第3図、第4図にバイト10Aで代表して示す
如くバイトホルダー氏に抜差し自在に挿嵌されボルト1
3にて締結されている。
Then, as shown in FIGS. 3 and 4 with the tool 10A, the bolt 1 is inserted into and removed from the tool holder.
It was concluded in 3.

なお、本実施例は、バイト(以下、バイトIOAで代表
する)は調整ねじ14によって一定高さX1ilに調整
されてそのバイトホルダー12がスライドユニット15
に嵌合されてボルト16にて固定され、スライドユニッ
ト15は基台17に放射方向として延設された支持腕1
8のスライダ18Aに摺動自在に嵌合されるとともに左
右横方向は調整ねじ16Aによって調整固定自在とされ
ている。
In this embodiment, the cutting tool (hereinafter referred to as cutting tool IOA) is adjusted to a constant height X1il by the adjusting screw 14, and the tool holder 12 is moved to the slide unit 15.
The slide unit 15 is fitted with a support arm 1 extending radially from the base 17 and fixed with a bolt 16.
It is slidably fitted into the slider 18A of No. 8, and can be adjusted and fixed in left and right directions by adjusting screws 16A.

支持腕18の延設端にバイト駆動装置7A、7B。Bit drive devices 7A and 7B are provided at the extending ends of the support arms 18.

7Cが本例では伸縮油圧シリンダが設けてあり、そのピ
ストンロッド19にねじ連結棒加を螺着せしめ該棒端面
を調整ねじ14の頭部に対応させて隔置させている。
7C is provided with a telescoping hydraulic cylinder in this example, and a threaded connecting rod is screwed onto the piston rod 19 of the cylinder, and the end surface of the rod is spaced apart so as to correspond to the head of the adjusting screw 14.

ねじ連結棒加にはナツト21 、22が螺合されており
、上部ナツト21は連結棒美の突出長さを調整するもの
で、前述のバイト高さ調整ねじ14との組合せによりバ
イトIOAの切込深さ、つまり、被削体2の表面疵の切
削深さを調整するものである。
Nuts 21 and 22 are screwed onto the threaded connecting rod, and the upper nut 21 is used to adjust the protruding length of the connecting rod, and in combination with the aforementioned cutting tool height adjustment screw 14, the cutting tool IOA can be cut. This is to adjust the cutting depth, that is, the cutting depth of surface flaws on the workpiece 2.

又、下部ナラ)22は連結棒加の戻り距離即ち、バイト
10Aと被削体2間の距離Hを調整するものであり、こ
のことは、制御装fii5の信号を受けて駆動装置7人
が伸長動作し、スライダ18Aの案内を介してスライド
ユニット15の降下により切削パイ)IOAが作動して
被削体2を一定性さまで切込むに要する時間を調整する
ものであり、つまり、切削バイト10人の切込角度を、
バイト形状、椎間、被削体の材質、走行速度によって最
適条件となるように調整するものである。
In addition, the lower neck (22) is used to adjust the return distance of the connecting rod, that is, the distance H between the cutting tool 10A and the workpiece 2. The cutting tool 10 is extended and the cutting tool IOA is activated by lowering the slide unit 15 through the guide of the slider 18A to adjust the time required to cut the workpiece 2 to a constant level. The cutting angle of the person
Adjustment is made to achieve the optimum conditions depending on the shape of the cutting tool, intervertebral space, material of the workpiece, and traveling speed.

ところで、切削バイトで切削時に生ずる被削体の反力は
ダイスガイドの内面で受けているが、その反力による内
面の摩耗が大きい場合は内面に潤滑剤を送入することが
望ましい。すなわち、第6図(A)は側断面図、(B)
は(A)のC−C断面図にその一実施例図を示す如(、
ダイスガイド断面内に潤滑剤の送入孔Pを貫設し、潤滑
口θより水溶性切削油等を圧送し潤滑溝Qを通して被削
体2とダイスガイド8人間の潤滑を行うことによりダイ
スガイド8人の寿命延長を図ることができる。
Incidentally, the reaction force of the workpiece that is generated during cutting with the cutting tool is received by the inner surface of the die guide, and if the inner surface wears out due to the reaction force is large, it is desirable to feed lubricant into the inner surface. That is, FIG. 6(A) is a side sectional view, and FIG. 6(B) is a side sectional view.
As shown in the C-C sectional view of (A),
A lubricant inlet hole P is provided in the cross section of the die guide, and water-soluble cutting oil is pumped through the lubrication port θ to lubricate the workpiece 2 and the die guide 8 through the lubrication groove Q. It is possible to extend the lifespan of 8 people.

また、切削バイトで切削時の被削体の横ぶれを完全に防
止する場合は、第7図に示すような切削バイト10Aの
出入りする位置前後のダイスガイド8Aの孔内径W、W
をそれぞれ被剛材の直径d。
In addition, if the cutting tool is used to completely prevent horizontal wobbling of the workpiece during cutting, the hole inner diameter W, W of the die guide 8A before and after the position where the cutting tool 10A enters and exits as shown in FIG.
and the diameter d of the stiffened material, respectively.

d′より小さく設けて、適度の減面率で伸線するとよい
。すなわち、切削バイト10人の前後のダイスガイド孔
8A′、8にで引抜き挾持するものであり、被削体の横
ぶれが全くなく安定して自動庇取りができる。また、こ
の引抜きにより疵取り切削部の狭面ならしも同時に可能
である。
It is preferable to draw the wire at an appropriate area reduction rate by providing the wire smaller than d'. That is, it is pulled out and held in the die guide holes 8A' and 8 at the front and rear of the cutting tool by 10 cutting tools, and automatic eaves removal can be performed stably without any horizontal wobbling of the workpiece. Further, by this drawing, the narrow surface of the flaw removal cutting part can be leveled at the same time.

(作用) 次に、切削マシン6による被削体2に対する表面疵の自
動切削除去について説明すると、被削体2がサプライス
タンド1から巻取機100に巻取られていくラインにお
いてまず表面疵が全くない無疵部分が巻取られている時
には探傷器3は作動しないので、3個の切削バイトIO
A 、 IOB 、 IOCは定位置で停止状態にあり
、被削体2はダイスガイド8A、8B、8Cによる走行
通路を経て捲取機100側に巻取られていくことになる
(Function) Next, to explain automatic cutting and removal of surface flaws on the workpiece 2 by the cutting machine 6, surface flaws are first removed on the line where the workpiece 2 is wound up from the supply stand 1 to the winding machine 100. Since the flaw detector 3 does not operate when a part without any defects is being wound, the three cutting tools IO
A, IOB, and IOC are in a stopped state at fixed positions, and the workpiece 2 is wound up to the winding machine 100 side through the traveling path by the die guides 8A, 8B, and 8C.

今、被削体2に表面疵があり、これを探傷器3によって
検出することにより、該疵部分の切削指令が発信されれ
ば、この指令を受けてその疵部分と対応する切削バイト
IOA 、 IOB 、 IOCが油圧シリンダで示す
駆動装置7A、7B、7Cの伸長により予じめ定められ
た切削量だけ切削除去することになる。
Now, if there is a surface flaw on the workpiece 2, and this is detected by the flaw detector 3, a command to cut the flaw part is sent, then upon receiving this command, the cutting tool IOA corresponding to the flaw part, By extending the drive devices 7A, 7B, and 7C indicated by IOB and IOC using hydraulic cylinders, a predetermined cutting amount is removed.

このようにして表面疵部分が切削除去されて通過した時
は、切削路りの指令によって駆動装置7A、7B、7C
が縮少動作して切削バイト1oA。
In this way, when the surface flaws are removed and passed, the drive devices 7A, 7B, 7C are driven by the command of the cutting path.
is reduced and the cutting tool is 1oA.

10B 、 IOCを旧位置に復し、再び次の疵発見に
よる切削指命に待機するのである。
10B, the IOC is returned to its old position and it waits again for the next cutting instruction when a flaw is discovered.

第9図乃至第11図を参照して前記制御装置5による制
御要領を具体的に説明すると、探傷器3によって素線2
の疵の深さを検出するプローブからの電気信号と素線の
疵が索線の円周方向のどの部分にあるかを検出するプロ
ーブからの電気信号とを取り出している。
To specifically explain the control procedure by the control device 5 with reference to FIGS. 9 to 11, the flaw detector 3
The electric signal from the probe detects the depth of the flaw in the wire, and the electric signal from the probe detects in which part of the wire the flaw is located in the circumferential direction of the wire.

前述の切削マシン6は進退自在の切削バイト3個以上か
ら構成され、各々のバイトioA、 IOB 。
The cutting machine 6 described above is composed of three or more cutting tools that can move forward and backward, and each of the cutting tools ioA, IOB.

10Cが本例では120度間隔でかつ長手方向間隔をお
いで設けられており、疵検出用のプローブから低信号(
深さ)が発生した時にはその位置、つまり、探傷器3と
バイト設定距離は速度計4と同期させ、かつ角度の位置
をパルス位置より判断してそれぞれのバイトIOA 、
 IOB 、 IOCが作動されるようにするのである
10C are provided at intervals of 120 degrees in the longitudinal direction in this example, and a low signal (
depth) occurs, the position, that is, the flaw detector 3 and the setting distance of the tool, are synchronized with the speedometer 4, and the angular position is judged from the pulse position, and the IOA of each tool is determined.
The IOB and IOC are activated.

プローブの動作の角度について詳述すれば、第9図及び
第10図に示す如く、固定側の近接スイッチS1の位置
を0度の基点Oとし、疵検出用プローブ3人が回転する
時そのプローブがどの角度の位置にあるかを解るように
1回転間を例えばあパルスの信号に変換させ1〜12パ
ルスの時はバイト10AのリレーR1が作動し、13〜
24パルスの時にはバイト10BのリレーR2が作動し
、5〜36パル久の時にはバイト10CのリレーR3が
作動するようにする。
To explain in detail the operating angle of the probes, as shown in FIGS. 9 and 10, the position of the fixed proximity switch S1 is set to the base point O of 0 degrees, and when the three flaw detection probes rotate, the probes In order to find out what angle position is at, for example, one rotation is converted into a pulse signal, and when it is 1 to 12 pulses, relay R1 of cutting tool 10A is activated, and 13 to 12 pulses are activated.
When there are 24 pulses, the relay R2 of the cutting tool 10B is activated, and when there are 5 to 36 pulses, the relay R3 of the cutting tool 10C is activated.

即ち、第す図に示すように疵深さ信号と疵の位置(距離
と角度)の信号の3つの信号を同期化させて各々のバイ
トの動作指命分送り、各々のバイトの動作は3つの信号
が同時に受けた時のみ動作することができるのである。
That is, as shown in Figure 2, three signals, a flaw depth signal and a flaw position (distance and angle) signal, are synchronized and sent for the operation instruction of each byte, and the operation of each byte is 3 times. It can only operate when two signals are received at the same time.

また、表面疵が隣り合う場合、又はバイトの切削範囲の
中間に存在する場合は、隣り合う2個以上のバイトが作
動して表面疵を切削除去可能である。
Further, when surface flaws are adjacent to each other or are present in the middle of the cutting range of the cutting tools, two or more adjacent cutting tools can be operated to cut and remove the surface flaws.

例えば第8図(A)に示すPの部分に疵が存在する場合
にはバイト10CとIOAとが作動して切削するのであ
り、PIの部分に存在する場合には、バイトIOA 、
 IOBが作動し、同様にしてP2の場合にはバイトI
OC、IOBが作動し切削するのであり、各バイトIO
A 、 IOB 、 IOCの作動範囲(切込深さ、切
削角度)は常に一定であることから、隣り合う2個以上
のバイトが作動した場合でも所定深さ以上切削すること
がないのである。
For example, if a flaw exists in the part P shown in FIG. 8(A), the cutting tool 10C and IOA operate to cut it, and if it exists in the part PI, the cutting tool IOA,
IOB is activated, and in the same way, in the case of P2, byte I
OC and IOB operate and cut, and each byte IO
Since the operating ranges (depth of cut, cutting angle) of A, IOB, and IOC are always constant, even if two or more adjacent cutting tools operate, cutting will not exceed a predetermined depth.

(発明の効果) 本発明は以上詳述したように独立して進退動作する3個
以上の切削バイトIOA 、 IOB 、 IOCは。
(Effects of the Invention) As described in detail above, the present invention has three or more cutting tools IOA, IOB, and IOC that move forward and backward independently.

ダイスガイド8A、8B、8C内を通過案内しなから被
削体2を切削するので、従来受ローラで切削反力を受け
るときの切削バイトと受はローラ回転中心の蛾かしい位
置合せが不要で被削体の横振れによる弐面疵の取り残し
、切削面形状の不具合などがなく、かつ細物材の切削深
さも安定する。
Since the workpiece 2 is cut while being guided through the die guides 8A, 8B, and 8C, there is no need for complicated alignment of the cutting tool and the receiver at the center of rotation of the roller, which is conventionally required when receiving a cutting reaction force using a receiving roller. There are no leftover flaws or defects in the shape of the cut surface due to lateral vibration of the workpiece, and the cutting depth of thin materials is also stable.

このように本発明によれば、表面疵切削時にも被削体の
振れがなく過材が安定しており表面疵自動切削における
品質の安定、向上が期待できる。
As described above, according to the present invention, there is no runout of the workpiece even during surface flaw cutting, and the excess material is stable, so that quality stability and improvement in automatic surface flaw cutting can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成を示す説明図、第2図は切削
マシンの正面図、第3図は同一部の詳細を示す牛久91
1面図、第4図は第2図のA−A断面図、第5図(A)
は第2図a部の拡大囚、第5図(B)は第5図(A)正
面図のB−B断面図、第6図(A)はダイスガイド断面
内に潤滑剤送入孔を貫設した一実施例の説明図、第6図
(B)は同上C−C1fr面図、第7図は引抜き挾持ダ
イスガイドの説明図、第8図(A)、  (B)は切削
前と切削中のそれぞれの切削バイトと被削体の対応関係
を示す説明図 89図から第11図は制御装置における
制御手段を示し、第9図は素線、バイト、回転プローブ
の相関図、第10図はバイトとパルス信号の説明図、第
11図はそのリレー図である。 2は被削体(素線)、3は探傷器、4は速度計、5は制
御装置、6は切削マシン、7.7A、7B。 7Cは駆動装置、8A、8B、8Cはダイスガイド、9
はダイス箱、IOA 、 IOB 、 IOCは切削バ
イト、θは潤滑口、Pは潤滑剤の送入孔、Qは潤滑溝。 特許出願人 新日本製鉄株式会社 ■2図 ■3同 ヤ+図 ヤ左図(△) b 左j図(8) ケ6目値) k!6目(B) ヤ7目 Ng鄭A)#8園(I5) に7!A ヤ/θ圓 に//同
Figure 1 is an explanatory diagram showing the overall configuration of the present invention, Figure 2 is a front view of the cutting machine, and Figure 3 is the Ushiku 91 showing details of the same part.
1 side view, Figure 4 is a sectional view taken along line A-A in Figure 2, Figure 5 (A)
Figure 5 (B) is an enlarged view of part a in Figure 2, Figure 5 (B) is a sectional view taken along line B-B of the front view of Figure 5 (A), and Figure 6 (A) is an enlarged view of the lubricant inlet hole in the cross section of the die guide. An explanatory diagram of an example in which the penetrating device is installed, FIG. 6(B) is a C-C1fr side view of the same as above, FIG. 7 is an explanatory diagram of the drawing clamp die guide, and FIGS. An explanatory diagram showing the correspondence between each cutting tool and the workpiece during cutting. FIG. 89 to FIG. 11 show the control means in the control device, FIG. The figure is an explanatory diagram of the bite and pulse signals, and FIG. 11 is a relay diagram thereof. 2 is a workpiece (wire), 3 is a flaw detector, 4 is a speed meter, 5 is a control device, 6 is a cutting machine, 7.7A, 7B. 7C is a drive device, 8A, 8B, 8C are die guides, 9
is the die box, IOA, IOB, and IOC are the cutting tools, θ is the lubrication port, P is the lubricant feed hole, and Q is the lubrication groove. Patent applicant: Nippon Steel Corporation ■2 Figure ■3 Same ya + Figure ya left figure (△) b Left j figure (8) ke 6th scale value) k! 6th (B) Ya 7th Ng Zheng A) #8 Garden (I5) 7! A ya/θen//same

Claims (1)

【特許請求の範囲】 1)線あるいは棒状の被削体(素線)の表面疵について
長手方向並びに円周方向に疵位置を検出する探傷器と、
被削体の走行速度を検出する速度検出器と、これら探傷
器および速度検出器から情報を受けて作動する切削バイ
トにより被削体の疵を切削除去する棒線材表面疵自動切
削装置において、被削体の直径とほぼ等しい最小内径を
有し、且つ切削バイトが被削体に向かう際切削バイトが
干渉する部分を切欠したダイスガイドが、該被削体の走
行通路長手方向に間隔をおいて設けられ、該ダイスガイ
ドと対応する位置に先端が凹入状の切刃を有する切削バ
イトが被削体に向かってそれぞれ独立して進退自在に設
けられ、該切削バイトは被削体の回わりにあって、且つ
被削体の軸方向にずらされて3組以上配置されており、
さらに該切削バイトのそれぞの切刃は切削時において被
削体の軸方向から見ると周方向に互に重なり合う部分が
形成されて、被削体の全周をかこみうるようにされてい
ることを特徴とする棒線材の表面疵自動切削装置。 2)ダイスガイド断面内に潤滑剤の送入孔を貫設したこ
とを特徴とする特許請求の範囲第1項記載の棒線材の表
面疵自動切削装置。 3)ダイスガイドの孔の内径が被削体の直径より小とし
て設けたことを特徴とする特許請求の範囲第1項記載の
棒線材の表面疵自動切削装置。
[Claims] 1) A flaw detector for detecting the position of surface flaws in the longitudinal direction and circumferential direction of a wire or rod-shaped workpiece (wire);
Automatic cutting equipment for bar and wire surface flaws removes flaws on the workpiece using a speed detector that detects the traveling speed of the workpiece, and a cutting tool that operates upon receiving information from these flaw detectors and speed detectors. A die guide having a minimum inner diameter approximately equal to the diameter of the workpiece and having a cutout portion where the cutting tool interferes when the cutting tool moves toward the workpiece is spaced at intervals in the longitudinal direction of the travel path of the workpiece. A cutting tool having a cutting edge with a recessed tip at a position corresponding to the die guide is provided so as to be able to move forward and backward independently toward the workpiece, and the cutting tool moves around the workpiece. and three or more sets are arranged offset in the axial direction of the workpiece,
Furthermore, each of the cutting edges of the cutting tool is formed with a portion that overlaps with the other in the circumferential direction when viewed from the axial direction of the workpiece during cutting, so that it can encircle the entire circumference of the workpiece. An automatic cutting device for surface flaws on rods and wires. 2) The automatic surface flaw cutting device for rods and wires according to claim 1, characterized in that a lubricant inlet hole is provided in the cross section of the die guide. 3) The automatic surface flaw cutting device for rods and wire rods according to claim 1, wherein the inner diameter of the hole in the die guide is smaller than the diameter of the workpiece.
JP27645486A 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material Granted JPS63134108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27645486A JPS63134108A (en) 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27645486A JPS63134108A (en) 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material

Publications (2)

Publication Number Publication Date
JPS63134108A true JPS63134108A (en) 1988-06-06
JPH0431803B2 JPH0431803B2 (en) 1992-05-27

Family

ID=17569660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27645486A Granted JPS63134108A (en) 1986-11-21 1986-11-21 Automatic cutting device for surface flaw of bar wire material

Country Status (1)

Country Link
JP (1) JPS63134108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196961A (en) * 1989-12-26 1991-08-28 Takano Kikai:Kk Cutting attachment
JPH0482666A (en) * 1990-07-24 1992-03-16 Takano Kikai:Kk Flaw removing device for rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596721A (en) * 1979-01-17 1980-07-23 Philips Nv Receiver
JPS5796721A (en) * 1980-12-05 1982-06-16 Nippon Koshuha Kogyo Kk Control method and device of automatically cutting surface flaw in linear or bar-shaped material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596721A (en) * 1979-01-17 1980-07-23 Philips Nv Receiver
JPS5796721A (en) * 1980-12-05 1982-06-16 Nippon Koshuha Kogyo Kk Control method and device of automatically cutting surface flaw in linear or bar-shaped material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196961A (en) * 1989-12-26 1991-08-28 Takano Kikai:Kk Cutting attachment
JPH0482666A (en) * 1990-07-24 1992-03-16 Takano Kikai:Kk Flaw removing device for rod

Also Published As

Publication number Publication date
JPH0431803B2 (en) 1992-05-27

Similar Documents

Publication Publication Date Title
TW353781B (en) Wire saw and method for cutting wafers from a workpiece
CA1290241C (en) Machine for slitting metal sheet
GB1598849A (en) Shearing of rapidly moving roller stock
WO1991008076A1 (en) Apparatus and method for cutting mults from billets
GB1494575A (en) Pipe machining apparatus
CN106044313A (en) Efficient deburring system for stainless steel strip
JPH04226840A (en) Apparatus for letting electrode of spark erosion system cutting machine make a round of wheel
US3222494A (en) Quick-change electrodes system for spark-cutting apparatus
US20050028658A1 (en) Apparatus and method for slotting a pipe
JPS63134108A (en) Automatic cutting device for surface flaw of bar wire material
US5355753A (en) Method and arrangement for cutting cold pilgered tubes
CN207696287U (en) The ancillary equipment of multi-line cutting machine roller fluting
CN108188412A (en) The method of multi-line cutting machine roller fluting
US20020108478A1 (en) Apparatus and method for slotting a pipe
US4070739A (en) Manufacture of metal strip
US2409578A (en) Boring machine
JPS5950453B2 (en) Automatic cutting device for surface flaws on wire or bar-shaped materials
JPS6062453A (en) Surface scraping method of wire rod and device thereof
JPH07299625A (en) Method and device for cutting rodor tube material or tube bloom
US6617849B1 (en) Device for the nondestructive testing of especially hot bar shaped rolling material
US2601812A (en) Burr remover
SU872089A1 (en) Device for cutting tubes to lengths
JPS6334012A (en) Automatic cutting device for surface fault of wire rod
US4435893A (en) Method of manufacture of hydraulic cylinders utilizing bronze overlays for engaging surfaces
JP2873336B2 (en) Rolling roll cutting method and rolling roll cutting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term