JPS63131008A - Optical alignment method - Google Patents

Optical alignment method

Info

Publication number
JPS63131008A
JPS63131008A JP61275385A JP27538586A JPS63131008A JP S63131008 A JPS63131008 A JP S63131008A JP 61275385 A JP61275385 A JP 61275385A JP 27538586 A JP27538586 A JP 27538586A JP S63131008 A JPS63131008 A JP S63131008A
Authority
JP
Japan
Prior art keywords
mask
wafer
alignment
optical
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61275385A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kitamura
北村 芳隆
Masaki Yamabe
山部 正樹
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61275385A priority Critical patent/JPS63131008A/en
Publication of JPS63131008A publication Critical patent/JPS63131008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To increase an S/N ratio and to perform highly reliable alignment by eliminating the noise beam to a beam detector, by intermittently irradiating each alignment mark with laser beam in timings different from each other. CONSTITUTION:A plurality of diffraction lattices 11-13 on a wafer 1 corresponding to a plurality of the linear Fresnel zone plates 21-23 on a mask 2 are respectively irradiated with the laser beam from a laser beam source 31 through said Fresnel zone plates 21-23 and the beams obtained therefrom are respectively detected by beam detectors 71-73 to perform the relative alignment of the wafer 1 and the mask 2. The laser beam from the beam source 31 is inputted to the three-path optical switch 32 controlled by a control circuit 33 and output irradiation is performed in timings different from each other. By this method, the lowering in the S/N ratio of a detection signal caused by that the scattering beams from both of the wafer 1 and the mask 2 are incident to the beam detectors 71-73 not corresponding thereto is prevented and irradiation beam is made detectable only by the detectors 71-73 corresponding to each other to make highly reliable alignment possible.

Description

【発明の詳細な説明】 〔概  要〕 本発明は、マスク上の複数のアライメントマークを介し
てウェハー上の複数のアライメントマークをそれぞれレ
ーザ光で照射し、これによって得られた光をそれぞれの
光検出器で検出することによりウェハーとマスクの相対
位置合わせを行う光学的アライメント方法において、マ
スクおよびウェハーからの散乱光がこれと対応していな
い光検出器に入射することによる検出信号のS/N比の
低下を防止するために、上記それぞれのレーザ光を互い
に異なるタイミングで断続的に照射することにより、互
いに対応する光検出器のみで検出できるようにし、信頼
性の高い位置合わせを可能にしたものである。
[Detailed Description of the Invention] [Summary] The present invention irradiates a plurality of alignment marks on a wafer with a laser beam through a plurality of alignment marks on a mask, and uses the light obtained thereby to irradiate each of the alignment marks with a laser beam. In an optical alignment method that performs relative positioning of a wafer and a mask by detecting with a detector, the S/N of the detection signal is caused by the scattered light from the mask and wafer entering a non-corresponding photodetector. In order to prevent the ratio from decreasing, each of the above laser beams is intermittently irradiated at different timings, making it possible to detect each other only with the corresponding photodetectors, making highly reliable alignment possible. It is something.

〔産業上の利用分野〕[Industrial application field]

本発明は、例えばX線露光等によるプロキシミティバタ
ン転写等を行う際にマスクとウェハーの相対位置を合わ
せるための光学的アライメント方法に関する。
The present invention relates to an optical alignment method for aligning the relative positions of a mask and a wafer when performing, for example, proximity transfer using X-ray exposure or the like.

〔従来の技術〕[Conventional technology]

第4図および第5図に従来の光学的アライメント方法を
示す、この方法は、まず予めウェハー1上の周辺部の複
数箇所(第4図では3箇所)に、それぞれ直線状に配列
された回折格子11〜13を形成しておくと共に、マス
クz上にも上記回折格子11−13と対応する箇所にそ
れぞれリニアフレネルゾーンプレート21〜23を形成
しておく。そして、同一波長の3本のレーザ光l、〜l
A conventional optical alignment method is shown in FIGS. 4 and 5. In this method, first, linearly arranged diffraction patterns are placed in advance at multiple locations (three locations in FIG. 4) on the periphery of the wafer 1. In addition to forming the gratings 11-13, linear Fresnel zone plates 21-23 are also formed on the mask z at locations corresponding to the diffraction gratings 11-13, respectively. Then, three laser beams l, ~l with the same wavelength
.

を同時にリニアフレネルゾーンプレート21〜23を介
してウェハー1上に直線状に集光させる。
At the same time, the light is focused linearly onto the wafer 1 via the linear Fresnel zone plates 21 to 23.

すると、ウェハー1上には各リニアフレネルゾーンプレ
ート21〜23毎に輝vALができるので(第5図)、
この輝線りが回折格子11〜13を通るようにウェハー
lもしくはマスク2を適宜移動させる。続いて、これに
よって得られる回折光1、〜1.を光検出器(不図示)
で検出することにより、ウェハーlとマスク2のX、Y
、θ方向の相対位置変位を知る。そこで、このようにし
て得られる上記相対位置変位が最小となるようにウェハ
ー1とマスク2の相対位置を動かすことにより、位置合
わせが完了する。
Then, a brightness vAL is formed on each of the linear Fresnel zone plates 21 to 23 on the wafer 1 (Fig. 5).
The wafer 1 or the mask 2 is appropriately moved so that the bright lines pass through the diffraction gratings 11 to 13. Subsequently, the diffracted lights 1, -1. A photodetector (not shown)
By detecting the X, Y of wafer l and mask 2
, the relative positional displacement in the θ direction is known. Therefore, alignment is completed by moving the relative positions of the wafer 1 and the mask 2 so that the above-mentioned relative positional displacement obtained in this manner is minimized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の光学的アライメント方法では、複数のアライ
メントマーク(回折格子11〜13、リニアフレネルゾ
ーンプレート21〜23)に対してレーザ光!、〜l、
がすべて同時に照射される。
In the conventional optical alignment method described above, a laser beam is applied to a plurality of alignment marks (diffraction gratings 11 to 13, linear Fresnel zone plates 21 to 23). ,~l,
are all irradiated at the same time.

そのため、ウェハー1およびマスク2からの散乱光が、
これと対応する光検出器以外の光検出器にもノイズ光と
して、正規の光と共に入射してしまう。しかも、上記レ
ーザ光1.−1.がすべで同一波長であるために、上記
ノイズ光を正規の光と区別して除去することは困難であ
る。従って、上記ノイズ光の影響で、光検出器の検出信
号のS/N比が著しく低下してしまい、正確な位置合わ
せができないという問題が生じていた。
Therefore, the scattered light from the wafer 1 and the mask 2 is
This light also enters photodetectors other than the corresponding photodetector as noise light together with regular light. Moreover, the laser beam 1. -1. Since they all have the same wavelength, it is difficult to distinguish the noise light from normal light and remove it. Therefore, due to the influence of the noise light, the S/N ratio of the detection signal of the photodetector is significantly lowered, resulting in a problem that accurate positioning cannot be performed.

本発明は、上記問題点に鑑み、光検出器へのノイズ光を
なくしてS/N比を増加させ、信頼性の高い位置合わせ
を可能にする光学的アライメント方法を提供することを
目的とする。
In view of the above problems, an object of the present invention is to provide an optical alignment method that eliminates noise light to a photodetector, increases the S/N ratio, and enables highly reliable alignment. .

〔問題点を解決するための手段〕 本発明の光学的アライメント方法は、ウェハー及びマス
ク上の複数のアライメントマーク上へのレーザ光の照射
を、それぞれ互いに異なるタイミングで断続的に行うよ
うにしたことを特徴とする・〔作  用〕 各了うンメントマークに対してレーザ光を上記のように
それぞれ互いに異なるタイミングで断続的に照射すれば
、それぞれの光検出器への入射光も上記タイミングで断
続的に得られる。よって、任意の1つのアライメントマ
ーク上からの光がそれと対応する光検出器で検出されて
いる間は、他のアライメントマーク上にレーザ光が照射
されることがないので、そこからの散乱光がノイズ光と
して上記光検出器で検出されるようなことはない。
[Means for solving the problem] The optical alignment method of the present invention is such that laser light is intermittently irradiated onto a plurality of alignment marks on a wafer and a mask at mutually different timings. Features: [Function] If laser light is intermittently irradiated to each of the recognition marks at different timings as described above, the incident light to each photodetector will also be intermittently at the above timings. can be obtained. Therefore, while the light from above any one alignment mark is being detected by the corresponding photodetector, the laser light will not be irradiated onto other alignment marks, so the scattered light from there will be The light will not be detected by the photodetector as noise light.

従って、各光検出器における検出信号のS/N比が大き
く、位置合わせの信頼性は著しく高まる。
Therefore, the S/N ratio of the detection signal in each photodetector is large, and the reliability of alignment is significantly increased.

〔実 施 例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を適用した光学系およびそ
の制御系の構成図である。
FIG. 1 is a configuration diagram of an optical system and its control system to which an embodiment of the present invention is applied.

本実施例では、まず第4図および第5図に示した従来の
方法と同様に、予めウェハー1上の複数箇所(第1図で
は3箇所)にそれぞれ回折格子11〜13を形成してお
くと共に、マスク2上にも上記回折格子11〜13と対
応する箇所にそれぞれリニアフレネルゾーンプレート2
1〜23を形成しておく。
In this embodiment, first, diffraction gratings 11 to 13 are formed in advance at multiple locations (three locations in FIG. 1) on the wafer 1, as in the conventional method shown in FIGS. 4 and 5. At the same time, linear Fresnel zone plates 2 are also provided on the mask 2 at locations corresponding to the diffraction gratings 11 to 13, respectively.
Form numbers 1 to 23 in advance.

そして、例えば半導体レーザ等の1個のレーザ光源31
からレーザ光を出力し、このレーザ光を光ファイバf0
を介して3路光スイツチ32に送る。この3路光スイツ
チ32は、1つの入力光を3つの光路g+ 、gz 、
gsに順次切換えて出力可能な光スイッチであり、その
切換えのタイミングは制御回路33によって制御されて
いる。
For example, one laser light source 31 such as a semiconductor laser is provided.
outputs laser light from the optical fiber f0.
The signal is sent to the 3-way optical switch 32 via the 3-way optical switch 32. This three-way optical switch 32 routes one input light to three optical paths g+, gz,
It is an optical switch that can sequentially switch to and output gs, and the switching timing is controlled by the control circuit 33.

上記制御回路33では、まず発振器331で出力された
クロック信号に基づき、パルスドライバ332が、チャ
ネルセレクタ333を駆動する。
In the control circuit 33, first, the pulse driver 332 drives the channel selector 333 based on the clock signal output from the oscillator 331.

このチャネルセレクタ333は、コントローラ334か
ら出力された制御信号に従って、3路光スイツチ32の
電極32a、32bに電圧を印加する。上記制御信号は
、電極32a、32bを例えば第2図(a)に示すよう
に、オン(電圧印加時)、オフ(電圧非印加時)させる
ような信号である。
This channel selector 333 applies voltage to the electrodes 32a and 32b of the three-way optical switch 32 in accordance with the control signal output from the controller 334. The control signal is a signal that turns the electrodes 32a and 32b on (when voltage is applied) and off (when no voltage is applied), as shown in FIG. 2(a), for example.

このように電極32a、32bをオン、オフさせること
により、3路光スイツチ32へ入射したレーザ光を3つ
の光路gr 、gz 、gzに順次切換えて出力させる
ことができ、よってそれぞれの光路からは断続的に光が
出力することになる。この切換えのタイミングを、光の
出力時をオンとして第2図(b)に示す。すなわち、電
極32a、32bがいずれもオンしたときに光路g+が
オンし、次に電極32aのみをオンしたときに光路g2
がオンし、続いて電極32aがオフしたときに光路g、
がオンする。
By turning the electrodes 32a and 32b on and off in this manner, the laser beam incident on the three-way optical switch 32 can be sequentially switched to three optical paths gr, gz, and gz and output, so that the laser beam is output from each optical path. Light will be output intermittently. The timing of this switching is shown in FIG. 2(b) with the light output turned on. That is, when both electrodes 32a and 32b are turned on, optical path g+ is turned on, and when only electrode 32a is turned on, optical path g2 is turned on.
is turned on and then when the electrode 32a is turned off, the optical path g,
turns on.

次に、上記3路光スイツチ32の光路g+、gz 、g
zから、上記のように互いに異なるタイミングで順次出
力されたレーザ光は、それぞれ光ファイバf、、f、、
f、を介してファイバコリメータ41.42.43に導
かれ、ここで平行光線であるレーザ光121.12□、
123に変換される。
Next, the optical paths g+, gz, g of the three-way optical switch 32 are
The laser beams sequentially output from z at different timings as described above are connected to optical fibers f, , f, , respectively.
f, to the fiber collimator 41.42.43, where the parallel light beam 121.12□,
123.

これらのレーザ光も、上記3路光スイツチ32の切換え
タイミングに基づき、第2図(b)に示した光路g3、
gz、g3のオン、オフと同じタイミングで断続的に得
られる。続いて上記レーザ光12い12□、123をそ
れぞれミラー51.52.53でマスク2の方向へ、反
射させ、マスク2上のリニアフレネルゾーンプレート2
1.22.23を介してウェハー1上の回折格子11.
12.13上に上記タイミングでそれぞれ別々に照射す
る。すると、第5図に示したと同様にして回折格子11
.12.13上に直線状の輝線が順次でき、そこからの
回折光13い 37.133がそれぞれ別々のりイミン
グで得られる。
These laser beams also follow the optical paths g3 and 3 shown in FIG. 2(b) based on the switching timing of the three-path optical switch 32.
It is obtained intermittently at the same timing as gz and g3 are turned on and off. Next, the laser beams 12, 12□, and 123 are reflected by mirrors 51, 52, and 53, respectively, toward the mask 2, and the linear Fresnel zone plate 2 on the mask 2 is reflected.
1.22.23 on the wafer 1 through the grating 11.
12.13 are irradiated separately at the above timing. Then, the diffraction grating 11 is formed in the same manner as shown in FIG.
.. Linear emission lines are formed one after another on 12.13, and diffracted lights 13 and 37.133 from these lines are obtained at different timings.

そこで、上記回折光β、1、Il’rz、13’3をミ
ラー61.62.63で反射させた後、それぞれ対応す
る光検出器(例えばPINフォトダイオード等)71.
72.73で検出する。この時、いずれか1つの回折光
がこれと対応する光検出器で検出されている間は、それ
以外の箇所にレーザ光が照射されることがないので、そ
こからの散乱光がノイズ光として上記光検出器で検出さ
れるようなことがない。従って、光検出器71.72.
73によって得られるいずれの検出信号も、第2図(C
)に示すように、上記のようなノイズ光による影響を受
けることなく、極めて大きなS/N比を持つことができ
る。
Therefore, after reflecting the diffracted lights β, 1, Il'rz, 13'3 by the mirrors 61, 62, 63, the corresponding photodetectors (for example, PIN photodiodes, etc.) 71.
Detected at 72.73. At this time, while any one of the diffracted lights is being detected by the corresponding photodetector, the laser light will not be irradiated to any other location, so the scattered light from there will be used as noise light. Nothing will be detected by the photodetector. Therefore, the photodetectors 71.72.
Any detection signal obtained by 73 is shown in Fig. 2 (C
), it is possible to have an extremely high S/N ratio without being affected by noise light as described above.

このようにして非常にS/N比の大きな検出信号が得ら
れるので、これらの検出信号からウェハー1とマスク2
の極めて正確な相対位置変位を知ることができる。そこ
で、このようにして得られる上記相対位置変位が最小と
なるようにウェハー1とマスク2の相対位置を動かすこ
とにより、非常に信頼性の高い位置合わせが可能になる
In this way, detection signals with a very large S/N ratio can be obtained, so wafer 1 and mask 2 can be detected from these detection signals.
It is possible to know the extremely accurate relative position displacement of Therefore, by moving the relative positions of the wafer 1 and the mask 2 so that the above-mentioned relative positional displacement obtained in this manner is minimized, extremely reliable alignment becomes possible.

なお、本実施例では一体的な3路光スイツチ32を用い
たが、この代りに2つの2路光スイツチを組み合わせて
用いるようにしてよもい。
In this embodiment, an integrated three-way optical switch 32 is used, but a combination of two two-way optical switches may be used instead.

次に、本発明の他の実施例を適用した光学系およびその
制御系の構成を第3図に示す。本実施例は、第1図にお
ける1個のレーザ光源31.3路光スイツチ32および
制御回路33等の代わりに、3個のレーザ光源(例えば
半導体レーザ等)81.82.83とレーザ駆動制御回
路80を用いたものである。
Next, FIG. 3 shows the configuration of an optical system and its control system to which another embodiment of the present invention is applied. In this embodiment, instead of one laser light source 31, three-way light switch 32, control circuit 33, etc. in FIG. The circuit 80 is used.

上記レーザ駆動制御回路80は、3つのレーザ光源81
.82.83からそれぞれレーザ光e4い14!、14
.をパルス的に出力させると共に、これらのレーザ光J
41.14□、143の発光時間が互いに重ならず、そ
れぞれ異なるタイミング(例えば第2図(blに示した
ようなタイミング)で順次出力されるように制御する。
The laser drive control circuit 80 includes three laser light sources 81
.. Laser beam e4 and 14 from 82.83 respectively! , 14
.. These laser beams J
The light emitting times of 41.14□ and 143 are controlled so that they do not overlap with each other and are sequentially output at different timings (for example, the timings shown in FIG. 2 (bl)).

この後は、上記実施例と同様に、レーザ光14い14□
、”41をマスク2上のリニアフレネルゾーンプレート
21.22.23を介してウェハー1上の回折格子11
.12.13上に上記タイミングでそれぞれ別々に照射
し、その回折光!、1152、fs3をそれぞれ対応す
る光検出器71.72.73で検出する。すると、この
時に光検出器71.72.73で得られる検出信号は、
上記実施例と同様な理由により極めて大きなS/N比で
持つことができるので、その後にこの検出信号に基づい
て行われるウェハー1とマスク2の相対位置合わせは、
非常に信頼性の高いものとなる。
After this, similarly to the above embodiment, the laser beams 14 and 14□
, 41 to the diffraction grating 11 on the wafer 1 via the linear Fresnel zone plate 21, 22, 23 on the mask 2.
.. 12.13 The diffracted light is irradiated separately at the above timing! , 1152, and fs3 are detected by corresponding photodetectors 71, 72, and 73, respectively. Then, the detection signals obtained by the photodetectors 71, 72, and 73 at this time are
For the same reason as in the above embodiment, an extremely high S/N ratio can be achieved, so that the relative positioning of the wafer 1 and the mask 2, which is subsequently performed based on this detection signal, is
It becomes extremely reliable.

なお、上記各実施例においては、ウエノX−1とマスク
2上にそれぞれ回折格子11〜13とリニアフレネルゾ
ーンプレート21〜23を設け、これらをアライメント
マークとして用いたが、これらは望ましい一例であって
、本発明においては、ウェハー1とマスク2との相対位
置変位を光学的に検出でき得るもであればどのようなア
ライメントマークを用いてもよい。
In each of the above embodiments, the diffraction gratings 11 to 13 and the linear Fresnel zone plates 21 to 23 were provided on the Ueno X-1 and the mask 2, respectively, and these were used as alignment marks, but these are only desirable examples. In the present invention, any alignment mark may be used as long as the relative positional displacement between the wafer 1 and the mask 2 can be detected optically.

また、上記各実施例ではアライメントマーク(回折格子
11〜13、リニアフレネルゾーンプレート21〜23
)をそれぞれ互いに対応して3箇所に設けたが、4箇所
以上に設けるようにしてもよい。この場合、設けたアラ
イメントマークの数に応じて、照射されるレーザ光の本
数も増やすようにする。
In addition, in each of the above embodiments, alignment marks (diffraction gratings 11 to 13, linear Fresnel zone plates 21 to 23)
) were provided at three locations corresponding to each other, but they may be provided at four or more locations. In this case, the number of laser beams to be irradiated is increased according to the number of alignment marks provided.

〔発明の効果〕〔Effect of the invention〕

本発明の光学的アライメント方法によれば、マスクおよ
びウェハーからの散乱光がこれと対応していない光検出
器にノイズ光として入射するのをな(すことができ、こ
れにより検出信号のS/N比を著しく増大させることが
できたので、極めて信頼性の高い位置合わせを実現でき
るようになった。
According to the optical alignment method of the present invention, it is possible to prevent scattered light from the mask and wafer from entering a photodetector that does not correspond to it as noise light. Since we were able to significantly increase the N ratio, we were able to achieve extremely reliable alignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を適用した光学系およびその
制御系の構成図、 第2図(al〜(C)は同実施例におけるタイミングチ
ャート、 第3図は本発明の他の実施例を適用した光学系およびそ
の制御系の構成図、 第4図は従来の方法を適用した光学系の構成図、第5図
は第4図の部分拡大図である。 1°10ウエハー、 2・・・マスク、 11.12.13・・・回折格子、 21、22、23 ・・・リニアフレネルゾーンプレート、31・・・レー
ザ光源、 32・・・3路光スイツチ、 33・・・制御回路、 71.72.73・・・光検出器、 80・・・レーザ駆動制御回路、 81.82.83・・・レーザ光源。
Fig. 1 is a configuration diagram of an optical system and its control system to which an embodiment of the present invention is applied; Fig. 2 (al to (C) are timing charts in the same embodiment; Fig. 3 is another embodiment of the present invention) Fig. 4 is a block diagram of an optical system to which the conventional method is applied, and Fig. 5 is a partially enlarged view of Fig. 4. 1°10 wafer, 2 ... Mask, 11.12.13 ... Diffraction grating, 21, 22, 23 ... Linear Fresnel zone plate, 31 ... Laser light source, 32 ... Three-way optical switch, 33 ... Control Circuit, 71.72.73... Photodetector, 80... Laser drive control circuit, 81.82.83... Laser light source.

Claims (1)

【特許請求の範囲】 1)ウェハー(1)上およびマスク(2)上の互いに対
応する複数箇所にそれぞれアライメントマーク(11〜
13、21〜23)を設け、前記マスク上の複数のアラ
イメントマーク(21〜23)を介してこれと対応する
前記ウェハー上の複数のアライメントマーク(11〜1
3)上にそれぞれレーザ光を照射し、該レーザ光の照射
によって得られる光をそれぞれの光検出器(71〜73
)で検出して、その検出結果に基づき前記ウェハーと前
記マスクとの相対位置合わせを行なう光学的アライメン
ト方法において、 前記複数のアライメントマーク上への前記レーザ光の照
射をそれぞれ互いに異なるタイミングで断続的に行うこ
とを特徴とする光学的アライメント方法。 2)前記レーザ光は、1つのレーザ光源(31)から出
力されたレーザ光を、前記タイミングに基づいて複数の
光路を順次切変える光スイッチ(32)を介すことによ
って得ることを特徴とする特許請求の範囲第1項記載の
光学的アライメント方法。 3)前記レーザ光は、前記マスク上のアライメントマー
クの数と同数のレーザ光源(81〜83)を前記タイミ
ングに基づいて順次発光させることによって得ることを
特徴とする特許請求の範囲第1項記載の光学的アライメ
ント方法。 4)前記レーザ光源は半導体レーザであることを特徴と
する特許請求の範囲第2項または第3項記載の光学的ア
ライメント方法。 5)前記ウェハー上および前記マスク上のアライメント
マークはどちらも3箇所以上に設けられていることを特
徴とする特許請求の範囲第1項乃至第4項のいずれか1
つに記載の光学的アライメント方法。 6)前記ウェハー上のアライメントマークは回折格子(
11〜13)であることを特徴とする特許請求の範囲第
1項乃至第5項のいずれか1つに記載の光学的アライメ
ント方法。7)前記レーザ光の照射によって得られる前
記光は回折光であることを特徴とする特許請求の範囲第
6項記載の光学的アライメント方法。 8)前記マスク上のアライメントマークはリニアフレネ
ルゾーンプレート(21〜23)であることを特徴とす
る特許請求の範囲第1項乃至第7項のいずれか1つに記
載の光学的アライメント方法。 9)前記光検出器はPINフォトダイオードであること
を特徴とする特許請求の範囲第1項乃至第8項のいずれ
か1つに記載の光学的アライメント方法。
[Claims] 1) Alignment marks (11-
13, 21-23), and a plurality of alignment marks (11-1) on the wafer corresponding to the plurality of alignment marks (21-23) on the mask are provided.
3) A laser beam is irradiated onto each of the above, and the light obtained by the irradiation of the laser beam is transmitted to each of the photodetectors (71 to 73).
) and performs relative alignment between the wafer and the mask based on the detection result, wherein the laser light is irradiated onto the plurality of alignment marks intermittently at different timings. An optical alignment method characterized by performing. 2) The laser light is obtained by passing the laser light output from one laser light source (31) through an optical switch (32) that sequentially switches a plurality of optical paths based on the timing. An optical alignment method according to claim 1. 3) The laser beam is obtained by sequentially causing the same number of laser light sources (81 to 83) as the number of alignment marks on the mask to emit light based on the timing, according to claim 1. optical alignment method. 4) The optical alignment method according to claim 2 or 3, wherein the laser light source is a semiconductor laser. 5) Any one of claims 1 to 4, wherein alignment marks on the wafer and on the mask are both provided at three or more locations.
Optical alignment method described in. 6) The alignment mark on the wafer is a diffraction grating (
11 to 13). The optical alignment method according to any one of claims 1 to 5. 7) The optical alignment method according to claim 6, wherein the light obtained by irradiation with the laser beam is diffracted light. 8) The optical alignment method according to any one of claims 1 to 7, wherein the alignment mark on the mask is a linear Fresnel zone plate (21-23). 9) The optical alignment method according to any one of claims 1 to 8, wherein the photodetector is a PIN photodiode.
JP61275385A 1986-11-20 1986-11-20 Optical alignment method Pending JPS63131008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61275385A JPS63131008A (en) 1986-11-20 1986-11-20 Optical alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61275385A JPS63131008A (en) 1986-11-20 1986-11-20 Optical alignment method

Publications (1)

Publication Number Publication Date
JPS63131008A true JPS63131008A (en) 1988-06-03

Family

ID=17554753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275385A Pending JPS63131008A (en) 1986-11-20 1986-11-20 Optical alignment method

Country Status (1)

Country Link
JP (1) JPS63131008A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167405A (en) * 1988-09-09 1990-06-27 Canon Inc Position detector
JPH0348703A (en) * 1989-07-17 1991-03-01 Canon Inc Position detector
WO2009084203A1 (en) * 2007-12-28 2009-07-09 Nikon Corporation Moving body driving method and apparatus, exposure method and apparatus, pattern forming method and apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR20190098071A (en) * 2018-02-13 2019-08-21 캐논 가부시끼가이샤 Detection apparatus, lithography apparatus, and method of manufacturing article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134830A (en) * 1982-12-30 1984-08-02 トムソン−セ−エスエフ Method and apparatus for optically arraying pattern on two close-up plane
JPS60187804A (en) * 1984-03-08 1985-09-25 Canon Inc Detecting apparatus of position

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59134830A (en) * 1982-12-30 1984-08-02 トムソン−セ−エスエフ Method and apparatus for optically arraying pattern on two close-up plane
JPS60187804A (en) * 1984-03-08 1985-09-25 Canon Inc Detecting apparatus of position

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02167405A (en) * 1988-09-09 1990-06-27 Canon Inc Position detector
JPH0348703A (en) * 1989-07-17 1991-03-01 Canon Inc Position detector
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5791230B2 (en) * 2007-12-28 2015-10-07 株式会社ニコン Moving body driving method and apparatus, exposure method and apparatus, pattern forming method and apparatus, and device manufacturing method
US8269945B2 (en) 2007-12-28 2012-09-18 Nikon Corporation Movable body drive method and apparatus, exposure method and apparatus, pattern formation method and apparatus, and device manufacturing method
WO2009084203A1 (en) * 2007-12-28 2009-07-09 Nikon Corporation Moving body driving method and apparatus, exposure method and apparatus, pattern forming method and apparatus, and device manufacturing method
KR20190098071A (en) * 2018-02-13 2019-08-21 캐논 가부시끼가이샤 Detection apparatus, lithography apparatus, and method of manufacturing article
JP2019140288A (en) * 2018-02-13 2019-08-22 キヤノン株式会社 Detection apparatus, lithographic apparatus, and article manufacturing method

Similar Documents

Publication Publication Date Title
JPS63131008A (en) Optical alignment method
CA2078732A1 (en) Displacement measuring device and displacement measuring method
KR910001671A (en) Optical pickup
US4187431A (en) Method for the adjustment of a semiconductor disc relative to a radiation mask in X-ray photolithography
JP3213552B2 (en) Home position detection device for encoder
JPS60144648A (en) Method and device for inspecting mask in order to detect defect
KR950012568A (en) Exposure equipment
JPS62140418A (en) Position detector of surface
JP2550989B2 (en) Alignment device
JP2808957B2 (en) Position detecting method and exposure apparatus using the same
SU1442834A1 (en) Photometric device
JP2005055360A (en) Photoelectric type encoder
JPH08292261A (en) Optical radar equipment
JPS62190724A (en) Alignment system
JPH04130245A (en) Particulate measuring apparatus
JP2001093169A (en) Optical pickup device
JPS6395317A (en) Position detector
JPS61264204A (en) Detector for height of parts
JPS63153411A (en) Shape measuring device
JP2795528B2 (en) Signal detection device
JPH09306831A (en) Position detecting device
JPS6046361B2 (en) alignment device
JPH01207602A (en) Position detecting device
JPH03238305A (en) Optical-type position measuring apparatus
JPH0476408A (en) Relative displacement detection method and its device