JPS63122906A - Apparatus for measuring thickness of film - Google Patents

Apparatus for measuring thickness of film

Info

Publication number
JPS63122906A
JPS63122906A JP26870886A JP26870886A JPS63122906A JP S63122906 A JPS63122906 A JP S63122906A JP 26870886 A JP26870886 A JP 26870886A JP 26870886 A JP26870886 A JP 26870886A JP S63122906 A JPS63122906 A JP S63122906A
Authority
JP
Japan
Prior art keywords
thickness
light
film thickness
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26870886A
Other languages
Japanese (ja)
Inventor
Akira Tsumura
明 津村
Akira Ono
明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26870886A priority Critical patent/JPS63122906A/en
Publication of JPS63122906A publication Critical patent/JPS63122906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the thickness of a membrane of which the thickness is changing even when the initial thickness thereof is not known, by simultaneously projecting two measuring lights different in a wavelength to the surface having the membrane formed thereto at an incident angle larger than a Brewster angle. CONSTITUTION:A wafer 13 is placed between the electrodes 11, 12 in an etching chamber 10 to remove the membrane on the wafer 13. Further, two floodlight projectors 14, 14a oscillating laser beams 15, 15a different in wavelength respectively are arranged so that the beams 15, 15a are simultaneously incident to the membrane formed on the wafer 13 at an angle larger than a Brewster angle by a wavelength synthesizer 8. The light waves (P-component) vibrating within the incident surface of the reflected beams 16 from the membrane and the light waves (S-component) vibrating in the direction vertical to the incident surface are shifted by a predetermined value in a phase to each other. Further, a beam receiver 26 for detecting the generation of plasma in the chamber 10 is arranged. By this constitution, the reflected beams 16 being the components P, S are received by beam receivers 17, 17a and guided to a measuring operation means 22 to form an interference wave form and the absolute thickness of the membrane is measured by an operation part 25 using a predetermined formula and, further, by calculating the leading end width of a through, thickness irregularity can be measured.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体の基板に形成される8 io、等の膜
厚の誤差は、歩留り向上のうえから最少限にとどめる必
要があるため、エツチング工程における薄膜の時間的膜
厚変化(以下、単に膜厚変化と指体する)および特定部
位における空間的膜厚変化である厚みむらが測定されて
いる。そこで、従来膜厚は、光の干渉を利用して測定し
ている。すなわち、薄膜に対して単色光(中心波長λ0
)を照射し、このとき薄膜からの反射光を受光してこの
受光量から膜厚を求めている。第12図は膜厚dに対す
る受光素工を示す図で、この受光素工は次式%式% ここで、nは薄膜の屈折率、dは膜厚、11は薄膜内部
の屈折角である。このように受光素工は正弦波的な変化
を示すものとなり、したがって、この周期数から膜厚お
よびその時間的変化が求められる。なお、第12図にお
いて受光量(エリは薄膜内部での多重反射を考慮しない
場合であり、(より)は多重反射を考慮した場合を示し
ている。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention aims to minimize errors in the thickness of 8 io films formed on semiconductor substrates in order to improve yield. Because of this necessity, temporal thickness changes (hereinafter simply referred to as film thickness changes) of thin films during the etching process and thickness unevenness, which is spatial film thickness changes at specific locations, are measured. Therefore, film thickness has conventionally been measured using optical interference. In other words, monochromatic light (center wavelength λ0
), and at this time, the reflected light from the thin film is received, and the film thickness is determined from the amount of received light. Figure 12 is a diagram showing the light-receiving element with respect to the film thickness d, and this light-receiving element is calculated using the following formula (%) where n is the refractive index of the thin film, d is the film thickness, and 11 is the refraction angle inside the thin film. . In this way, the light-receiving element exhibits a sinusoidal change, and therefore, the film thickness and its temporal change can be determined from this periodicity. In addition, in FIG. 12, the amount of received light (Eri indicates the case where multiple reflections inside the thin film are not taken into account, and (more) indicates the case where multiple reflections are taken into consideration.

一方、厚みむらは第13図に示す装置tKより測定され
ている。すなわち、 He −Neレーザ光を発振する
レーザ発振器からなる投光装置(1)から基盤(2)上
に形成された薄膜(3)に対して照射角θでレーザ光線
(4)を出力し、薄膜(3)の反射光(5)を複数並列
された受光素子(6−1)〜(6−1で受光してその受
光量に応じた各電気信号を増幅器(7)を通して信号処
理装置(8)に送っている。そして、この信号処理装置
(8)によって各受光素子(6−1)〜(6−11)の
受光量の違いから厚みむらが求められる。
On the other hand, the thickness unevenness was measured using a device tK shown in FIG. That is, a laser beam (4) is outputted from a light projection device (1) consisting of a laser oscillator that oscillates a He-Ne laser beam to a thin film (3) formed on a substrate (2) at an irradiation angle θ, The reflected light (5) of the thin film (3) is received by a plurality of light receiving elements (6-1) to (6-1) arranged in parallel, and each electric signal corresponding to the amount of received light is sent through an amplifier (7) to a signal processing device ( The signal processing device (8) then determines the thickness unevenness from the difference in the amount of light received by each of the light receiving elements (6-1) to (6-11).

しかしながら上記各測定では次のような問題がある。す
なわち、膜厚変化の測定では正弦的に変化する受光量の
周期を求めるために、受光量の最大値または最少値を検
出することになる。ところが、この最大値および最少値
付近での信号の変化幅が微小なためノイズ等が乗ると最
大値または最少値の検出が困難となってしまう。
However, each of the above measurements has the following problems. That is, in measuring film thickness changes, the maximum or minimum value of the amount of received light is detected in order to determine the period of the amount of received light that changes sinusoidally. However, since the range of change in the signal near the maximum and minimum values is minute, if noise or the like is added, it becomes difficult to detect the maximum or minimum value.

また、厚みむらの測定では、複数の受光素子(6−1)
〜(6−n)を用いるために装置全体が複雑化するとと
もに、各受光素子(6−1)〜(6−fl)の感度バラ
ツキによって測定精度が低下してしまう。
In addition, in the measurement of thickness unevenness, multiple light receiving elements (6-1)
-(6-n) makes the entire apparatus complicated, and measurement accuracy decreases due to variations in sensitivity of each light-receiving element (6-1) to (6-fl).

そこで、本出願人は、先願である特願昭60−1849
48号明細書において、膜厚性状を耐ノイズ性に強く且
つ簡単な構成で検出することのできる装置を開示した。
Therefore, the applicant has filed an earlier application, Japanese Patent Application No. 60-1849.
No. 48 discloses an apparatus capable of detecting film thickness properties with strong noise resistance and a simple configuration.

しかしながら、この装置では、膜厚を測定するために光
の干渉を利用し、検出した干渉信号の1周期が膜厚では
いくらになるか換算して周期の数を数えているため、当
該膜を削除する前の膜厚を1周期以内の精度知る必要が
あった。
However, this device uses optical interference to measure the film thickness, and counts the number of periods by converting one period of the detected interference signal into the film thickness. It was necessary to know the film thickness before deletion to an accuracy within one cycle.

(発明が解決しようとする問題点) 本発明は、上記笑情に基づいてなされたもので、その目
的とするところは、膜厚変化している薄膜の膜厚を初期
膜厚を知らなくとも正確に測定できる高精度の膜厚測定
装置を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made based on the above-mentioned sentiment, and its purpose is to measure the thickness of a thin film whose thickness is changing without knowing the initial film thickness. An object of the present invention is to provide a highly accurate film thickness measuring device that can accurately measure film thickness.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明は、投光
手段から波長の異なる二つの測定光を被膜形成された膜
面に対してプリ為−スタ角よりも大きな入射角をもって
同時投射し、膜面における反射光を受光手段により受光
して光電変換し得られた電気信号に基づいて各波長に対
応する反射光間の位相差を求め、この位相差に基づいて
検出する膜厚測定装置である。
(Means and effects for solving the problem) The present invention simultaneously projects two measuring beams of different wavelengths from a light projecting means onto a film surface on which a film is formed at an incident angle larger than a pre-star angle. Then, the reflected light on the film surface is received by a light receiving means and photoelectrically converted. Based on the electrical signal obtained, the phase difference between the reflected lights corresponding to each wavelength is determined, and the film thickness is detected based on this phase difference. It is a device.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は膜厚測定装置の構成図である。同図において叫
はエツチングチャンバであって、この内部の電極(lυ
、(13間にウェハー(1alが載置されてウェハー0
上の薄膜が削除される。(141、(14a)は例えば
それぞれ波長21.1重のレーザ光端、 (15a)を
発振するレーザ発振器からなる投光器であって、これら
投光器αも(14a)の設置位置は、波長合成器(8)
により同時に、レーザ光(Is、 (15a)がクエハ
ー峙上に形成される薄膜に対してブリ為−スタ角よりも
大きい角度で入射するものとなっている。上記波長合成
器(8)は、レーザ光(15,l)を入射して全反射す
る全反射ミラー(8a)と、この全反射ミラー(8りか
らのレーザ光(15りとレーザ光(5)を合成するビー
ムスプリッタ(8b)とからなっている。つまり、第2
図に示すように、雰囲気中の屈折率をnl、薄膜の屈折
率をn2として法線をKとすると、入射角五〇はブリ、
−スタ角よりも大きい角つまりIQ =ms  (n2
/nl ) 以上、例えば89°、85°である。このようにブリ。
FIG. 1 is a configuration diagram of a film thickness measuring device. In the same figure, the reference symbol is the etching chamber, and the electrode (lυ
, (Wafer (1al is placed between 13 and wafer 0
The top thin film is removed. (141, (14a) are projectors each consisting of a laser beam end with a wavelength of 21.1 times, and a laser oscillator that oscillates (15a), and these projectors α (14a) are also installed at a wavelength synthesizer ( 8)
At the same time, the laser beam (Is, (15a)) is incident on the thin film formed on the surface of the quefer at an angle larger than the Brister angle. A total reflection mirror (8a) that totally reflects the incident laser beam (15, l), and a beam splitter (8b) that combines the laser beam (15, l) from this total reflection mirror (8) and the laser beam (5). In other words, the second
As shown in the figure, if the refractive index in the atmosphere is nl, the refractive index of the thin film is n2, and the normal is K, then the incident angle of 50 is
- angle larger than star angle, that is, IQ = ms (n2
/nl) The above angles are, for example, 89° and 85°. Buri like this.

−スタ角よりも大きな角度で入射すると、その反射光(
Leは薄膜の入射面内で振動している光波をP成分、こ
のP成分に対して垂直に振動している光波をS成分とす
ると、これらP成分とS成分とは互いに位相がπだけず
れている。a7)、 (17m)は、プリズム、回折格
子などの分光器(9)を介して、これらP成分とS成分
の各反射波を受光してその受光量に応じた電気信号を出
力する受光器である。これら受光器(17)、 (17
1)の出力端には、増幅回路a8゜(181)が接続さ
れ、ざらにV/F変換回路(電圧−周波数変換回路) 
(11,(19す、E10変換回路(電気−光変換回路
)(4)、(20りが接続されている。
- If the incident angle is larger than the star angle, the reflected light (
Le is a light wave vibrating within the plane of incidence of the thin film as a P component, and a light wave vibrating perpendicular to this P component as an S component, and these P and S components are out of phase with each other by π. ing. a7), (17m) is a light receiver that receives each reflected wave of the P component and S component through a spectrometer (9) such as a prism or a diffraction grating, and outputs an electric signal according to the amount of received light. It is. These receivers (17), (17
An amplifier circuit a8° (181) is connected to the output terminal of 1), and a V/F conversion circuit (voltage-frequency conversion circuit) is connected to the output terminal of 1).
(11, (19), E10 conversion circuit (electrical-optical conversion circuit) (4), (20) are connected.

したがって、受光器(1?)、 (17a)から出力さ
れた電気信号は周波数信号に変換され、次に光信号に変
換されて光ファイバー3υ、 (21M)を伝播して測
定演算手段(2)、(2)田に送られるようになりてい
る。こt※の測定演算手段四、0ζ峠内ではO/F)変
換回路(光−電気変換回路) rzs、 Czs”)、
パルスカウンタ(至)、 (24a)により受光器(1
7)、(17りでの受光量に応じたディジタル信号が演
算部(至)K取込まれるようになっている。
Therefore, the electrical signal output from the photoreceiver (1?), (17a) is converted into a frequency signal, then converted into an optical signal, propagated through the optical fiber 3υ, (21M), and measured by the calculation means (2). (2) It is now sent to rice fields. Measurement and calculation means for this
The pulse counter (to), (24a) is used to detect the light receiver (1).
7), (17) A digital signal corresponding to the amount of light received is taken in by the calculation unit (to) K.

一方、エツチングチャンバー〇〇の側面には、エツチン
グチャンバ一部内でのグツズ、!発生を検出する受光器
(1)が設置され、この受光器部の出力端に増幅回路@
 、■/F変換回路(至)、E10変換回路口および光
ファイバー(至)を介して測定演算手段翰のO/E変換
回路C11)に接続されている。そして、パルスカウン
タ(至)を介して演算部(至)に接続されている。
On the other hand, on the side of the etching chamber 〇〇, there is some dirt inside a part of the etching chamber! A photoreceiver (1) is installed to detect the occurrence, and an amplifier circuit @ is installed at the output end of this photoreceiver section.
, ■/F conversion circuit (to), E10 conversion circuit and optical fiber (to) are connected to the O/E conversion circuit C11) of the measurement calculation means. And it is connected to the arithmetic unit (to) via the pulse counter (to).

さて、演算部(2)は取込んだディジタル信号から干渉
波形を求め、この干渉波形から絶体膜厚および薄膜のレ
ーザ光(15,(15a)が照射された部分の厚みむら
のいずれか一方または両方を演算して求める機能をもっ
ている。具体的には、絶対膜厚は波長λhλ宜に対応す
る反射光強度11.I、の位相差から求められ、厚みむ
らは谷の先端幅から求められる。
Now, the calculation unit (2) obtains an interference waveform from the captured digital signal, and from this interference waveform determines either the absolute film thickness or the thickness unevenness of the portion of the thin film irradiated with the laser beam (15, (15a)). Or, it has a function to calculate and calculate both.Specifically, the absolute film thickness is calculated from the phase difference of the reflected light intensity 11.I corresponding to the wavelength λhλ, and the thickness unevenness is calculated from the width of the tip of the valley. .

次に、上記の如く構成された装置の動作について説明す
る。投光器α荀から波長λ8.λ2のレーザ光QS、 
(15a)がウェハーa謙の薄膜に対してプリ具−スタ
角よりも大きな角度をもって同時に照射される。
Next, the operation of the apparatus configured as described above will be explained. Wavelength λ8 from the projector α. λ2 laser light QS,
(15a) is simultaneously irradiated onto the thin film of the wafer a at an angle larger than the pre-tooling angle.

すると、その反射光(LL (16a)はそのP成分と
S成分との間にπの位相ずれが生じる。したがって、受
光器αη、(17りは、分光器(9)にて分岐した反射
光(E!、 (16Jl)を受光してそれらの受光量に
応じた電気信号を出力する。この電気信号は増幅回路α
l、 (18りにより最適なレベルに増幅されて次のV
/F変換回路(Ll、(19りにより電圧レベルに応じ
て周波数信号に変換されてE10変換回路(至)、(2
0!1)に送られる。そして、光信号に変換されて光フ
ァイバーなυ。
Then, the reflected light (LL (16a)) has a phase shift of π between its P component and S component. Therefore, the light receiver αη, (17) is the reflected light branched at the spectrometer (9). (E!, (16Jl)) and outputs an electric signal according to the amount of received light.This electric signal is sent to the amplifier α
l, (18) is amplified to the optimal level and the next V
/F conversion circuit (Ll, (19) is converted into a frequency signal according to the voltage level and E10 conversion circuit (to), (2
0!1). Then, υ is converted into an optical signal and sent to an optical fiber.

(21j)内を伝播して測定演算手段四江諦りに入力さ
れる。この測定演算手段@、tH4ではO/E変換回路
(ハ)、(23りにより再び電圧信号に変換されさらに
パルスカウンタ(至)、 (24a)によって電圧レベ
ルに応じたディジタル信号に変換されて演算部(ハ)に
取込まれる。一方、受光器(ホ)はプラズマ発生を検出
する。つまり、エツチングチャンバーaQ内ではエツチ
ング処理が同一ウニバー(13に対して2回行なわれ、
その間にエツチングチャンバー1内のガス交換が行なわ
れる。したがって、プラズマ発生を検出して動作タイミ
ングを取っている。この受光器(ハ)から出力された電
気信号も増幅回路(5)、V/F変換回路(ハ)、E1
0変換回路Ω、光ファイバー(至)を通りて測定演算手
段四に入力する。そして、0/E変換回路Gυ、パルス
カウンタ0りを介して演算部(ハ)に取込まれる。
(21j) and is input to the measurement calculation means Shie Tari. This measurement calculation means @, tH4 converts it into a voltage signal again by the O/E conversion circuit (c), (23), and further converts it into a digital signal according to the voltage level by the pulse counter (24a), and calculates it. On the other hand, the photoreceiver (e) detects the generation of plasma.In other words, in the etching chamber aQ, the etching process is performed twice on the same uniform bar (13).
During this time, gas exchange within the etching chamber 1 is performed. Therefore, the operation timing is determined by detecting plasma generation. The electrical signal output from this photoreceiver (c) is also sent to an amplifier circuit (5), a V/F conversion circuit (c), and E1.
It passes through the 0 conversion circuit Ω and the optical fiber (to) and is input to the measurement calculation means 4. The signal is then taken into the arithmetic unit (c) via the 0/E conversion circuit Gυ and the pulse counter 0.

さて、演算部(ハ)は取込んだディジタル信号から干渉
波形を作成する。つまり、第3図に示す干渉波形Qであ
る。この干渉波形Qは上述したようにP成分と8成分と
の間にπの位相差が生じている。
Now, the calculation section (c) creates an interference waveform from the captured digital signal. In other words, this is the interference waveform Q shown in FIG. As described above, this interference waveform Q has a phase difference of π between the P component and the 8 components.

つまり、第4図に示すP成分と第5図に示すS成分とが
合成されたものとなっている。なお、第3図においてQ
oはレーザ光(至)、(15m)の入射角が「Oo」の
干渉波形である。しかして、演算部(ハ)にて、波長λ
1.λ鵞にそれぞれ対応する反射光強度I、、I、を算
出する。しかして、次式■により絶対膜厚りを求める(
第6図参照)。
In other words, the P component shown in FIG. 4 and the S component shown in FIG. 5 are combined. In addition, in Figure 3, Q
o is the interference waveform of the laser beam (to) (15 m) with an incident angle of "Oo". However, in the arithmetic unit (c), the wavelength λ
1. The reflected light intensities I, , I, respectively corresponding to the λ gooses are calculated. Then, calculate the absolute film thickness using the following formula (■)
(See Figure 6).

ところで一般に、薄膜に波長λの光束を入射角10で入
射した場合の反射光強度工は、次式■で示される。
By the way, in general, the reflected light intensity when a light beam of wavelength λ is incident on a thin film at an incident angle of 10 is expressed by the following equation (2).

工wf驚(1+r−鴎ψ) ・・・■ ただし、位相ψは、次式■で表わされる。Engineering wf surprise (1+r−鴎ψ)...■ However, the phase ψ is expressed by the following formula (■).

tp = 2rr (2n cxs ih/λ−N) 
  ・・・■ここで、rは、薄膜からの反射率、iは薄
膜の屈折角、Nは正の整数、rは干渉縞のビジビリティ
、l nは薄膜の屈折率である。上記式〇を膜厚りの関数と考
えた場合、Nだけは未知数となる。そこで、波長λ1.
λ宜を用いて位相差ψ1.ψ雪を求めると、次式■のよ
うになる。
tp = 2rr (2n cxs ih/λ-N)
...■ Here, r is the reflectance from the thin film, i is the refraction angle of the thin film, N is a positive integer, r is the visibility of interference fringes, and ln is the refractive index of the thin film. When considering the above formula 〇 as a function of film thickness, only N becomes an unknown quantity. Therefore, the wavelength λ1.
The phase difference ψ1. When calculating ψ snow, it becomes as shown in the following formula ■.

ここで、N1=N、、 O≦ψ1−ψ鵞〈2πとなるよ
うに、波長λ1.λ雪を選ぶと、前弐のを得ることがで
きる。
Here, the wavelength λ1. If you choose λ Snow, you can get the previous two.

一般に、波長λ8.への最適値は、測定したい膜厚近傍
で、11−I、が最大となるψ1−ψ、=πの場合であ
る。ちなみに、第7図は、入射角iが89°のときの、
υ上の8i0.g厚りと反射光強度工との関係を示して
いる。この図が示すように、膜厚りがOのときは、波長
が異なっても位相は等しい。また、膜厚りが大になるに
つれて二つの干渉信号の位相差が大きくなる。このこと
は、位相差つまり反射光強度11.I、の差を用いて、
膜厚りを求めることができることを示している。
Generally, the wavelength λ8. The optimal value for is ψ1-ψ, = π, where 11-I is maximum near the film thickness to be measured. By the way, Fig. 7 shows the case where the incident angle i is 89°.
8i0 on υ. It shows the relationship between g thickness and reflected light intensity. As this figure shows, when the film thickness is O, the phases are the same even if the wavelengths are different. Furthermore, as the film thickness increases, the phase difference between the two interference signals increases. This means that the phase difference or reflected light intensity 11. Using the difference of I,
This shows that the film thickness can be determined.

次に厚みむら測定について説明する。第8図に示すよう
に薄BI&(2)に±Δdの厚みむらがあると、これら
厚みむらムdに応じたレーザ光の光路差から各厚みに対
する位相差は、薄膜の屈折率”h、レーザ光の中心波長
を礼とすると、 n宜Δd(2)(11/λ。) づつずれる。なお、11は薄膜(ハ)内部での屈折角で
ある。したがりで、このような反射光を受光すると、第
9図に示すように各厚みの位相の光が合成)されたその
厚みむらΔd・2に比例した谷先端幅LSをもつ干渉波
形が得られる。したがって、演算部(ハ)はこの谷先端
幅L8を測定して厚みむらを求める。
Next, thickness unevenness measurement will be explained. As shown in FIG. 8, when there is a thickness unevenness of ±Δd in the thin BI&(2), the phase difference for each thickness is calculated from the optical path difference of the laser beam according to the thickness unevenness d, which is the refractive index of the thin film "h", If we take the center wavelength of the laser beam as a reference, it shifts by n Δd (2) (11/λ.). Note that 11 is the refraction angle inside the thin film (c). Therefore, such reflected light When receiving the light, as shown in FIG. 9, an interference waveform with a valley tip width LS proportional to the thickness unevenness Δd·2 obtained by synthesizing the light of the phase of each thickness is obtained. Measure this valley tip width L8 to find the thickness unevenness.

また、厚みむらが第10図に示すように連続している場
合の干渉波形は第11図のようになる。この場合も谷先
端@LSを求めることによって厚みむらが求められる。
Furthermore, when the thickness unevenness is continuous as shown in FIG. 10, the interference waveform becomes as shown in FIG. 11. In this case as well, the thickness unevenness can be determined by determining the valley tip @LS.

このように上記一実施例においては、レーザ光(へ)を
膜面に対してブリ為−スタ角以上に入射角をもって照射
し、これにより得られるP成分およびS成分の反射光α
eを受光して干渉波形を作成し、前式■を用いて絶対膜
厚を測定し、また谷先端幅LSを求めて厚みむらを測定
するので、簡単な構成のもので膜厚および厚みむらを測
定でき、かつ外部ノイズの影響を受けずに正確に測定で
きる。とくに、この実施例においては、二つの波長λ1
.λ2′を用いて干渉波形に表われる位相差から絶対膜
厚を求めるようにしているので、薄膜除去(エツチング
)前の膜厚を正確に求める必要がなくなる。
In this way, in the above-mentioned embodiment, the laser beam is irradiated onto the film surface with an incident angle equal to or greater than the Buri star angle, and the resulting reflected light α of the P component and the S component is
e is received to create an interference waveform, the absolute film thickness is measured using the previous formula (■), and the thickness unevenness is measured by finding the valley tip width LS. can be measured accurately without being affected by external noise. In particular, in this embodiment, two wavelengths λ1
.. Since the absolute film thickness is determined from the phase difference appearing in the interference waveform using λ2', there is no need to accurately determine the film thickness before thin film removal (etching).

なお、本発明は上記一実施例に限定されるものではなく
その主旨を逸脱しない範囲で変形してもよい。上記一実
施例では半導体製造用のエツチング、デポジット装置に
適用したが、その他の薄膜測定に適用してもよい。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. Although the above embodiment is applied to an etching and depositing apparatus for semiconductor manufacturing, it may also be applied to other thin film measurements.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、膜厚を耐ノイズ性
に強くかつ簡単な構成のもので正確に測定できる高精度
の膜厚測定装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a highly accurate film thickness measuring device that can accurately measure film thickness with strong noise resistance and a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる膜・厚測定装置の一実施例を示
す構成図、第2図はレーザ光入射角を示す図、第3図な
いし第5図は反射光のP成分およびS成分の分離状態を
示す図、第6図及び第7図は膜厚測定の説明図、第8図
は段階状の厚みむらを示す図、第9図は第8図に示す厚
みむらの干渉波形を示す図、第10図は連続的に変化す
る厚みむらを示す図、第11図は第10図に示す厚みむ
らの干渉波形を示す図、第毘図および第13図は従来に
おける膜厚変化および厚みむら測定を説明するための図
である。 αQ・・・エツチングチャンバー、 住3・・・ウェハー、(14)、(14a)・・・投光
器、αη、(17a)・・・受光器、賭、α8a)・・
・増幅回路、ml、(19a)−V/F Km 回路、
U (20a) ・B10 変換回路、C!υ、 (2
1a)・・・光ファイバー、□□□・・・測定演算手段
、 (ハ)、(23a)・・・0/E変換回路、(財)、(
24a)・・・パルスカウンタ、(ハ)・・・演算部。 第 2 図 第 3 図 第 4 図 第 5 図 第6図 第7図 第8図 第10図
Fig. 1 is a configuration diagram showing an embodiment of the film/thickness measuring device according to the present invention, Fig. 2 is a diagram showing the laser beam incident angle, and Figs. 3 to 5 are P and S components of reflected light. 6 and 7 are explanatory diagrams of film thickness measurement, FIG. 8 is a diagram showing stepwise thickness unevenness, and FIG. 9 is an interference waveform of the thickness unevenness shown in FIG. 8. 10 is a diagram showing the thickness unevenness that changes continuously, FIG. 11 is a diagram showing the interference waveform of the thickness unevenness shown in FIG. 10, and FIGS. FIG. 3 is a diagram for explaining thickness unevenness measurement. αQ...Etching chamber, Housing 3...Wafer, (14), (14a)...Emitter, αη, (17a)...Receiver, bet, α8a)...
・Amplification circuit, ml, (19a)-V/F Km circuit,
U (20a) ・B10 Conversion circuit, C! υ, (2
1a)...Optical fiber, □□□...Measurement calculation means, (c), (23a)...0/E conversion circuit, (Foundation), (
24a)... Pulse counter, (c)... Arithmetic unit. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)下記構成を具備することを特徴とする膜厚測定装
置。 (イ)被膜形成された膜に対してプリュースタ角よりも
大きな入射角をもつて波長の異なる少なくとも二つの測
定光を投射する投光手段。 (ロ)上記膜に対して投射された測定光の反射干渉光を
上記各波長ごとに受光して光電変換する受光手段。 (ハ)上記受光手段から出力された電気信号に基づいて
上記各波長ごとに上記反射干渉光の強度を求めるととも
に上記各反射干渉光間の強度差を求める位相差算出手段
。 (ニ)上記位相差算出手段にて求められた反射干渉光の
強度差に基づいて上記膜の膜厚を算出する膜厚算出手段
(1) A film thickness measuring device characterized by having the following configuration. (a) A light projecting means for projecting at least two measurement lights of different wavelengths onto the formed film at an incident angle larger than the Prewster's angle. (b) A light receiving means for receiving and photoelectrically converting reflected interference light of the measurement light projected onto the film for each of the wavelengths. (c) Phase difference calculating means for calculating the intensity of the reflected interference light for each of the wavelengths based on the electrical signal output from the light receiving means and calculating the intensity difference between the respective reflected interference lights. (d) Film thickness calculation means for calculating the film thickness of the film based on the intensity difference of the reflected interference light determined by the phase difference calculation means.
(2)投光手段から投射される測定光は二つの波長から
なることを特徴とする特許請求の範囲第1項記載の膜厚
測定装置。
(2) The film thickness measuring device according to claim 1, wherein the measuring light projected from the light projecting means consists of two wavelengths.
JP26870886A 1986-11-13 1986-11-13 Apparatus for measuring thickness of film Pending JPS63122906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26870886A JPS63122906A (en) 1986-11-13 1986-11-13 Apparatus for measuring thickness of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26870886A JPS63122906A (en) 1986-11-13 1986-11-13 Apparatus for measuring thickness of film

Publications (1)

Publication Number Publication Date
JPS63122906A true JPS63122906A (en) 1988-05-26

Family

ID=17462264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26870886A Pending JPS63122906A (en) 1986-11-13 1986-11-13 Apparatus for measuring thickness of film

Country Status (1)

Country Link
JP (1) JPS63122906A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108905A (en) * 1988-09-07 1990-04-20 Texas Instr Inc <Ti> Two laser interferometer for measuring growth of film at site
JPH04340404A (en) * 1990-10-30 1992-11-26 Internatl Business Mach Corp <Ibm> Material processing method and material surface monitoring apparatus
JPH08193813A (en) * 1994-12-20 1996-07-30 Korea Electron Telecommun Monitoring device for film by chemical deposition of metallic organic matter
US5696583A (en) * 1994-11-16 1997-12-09 Daewoo Electronics, Co., Ltd. Apparatus for automatically measuring the thickness of a transparent coating material using a white light source
KR100622833B1 (en) 2004-07-02 2006-09-19 주식회사 에이디피엔지니어링 Examination method of plasma processing apparatus for a glass and plasma processing apparatus
WO2010109933A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Film thickness measurement device and measurement method
US8885173B2 (en) 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
CN106595501A (en) * 2016-11-25 2017-04-26 中国科学院长春光学精密机械与物理研究所 Method of measuring thickness or uniformity of optical thin film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108905A (en) * 1988-09-07 1990-04-20 Texas Instr Inc <Ti> Two laser interferometer for measuring growth of film at site
JPH04340404A (en) * 1990-10-30 1992-11-26 Internatl Business Mach Corp <Ibm> Material processing method and material surface monitoring apparatus
US5696583A (en) * 1994-11-16 1997-12-09 Daewoo Electronics, Co., Ltd. Apparatus for automatically measuring the thickness of a transparent coating material using a white light source
JPH08193813A (en) * 1994-12-20 1996-07-30 Korea Electron Telecommun Monitoring device for film by chemical deposition of metallic organic matter
KR100622833B1 (en) 2004-07-02 2006-09-19 주식회사 에이디피엔지니어링 Examination method of plasma processing apparatus for a glass and plasma processing apparatus
WO2010109933A1 (en) * 2009-03-27 2010-09-30 浜松ホトニクス株式会社 Film thickness measurement device and measurement method
JP2010230515A (en) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk Film thickness measuring apparatus and measuring method
CN102341670A (en) * 2009-03-27 2012-02-01 浜松光子学株式会社 Film thickness measurement device and measurement method
US8649023B2 (en) 2009-03-27 2014-02-11 Hamamatsu Photonics K.K. Film thickness measurement device and measurement method
TWI465682B (en) * 2009-03-27 2014-12-21 Hamamatsu Photonics Kk Film thickness measuring device and measuring method
US8885173B2 (en) 2009-10-13 2014-11-11 Hamamatsu Photonics K.K. Film thickness measurement device and film thickness measurement method
CN106595501A (en) * 2016-11-25 2017-04-26 中国科学院长春光学精密机械与物理研究所 Method of measuring thickness or uniformity of optical thin film

Similar Documents

Publication Publication Date Title
JP2673086B2 (en) Method and apparatus for interferometrically determining the phase difference between differently polarized light beams
KR20040071146A (en) Method and apparatus for measuring stress in semiconductor wafers
KR20080100343A (en) Surface plasmon resonance sensors and methods for detecting samples using the same
KR100779128B1 (en) Thickness measurement method and apparatus
JPS63122906A (en) Apparatus for measuring thickness of film
JPH06229922A (en) Very accurate air refractometer
JP2732849B2 (en) Interferometer
KR100721783B1 (en) Process and device for measuring the thickness of a transparent material
WO2003007327A2 (en) Shallow-angle interference process and apparatus for determining real-time etching rate
JP2002333371A (en) Wavemeter
EP0199137B1 (en) Method of and apparatus for optically measuring displacement
JPS59164914A (en) Optical scale reading apparatus
JPS59218915A (en) Light guide type sensor
JP3128029B2 (en) Optical IC displacement meter
JPS6244613A (en) Measuring instrument for film thickness
JPH01320409A (en) Film thickness measuring method
JP2679810B2 (en) Optical wavelength measurement device
JPH07234171A (en) Reflection efficiency measuring instrument and diffraction efficiency measuring instrument
JPS60104236A (en) Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber
JPH0742084Y2 (en) Surface shape measuring instrument
SU1627836A1 (en) Twin double-beam interferometer for measuring coat thickness
JP2705752B2 (en) Method of measuring refractive index and method of measuring property characteristics
KR100588532B1 (en) Apparatus of laser-ultrasonics measurement using reflective photo detector
JPH01210804A (en) Spacing measuring method
JPH0593613A (en) Apparatus and method for measuring minute