JPS63119155A - Manufacture of flat cell - Google Patents

Manufacture of flat cell

Info

Publication number
JPS63119155A
JPS63119155A JP61263925A JP26392586A JPS63119155A JP S63119155 A JPS63119155 A JP S63119155A JP 61263925 A JP61263925 A JP 61263925A JP 26392586 A JP26392586 A JP 26392586A JP S63119155 A JPS63119155 A JP S63119155A
Authority
JP
Japan
Prior art keywords
terminal plate
battery
sheet
positive electrode
sealing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61263925A
Other languages
Japanese (ja)
Inventor
Hirohito Teraoka
浩仁 寺岡
Shintaro Suzuki
信太郎 鈴木
Yoshiaki Asami
義明 阿左美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61263925A priority Critical patent/JPS63119155A/en
Publication of JPS63119155A publication Critical patent/JPS63119155A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To manufacture a flat cell of a constant form and an excellent performance, by sealing a generating unit which consists of a positive electrode mix sheet, a separator, a negative electrode sheet, and the like, and cutting into a specific form by the spray of a superhigh pressure liquid. CONSTITUTION:A generating unit 14 is composed by connecting a positive electrode mix sheet 141, a separator 142, and a negative electrode sheet 143 in this order. The unit 14 is surrounded by a frame-formed insulating sealing substance 12. And a positive electrode terminal plate 11 is attached closely covering the surface of the sheet 141 and one side surface of the sealing substance 12. Then, after the whole cell is sealed up, a spray of a superhigh pressure liquid 164 is applied to the sealing parts between the terminal plates 11 and 15, and the sealing substance 12, and the whole body can be cut off into a desired form.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、扁平形電池の製造方法に関し、更に詳しくは
、電池全体の形状を常に一定に揃えて、その全体形状が
不揃いになることを防止し、組立時の作業性を向上させ
、電池の低価格化を図ることなどができ、しかも電池の
密封性の低下や正極・負極端子板間の短絡防止すること
ができる扁平形電池の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a flat battery, and more specifically, the present invention relates to a method for manufacturing a flat battery, and more specifically, the present invention relates to a method for manufacturing a flat battery, and more specifically, the present invention relates to a method for manufacturing a flat battery. It prevents misalignment, improves work efficiency during assembly, lowers the cost of batteries, and prevents deterioration of battery sealing performance and short circuits between the positive and negative terminal plates. The present invention relates to a method for manufacturing a flat battery.

(従来の技術) 近年、電子腕時計や卓上電子計算機などの電子機器の小
形化、薄形化に伴って、これらの電子機器に使用される
扁平形電池も小形化、薄形化となり、肉厚ト■以下の扁
平形電池が実用化されている。
(Prior art) In recent years, as electronic devices such as electronic wristwatches and desktop computers have become smaller and thinner, the flat batteries used in these electronic devices have also become smaller and thinner, and their walls have become thinner and smaller. The following flat batteries have been put into practical use.

従来、このような超薄形の扁平形電池としては、例えば
、特開昭49−128232号公報に開示されているよ
うな構造の電池が知られており、これは、以下のように
して製造することが一般的である。
Conventionally, as such an ultra-thin flat battery, for example, a battery having a structure as disclosed in Japanese Patent Application Laid-open No. 128232/1983 has been known, and this is manufactured as follows. It is common to do so.

すなわち、第7図において、正極合剤シート31と電解
液を含浸せしめたセパレータ33および負極シート32
をこの順序で積層して発電ユニットとし、この発電ユニ
ットを所定形状に切断した枠状の絶縁封口体34で囲繞
して、これらを所定形状に切断した正極端子板35と負
極端子板36の間に配置し、次いで正極端子板35と負
極端子板36の周縁部全体を熱圧着することで電池全体
を封口している。
That is, in FIG. 7, a positive electrode mixture sheet 31, a separator 33 impregnated with an electrolytic solution, and a negative electrode sheet 32
are laminated in this order to form a power generation unit, and this power generation unit is surrounded by a frame-shaped insulating sealing body 34 cut into a predetermined shape, and between a positive electrode terminal plate 35 and a negative electrode terminal plate 36 which are cut into a predetermined shape. Then, the entire peripheral edge of the positive terminal plate 35 and negative terminal plate 36 is thermocompression bonded to seal the entire battery.

(発明が解決しようとする問題点) しかしながら、こ−のような製造方法では、正極・負極
端子板35および36と絶縁封口体34を夫々予め所定
形状に切断しであるために電池を組立てる際に、これら
の位置決めが極めて難しく、この位置決めが一定しない
と完成した電池の形状が不揃いになり、これが原因で全
体形状の不良を招いていた。又、電池組立ての際これら
の位置決めに高精度が要求されるので作業能率が低下し
、電池の単価が高くなるなどの問題もあった。
(Problems to be Solved by the Invention) However, in such a manufacturing method, since the positive and negative terminal plates 35 and 36 and the insulating sealing member 34 are each cut into predetermined shapes, it is difficult to assemble the battery. In addition, positioning them is extremely difficult, and if this positioning is not consistent, the shape of the completed battery will be irregular, resulting in a defective overall shape. Furthermore, since high precision is required for positioning these parts during battery assembly, there are problems such as lower work efficiency and higher unit price of the battery.

そのような問題を解決するために、発電ユニントを絶縁
封口体で囲繞し、正極端子板と負極端子板の間に配置し
、次いで電池全体を利口した後、封口部にて所定の形状
に切断する方法が開示されている(特開昭60−207
245号公報を参照)。このようにして製造すれば電池
の形状を常に一定に揃えることができるので全体形状の
不良発生を防止でき、しかも組立時の作業能率も向上さ
せることができる。
In order to solve such problems, we have developed a method in which the power generating unit is surrounded by an insulating seal, placed between the positive terminal plate and the negative terminal plate, and then the entire battery is cut into a predetermined shape at the sealing part. has been disclosed (Japanese Unexamined Patent Publication No. 60-207
(See Publication No. 245). If manufactured in this manner, the shape of the battery can always be kept constant, thereby preventing defects in the overall shape, and also improving work efficiency during assembly.

しかしながら、この製造方法においては、封口部の切断
手段として、レーザービームや回転切削具を用いている
ので以下のような問題が生ずる。
However, in this manufacturing method, since a laser beam or a rotary cutting tool is used as a cutting means for the sealing portion, the following problems occur.

すなわち、レーザビームを用いた場合には、正極・負極
端子板と絶縁封口体を溶融切断するためにこれらが10
00’(1!以上に加熱されて絶縁封口体が熱分解や燃
焼したりして、電池の密封性を損なうなどの問題を生じ
ていた。又、回転切削具を用いた場合には、正極・負極
端子板の切断面の周縁部に金属パリが生じ、この金属パ
リにより電池の密」1性が損なわれたり、正極や負極端
子板とが短絡するなどの問題があった。
In other words, when a laser beam is used, in order to melt and cut the positive and negative terminal plates and the insulating sealing body, these
00' (1!) and the insulating sealant would thermally decompose or burn, causing problems such as impairing the sealing properties of the battery.Also, when a rotary cutting tool was used, the positive electrode - Metallic particles are formed on the periphery of the cut surface of the negative electrode terminal plate, which causes problems such as impairing the tightness of the battery and causing short circuits between the positive electrode and the negative electrode terminal plate.

本発明は、かかる問題点を解決して、電池形状を常に一
定に揃えて全体形状の不良発生をなくすこと、組立時の
作業性を向上させること、電池の低価格化を図ることな
どができ、しかも電池の密」1性の低下や正極・負極端
子板間の短絡を防止することができる扁平形電池の製造
方法を提供することを目的とする。
The present invention solves these problems, makes it possible to always keep the shape of the battery constant, eliminate defects in the overall shape, improve workability during assembly, and reduce the price of the battery. It is an object of the present invention to provide a method for manufacturing a flat battery that can prevent a decrease in the density of the battery and a short circuit between the positive and negative terminal plates.

[発明の構成] (問題点を解決するための手段) 本発明者らは、上記目的を達成すべく鋭意検討を重ねた
結果、電池全体を封口した後に、この封口部に超高圧の
液体を噴射して所定形状に切断すればよいとの着想を得
て、本発明を完成するに至った。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive studies to achieve the above object, the inventors of the present invention have sealed the entire battery and then injected ultra-high pressure liquid into the sealed part. The present invention was completed based on the idea that the material could be sprayed and cut into a predetermined shape.

すなわち、本発明の扁平形電池の製造方法において、正
極合剤シート、セパレータおよび負極シートがこの順に
積層されてなる発電ユニットと;該発電ユニットを囲繞
する枠状の絶縁封口体と;該正極合剤シートの表面およ
び該絶縁利口体の一方の端面を覆って、これらに密着す
る正極端子板と;該負極シートの表面および該絶縁封口
体の他方の端面を覆って、これらに密着する負極端子板
とからなる扁平形電池を製造する方法において、電池全
体を封口した後に、該正極端子板および該負極端子板と
該絶縁封口体との封口部にて、超高圧液体の噴射によっ
て全体を所定の形状に切断する工程を具備することを特
徴とする。
That is, in the method for manufacturing a flat battery of the present invention, a power generation unit in which a positive electrode mixture sheet, a separator, and a negative electrode sheet are laminated in this order; a frame-shaped insulating sealing body surrounding the power generation unit; a positive electrode terminal plate that covers and comes into close contact with the surface of the agent sheet and one end face of the insulating cover; a negative electrode terminal that covers and comes into close contact with the surface of the negative electrode sheet and the other end face of the insulating sealing member; In the method for manufacturing a flat battery consisting of a plate, after the entire battery is sealed, the entire battery is sealed in a predetermined position by jetting ultra-high pressure liquid at the sealing portions between the positive terminal plate, the negative terminal plate, and the insulating sealing body. It is characterized by comprising the step of cutting into the shape of.

本発明の扁平形電池の製造方法は、上述したように、電
池全体を封口した後に、その封口部を所定の形状に切断
することに特徴があり、以下に図面に基づいてそれを説
明する。
As described above, the method for manufacturing a flat battery of the present invention is characterized by sealing the entire battery and then cutting the sealed portion into a predetermined shape, which will be explained below based on the drawings.

第1図において、先ず、正極端子板11を用意する。こ
の正極端子板11は、例えば、矩形状であり、その縦お
よび横の寸法を規定の電池寸法より若干大きくしである
。また、正極端子板11は電池容器を兼ねるもので堅牢
性を持たせるために、例えば、5US300,400.
500番台のステンレス鋼板、これらのステンレス鋼板
とニッケル板とのクラツド板、外面金メツキニッケルス
テンレスクラツド板、ニッケルメッキ鋼板、ニッケル板
を用いている。
In FIG. 1, first, a positive terminal plate 11 is prepared. This positive electrode terminal plate 11 has, for example, a rectangular shape, and its vertical and horizontal dimensions are slightly larger than the specified battery dimensions. The positive terminal plate 11 also serves as a battery container, and is made of 5US300, 400.
500 series stainless steel plates, clad plates of these stainless steel plates and nickel plates, external gold-plated nickel stainless steel clad plates, nickel-plated steel plates, and nickel plates are used.

次に、上記した正極端子板11の上に絶縁封口体12を
載置する。絶縁封口体12は、その中央部に後述する発
電ユニット14を収容するための切欠部121を形成し
たもので、その縦および横の寸法を上記正極端子板11
と略同じにしている。また、絶縁封口体12としては、
例えば、ナイロン、ポリエチレン、ポリプロピレン、金
属イオンで中和されたメタクリル酸−エチレン共重合体
のアイオノマー樹脂を金型を用いて射出成形したもの、
あるいはこれらの樹脂シートをプレスして加圧成形して
打抜いたものが用いられる。
Next, the insulating sealing body 12 is placed on the positive electrode terminal plate 11 described above. The insulating sealing body 12 has a notch 121 formed in its center for accommodating a power generation unit 14, which will be described later, and its vertical and horizontal dimensions are similar to the positive terminal plate 11.
It's almost the same. Moreover, as the insulating sealing body 12,
For example, nylon, polyethylene, polypropylene, methacrylic acid-ethylene copolymer ionomer resin neutralized with metal ions are injection molded using a mold,
Alternatively, these resin sheets may be pressed, pressure-molded, and punched out.

また、絶縁封口体12の両面に接着剤層131.132
を設けてもよい。この接着剤層としては、ダイマー酸を
ベースとする脂肪酸ポリアミド樹脂、金属イオンで中和
されたメタクリル酸−エチレン共重合体のアイオノマー
樹脂などが用いられ、これらを絶縁封口体12の正極・
負極端子板と接触する面に塗布するか、あるいは枠状に
打抜いたものを付着するようにしている。なお、絶縁封
口体12の材質によっては接着剤層131.132を用
いることなく超音波による融着を採用することができる
。また、絶縁封口体12にアイオノマー樹脂を用いた場
合には、アイオノマー樹脂自体が加熱、加圧により接着
性を発揮するので接着剤層131.132を省略するこ
とができる。
In addition, adhesive layers 131 and 132 are provided on both sides of the insulating sealing body 12.
may be provided. As this adhesive layer, fatty acid polyamide resin based on dimer acid, ionomer resin of methacrylic acid-ethylene copolymer neutralized with metal ions, etc. are used.
It is applied to the surface that comes into contact with the negative terminal plate, or a frame-shaped cutout is attached. Note that depending on the material of the insulating sealing body 12, fusion bonding using ultrasonic waves may be employed without using the adhesive layers 131 and 132. Further, when an ionomer resin is used for the insulating sealing body 12, the adhesive layers 131 and 132 can be omitted because the ionomer resin itself exhibits adhesive properties when heated and pressurized.

次に、絶縁封口体12の切欠部121に発電ユニット1
4を収容する。ここで、発電ユニット14は、正極活物
質と導電剤と結着剤とからなる正極合剤シート141の
上に、有機溶媒電解液を含浸した不織布からなるセパレ
ータ142を。
Next, the power generation unit 1 is placed in the notch 121 of the insulating sealing body 12.
Accommodates 4. Here, the power generation unit 14 includes a separator 142 made of a nonwoven fabric impregnated with an organic solvent electrolyte on a positive electrode mixture sheet 141 made of a cathode active material, a conductive agent, and a binder.

更にその上に金属リチウムからなる負極シート143を
積層せしめたものである。
Furthermore, a negative electrode sheet 143 made of metallic lithium is laminated thereon.

次に、負極シート143の表面および絶縁封口体12の
端面を覆ってこれらに密着するように負極端子板15を
載置し、更に正極端子板11および負極端子板15の周
縁部を図示しない治具でセットした後、加熱・加圧をし
て正極端子板11と負極端子板15の周縁部と絶縁封口
体12の周縁部との間を接着して封口する。なお、ここ
までの電池組立工程では、電池内部に水分の混入を防ぐ
ために乾燥空気やアルゴンガスなどの不活性ガス中で行
なうことが好ましい。
Next, the negative electrode terminal plate 15 is placed so as to cover the surface of the negative electrode sheet 143 and the end face of the insulating sealing body 12 so as to be in close contact therewith, and the peripheral edges of the positive electrode terminal plate 11 and the negative electrode terminal plate 15 are treated with a treatment (not shown). After setting with a tool, heat and pressure are applied to bond and seal the peripheral edges of the positive terminal plate 11 and negative terminal plate 15 and the peripheral edge of the insulating sealing body 12. The battery assembly process up to this point is preferably carried out in dry air or an inert gas such as argon gas in order to prevent moisture from entering the battery.

次に、上記のようにして封口された電池を、超高圧の液
体を噴射して破線Aに沿って切断して第3図に示す所定
形状の扁平形電池を完成する。すなわち、第4図におい
て、産業用ロボット161に超高圧ホース162と超高
圧液体噴射ノズル163を接続し、産業用ロボット16
1を定速で駆動させて電池固定テーブル165上に固定
した電池10を破線Aに沿って切断する。このときの超
高圧液体の吐出圧力は、1000〜5000kgf/c
m2とすることが好ましい。100100O/cm2未
満の場合は、切断状態が良好でないために端子板の切断
面の周縁部に金属パリが生じたりする。一方、5000
 kgf/ 0m2を超えると超高圧液体を多量に使用
することになるからである。また、吐出流量は1.0〜
101/ωin1、切断速度は0.1〜Iom/min
、であることが好ましい。また、封口部の切断に用いる
液体としては、主として水が用いられるが、水に研磨剤
を分散させたものや有機溶媒であってもよい。
Next, the sealed battery as described above is cut along broken line A by spraying ultra-high pressure liquid to complete a flat battery having a predetermined shape as shown in FIG. That is, in FIG. 4, an ultra-high pressure hose 162 and an ultra-high pressure liquid injection nozzle 163 are connected to an industrial robot 161.
1 is driven at a constant speed to cut the battery 10 fixed on the battery fixing table 165 along the broken line A. The discharge pressure of the ultra-high pressure liquid at this time is 1000 to 5000 kgf/c.
It is preferable to set it as m2. If it is less than 100,100 O/cm 2 , the cutting condition is not good, and metal flakes may occur at the periphery of the cut surface of the terminal board. On the other hand, 5000
This is because if it exceeds kgf/0m2, a large amount of ultra-high pressure liquid will be used. In addition, the discharge flow rate is 1.0~
101/ωin1, cutting speed is 0.1~Iom/min
, is preferable. Furthermore, although water is mainly used as the liquid used to cut the sealing portion, it may also be water in which an abrasive is dispersed or an organic solvent.

なお、本発明の扁平形電池の製造方法は、上記した方法
のみに限定されるものではなく、要旨を変更しない範囲
で適宜変更して実施することができる。すなわち、第5
図において、正極端子板21を用意し、この上に複数(
第5図では3個)の切欠部221を有する絶縁封口体2
2を載置する。次いで、各切欠部221に発電ユニット
23を収容した後、この上に負極端子板24を載置し、
正極端子板21および負極端子板24と絶縁封口体22
との間を封口する。その後、封口部を第6図に示す破線
Bに沿って超高圧液体によって切断して複数の電池を同
時に完成する。
Note that the method for manufacturing a flat battery of the present invention is not limited to only the above-described method, and can be carried out with appropriate modifications within the scope of the gist. That is, the fifth
In the figure, a positive terminal plate 21 is prepared, and a plurality of (
Insulating sealing body 2 having three notches 221 in FIG.
Place 2. Next, after housing the power generation unit 23 in each notch 221, the negative terminal plate 24 is placed thereon,
Positive terminal plate 21, negative terminal plate 24, and insulating sealing body 22
seal the gap between Thereafter, the sealing portion is cut along the broken line B shown in FIG. 6 using ultra-high pressure liquid to complete a plurality of batteries at the same time.

また、この外に、正極端子板21と負極端子板24に複
数の切欠部を有する絶縁封口体22をそれぞれ融着して
おき、各切欠部221に発電ユニット23を収容する。
In addition, an insulating sealing body 22 having a plurality of notches is fused to the positive terminal plate 21 and the negative terminal plate 24, respectively, and the power generation unit 23 is accommodated in each notch 221.

その後、正極端子板21と負極端子板24に融着させた
絶縁封口体を対向させた後、電池を封口してもよい。
Thereafter, the insulating sealing body fused to the positive terminal plate 21 and the negative terminal plate 24 may be opposed to each other, and then the battery may be sealed.

」二記したように、矩形状の扁平形電池について述べて
いるが、これ以外の扁平形電池の組立にも本発明は適用
できる。
2, although a rectangular flat battery is described, the present invention can also be applied to the assembly of other flat batteries.

更に、有機溶媒電池はもち論のこと、アルカリ電池やマ
ンガン電池にも本発明は適用できる。
Furthermore, the present invention is applicable not only to organic solvent batteries but also to alkaline batteries and manganese batteries.

(実施例) 実施例1 本発明の一実施例を図面に基づいて説明する。(Example) Example 1 An embodiment of the present invention will be described based on the drawings.

第1図において、先ず、厚さ0.03mm、縦60mm
、横80mIIlの5US304からなる正極端子板1
1上に、厚さ0.2mm、縦12mm、横32mmの焼
成二酸化マンガンと黒鉛粉末とテフロンディスパージョ
ンとからなる正極合剤シート141を載置した。次に、
厚さ0.2mm、縦60mm、横80mn+切欠部12
1が縦14mm、横34m+nの枠状の絶縁封口体12
を2枚用意し、一方の封口体12の周縁部に切欠部12
1を覆うようにして厚さ0.1!DIDのポリプロピレ
ン製不織布からなるセパレータ142を一体化した。
In Figure 1, first, the thickness is 0.03 mm and the length is 60 mm.
, positive terminal plate 1 made of 5US304 with a width of 80 mIIl.
A positive electrode mixture sheet 141 made of calcined manganese dioxide, graphite powder, and Teflon dispersion and having a thickness of 0.2 mm, a length of 12 mm, and a width of 32 mm was placed on top of the positive electrode mixture sheet 141. next,
Thickness 0.2mm, length 60mm, width 80mm + 12 notches
1 is a frame-shaped insulating sealing body 12 with a length of 14 mm and a width of 34 m + n.
Prepare two sheets, and cut out the notch 12 on the peripheral edge of one sealing body 12.
Thickness 0.1 to cover 1! A separator 142 made of DID polypropylene nonwoven fabric was integrated.

次いで、正極端子板11上に載置された正極合剤シート
141の上に、セパレータ142を−It化した絶縁封
口体12を載置して正極合剤シート141を囲繞した後
、正極端子板11と絶縁封口体12とを200°Cで2
秒間熱圧着した。
Next, the insulating sealing body 12 obtained by changing the separator 142 to -It is placed on the positive electrode mixture sheet 141 placed on the positive electrode terminal plate 11 to surround the positive electrode mixture sheet 141, and then the positive electrode mixture sheet 141 is placed on the positive electrode terminal plate 11. 11 and the insulating sealing body 12 at 200°C.
It was heat-pressed for seconds.

一方、正極端子板11と同様の形状と材質からなる負極
端子板12上に、厚さ0.1+nff1.縦12mm、
横321の金属リチウムシート143を載置し、次に、
前記したもう一方の絶縁封口体12を負極端子板15」
二に載置して金属リチウムシート143を囲繞した後、
負極端子板15と絶縁封口体12とを200°Cで2秒
間熱圧着した。
On the other hand, on the negative electrode terminal plate 12 having the same shape and material as the positive electrode terminal plate 11, a thickness of 0.1+nff1. Height 12mm,
Place the metal lithium sheet 143 horizontally 321, and then
The other insulating sealing body 12 described above is connected to the negative terminal plate 15.
After surrounding the metal lithium sheet 143 by placing it on the second plate,
The negative electrode terminal plate 15 and the insulating sealing body 12 were thermocompression bonded at 200° C. for 2 seconds.

次に、正極端子板ll上に載置した正極合剤シート14
1上のセパレータ142に、プロピレンカーボネートに
過塩素酸リチウムを濃度1molZ文になるように溶解
せしめた有機溶媒電解液を辣加して含浸せしめた後、こ
れに、金属リチウムシート143と絶縁封口体12が載
置されている負極端子板15とを対向させて重ね合わせ
絶縁封口体12の切欠部121に発電ユニット14を構
成した。
Next, the positive electrode mixture sheet 14 placed on the positive electrode terminal plate ll
The separator 142 on top of 1 is impregnated with an organic solvent electrolyte in which lithium perchlorate is dissolved in propylene carbonate at a concentration of 1 molZ, and then a metal lithium sheet 143 and an insulating sealing body are added thereto. The power generation unit 14 was constructed in the notch 121 of the overlapping insulating sealing body 12 with the negative electrode terminal plate 15 on which the power generation unit 12 is placed facing each other.

更に、正極端子板1工と負極端子板15の周縁部を図示
しない治具にセットし、この周縁部を180’C!で2
秒間熱圧着して電池全体を封口して、第2図に示した電
池を50個製造した。この電池の厚さは0.46+nm
であった。なお、ここまでの電池組立ては、電池中に水
分の混入を防止するためアルゴンガス雰囲気中で行なっ
た。
Furthermore, the peripheral edges of the positive terminal plate 1 and the negative terminal plate 15 were set in a jig (not shown), and the peripheral edges were heated to 180'C! So 2
The entire battery was sealed by thermocompression bonding for seconds to produce 50 batteries as shown in FIG. The thickness of this battery is 0.46+nm
Met. Note that the battery assembly up to this point was performed in an argon gas atmosphere to prevent moisture from entering the battery.

最後に、第4図に示す産業用ロポツl−161に、超高
圧ホース162と超高圧液体噴射ノズル163とを接続
し、産業用ロボット161を定速で駆動させて電池固定
テーブル165上の電池10を破線Aに沿って超高圧液
体噴射ノズル163から吐出される超高圧液体164に
より切断(吐出圧力3000 kgf/ am2.吐出
流量10、l/min、、切断速度1m/min、)し
て、縦20■、横401!1mの扁平形電池を50個製
造した。
Finally, the ultra-high pressure hose 162 and the ultra-high pressure liquid injection nozzle 163 are connected to the industrial robot l-161 shown in FIG. 10 along the broken line A with the ultra-high pressure liquid 164 discharged from the ultra-high pressure liquid injection nozzle 163 (discharge pressure 3000 kgf/am2, discharge flow rate 10, l/min, cutting speed 1 m/min), Fifty flat batteries with a length of 20cm and a width of 401!1m were manufactured.

これらの50個の扁平形電池のうち、封口不良の電池の
数は0個、短絡の発生した電池の数は0個であった・ 実施例2 複数個の電池を同時に組立てる一実施例を第5図および
第6図に基づいて説明する。
Among these 50 flat batteries, the number of batteries with sealing defects was 0, and the number of batteries with short circuits was 0. This will be explained based on FIGS. 5 and 6.

まず、第5図において、3個の切欠部221(縦34m
m、横141)を有する厚さ0.2+in、縦80mm
、横1201のアイオノマー樹脂からなる絶縁封口体2
2を、厚さ0.03mm、縦80mm、横120mmの
ステンレス鋼板からなる正極端子板21上に載置した。
First, in FIG. 5, three notches 221 (vertical 34 m
m, width 141), thickness 0.2+in, length 80mm
, an insulating sealing body 2 made of ionomer resin with a width of 1201
2 was placed on a positive terminal plate 21 made of a stainless steel plate with a thickness of 0.03 mm, a length of 80 mm, and a width of 120 mm.

次に、各切欠部221中に実施例1と同様な発電ユニッ
ト23を収容した後、正極端子板21と同様の材質・形
状からなる負極端子板24を載置した。その後、これら
を実施例1と同じ条件で熱圧着して封口した。更に、封
口部を第6図に示す破線Bに沿って実施例1と同様にし
て切断して電池を60個製造したところ、電池の外観不
良、封口不良、短絡の発生は全くなかった。
Next, a power generation unit 23 similar to that of Example 1 was housed in each notch 221, and then a negative terminal plate 24 made of the same material and shape as the positive terminal plate 21 was placed. Thereafter, these were sealed by thermocompression bonding under the same conditions as in Example 1. Furthermore, when 60 batteries were manufactured by cutting the sealing portion along the broken line B shown in FIG. 6 in the same manner as in Example 1, no defects in appearance, defects in sealing, or short circuits occurred in the batteries.

比較例1 実施例1と同様にして扁平形電池を50個製造した後、
炭酸ガスレーザ(出力500W、切断速度10m/mi
n、)を用いて、電池10の破iAに沿って切断した。
Comparative Example 1 After manufacturing 50 flat batteries in the same manner as in Example 1,
Carbon dioxide laser (output 500W, cutting speed 10m/mi
The battery 10 was cut along the rupture iA using a cutter.

これら50個の扁平形電池のうち、封口不良の電池の数
は7個、短絡の発生した電池の数は0個であった・ 比較例2 実施例1と同様にして扁平形電池を50個製造した後、
回転切削装置を用いて、電池10の破線Aに沿って切断
(回転数1500Orpm、切断速度1 、5 m/ 
min、) シた。
Of these 50 flat batteries, the number of batteries with poor sealing was 7, and the number of batteries with short circuits was 0. Comparative Example 2 50 flat batteries were produced in the same manner as in Example 1. After manufacturing,
Using a rotary cutting device, cut the battery 10 along the broken line A (rotation speed 1500 rpm, cutting speed 1, 5 m/
min,) Shita.

これら50個の扁平形電池のうち、封口不良の電池の数
は1個、短絡の発生した電池の数は8個であった。
Among these 50 flat batteries, the number of batteries with sealing defects was one, and the number of batteries with short circuits was eight.

[発明の効果] 以上の説明で明らかなように、本発明の製造方法により
製造された扁平形電池は、電池全体を封口後に全体形状
を所定の形状に切断するので、電池形状を常に一定に揃
えることができ、その結果、全体形状の不良発生を皆無
にすることができる。しかも電池組立時の作業能率の向
上や電池の低価格化を図ることができる。また、切断に
超高圧液体を用いたので、封口体の熱分解等が発生せず
電池の密封性の低下や正極・負極端子板間の短絡を防ぐ
ことができる。したがって、その工業的価値は大である
[Effects of the Invention] As is clear from the above explanation, the flat battery manufactured by the manufacturing method of the present invention is cut into a predetermined shape after sealing the entire battery, so that the battery shape can always be kept constant. As a result, defects in the overall shape can be completely eliminated. Furthermore, it is possible to improve work efficiency during battery assembly and to reduce the cost of batteries. Furthermore, since an ultra-high pressure liquid is used for cutting, thermal decomposition of the sealant does not occur, thereby preventing deterioration of the sealing performance of the battery and short circuit between the positive and negative terminal plates. Therefore, its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の製造方法を説明するた
めの扁平形電池の概略構成図、第3図は、本発明の製造
方法の一実施例により得られた扁平形電池の縦断面図、
第4図は、本発明の製造方法で用いる切断手段を示す概
略構成図、85図および第6図は、本発明の製造方法を
説明するための扁平形電池の概略構成図、第7図は、従
来の製造方法により製造された扁平形電池の縦断面図で
ある。 11.21.35・・・正極端子板 12.22.34・・・絶縁封口体 121.221・・・切欠部 131.132・・・接着剤層 14.23・・・発電ユニット 141.31・・・正極合剤シート 142.33・・・セパレータ 143.32・・・負極シート 15.24.36・・・負極端子板 10・・・電池 181・・・産業用ロボット 162・・・超高圧ホース 163・・・超高圧液体噴射ノズル 164・・・超高圧液体 165・・・電池固定テーブル 第3図 第6図 第7図
1 and 2 are schematic configuration diagrams of a flat battery for explaining the manufacturing method of the present invention, and FIG. 3 is a longitudinal cross-section of a flat battery obtained by an example of the manufacturing method of the present invention. side view,
FIG. 4 is a schematic diagram showing the cutting means used in the manufacturing method of the present invention, FIG. 85 and FIG. 6 are schematic diagrams of a flat battery for explaining the manufacturing method of the present invention, and FIG. , is a longitudinal cross-sectional view of a flat battery manufactured by a conventional manufacturing method. 11.21.35...Positive terminal plate 12.22.34...Insulating sealing body 121.221...Notch 131.132...Adhesive layer 14.23...Power generation unit 141.31 ...Positive electrode mixture sheet 142.33...Separator 143.32...Negative electrode sheet 15.24.36...Negative electrode terminal plate 10...Battery 181...Industrial robot 162...Super High pressure hose 163...Ultra high pressure liquid injection nozzle 164...Ultra high pressure liquid 165...Battery fixing table Fig. 3 Fig. 6 Fig. 7

Claims (2)

【特許請求の範囲】[Claims] (1)正極合剤シート、セパレータおよび負極シートが
この順に積層されてなる発電ユニットと;該発電ユニッ
トを囲繞する枠状の絶縁封口体と;該正極合剤シートの
表面および該絶縁封口体の一方の端面を覆って、これら
の密着する正極端子板と;該負極シートの表面および該
絶縁封口体の他方の端面を覆って、これらに密着する負
極端子板とからなる扁平形電池を製造する方法において
、電池全体を封口した後に、該正極端子板および該負極
端子板と該絶縁封口体との封口部にて、超高圧液体の噴
射によって全体を所定の形状に切断する工程を具備する
ことを特徴とする扁平形電池の製造方法。
(1) A power generation unit in which a positive electrode mixture sheet, a separator, and a negative electrode sheet are laminated in this order; a frame-shaped insulating sealing body surrounding the power generation unit; a surface of the positive electrode mixture sheet and the insulating sealing body; A flat battery is manufactured, comprising: a positive electrode terminal plate that covers one end face and is in close contact with these; and a negative electrode terminal plate that covers and is in close contact with the surface of the negative electrode sheet and the other end face of the insulating sealing body. The method includes the step of, after sealing the entire battery, cutting the entire battery into a predetermined shape by jetting ultra-high pressure liquid at the sealing portions between the positive terminal plate, the negative terminal plate, and the insulating sealing body. A method for manufacturing a flat battery characterized by:
(2)該超高圧液体の吐出圧力が1000〜5000k
gf/cm^2である特許請求の範囲第1項記載の扁平
形電池の製造方法。
(2) The discharge pressure of the ultra-high pressure liquid is 1000 to 5000k.
The method for manufacturing a flat battery according to claim 1, wherein the flat battery has a gf/cm^2.
JP61263925A 1986-11-07 1986-11-07 Manufacture of flat cell Pending JPS63119155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263925A JPS63119155A (en) 1986-11-07 1986-11-07 Manufacture of flat cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263925A JPS63119155A (en) 1986-11-07 1986-11-07 Manufacture of flat cell

Publications (1)

Publication Number Publication Date
JPS63119155A true JPS63119155A (en) 1988-05-23

Family

ID=17396172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263925A Pending JPS63119155A (en) 1986-11-07 1986-11-07 Manufacture of flat cell

Country Status (1)

Country Link
JP (1) JPS63119155A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016497A1 (en) * 1992-02-14 1993-08-19 Yuasa Corporation Method of producing thin cell
JP2008536262A (en) * 2005-03-22 2008-09-04 シン バッテリー テクノロジーズ,インク. Printable thin electrochemical cell using image frame and method for producing the same
US9027242B2 (en) 2011-09-22 2015-05-12 Blue Spark Technologies, Inc. Cell attachment method
US9444078B2 (en) 2012-11-27 2016-09-13 Blue Spark Technologies, Inc. Battery cell construction
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
US9782082B2 (en) 2012-11-01 2017-10-10 Blue Spark Technologies, Inc. Body temperature logging patch
US10849501B2 (en) 2017-08-09 2020-12-01 Blue Spark Technologies, Inc. Body temperature logging patch

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016497A1 (en) * 1992-02-14 1993-08-19 Yuasa Corporation Method of producing thin cell
US5431701A (en) * 1992-02-14 1995-07-11 Yuasa Corporation Manufacturing method of film type battery
JP2008536262A (en) * 2005-03-22 2008-09-04 シン バッテリー テクノロジーズ,インク. Printable thin electrochemical cell using image frame and method for producing the same
US9027242B2 (en) 2011-09-22 2015-05-12 Blue Spark Technologies, Inc. Cell attachment method
US9782082B2 (en) 2012-11-01 2017-10-10 Blue Spark Technologies, Inc. Body temperature logging patch
US10617306B2 (en) 2012-11-01 2020-04-14 Blue Spark Technologies, Inc. Body temperature logging patch
US9444078B2 (en) 2012-11-27 2016-09-13 Blue Spark Technologies, Inc. Battery cell construction
US9693689B2 (en) 2014-12-31 2017-07-04 Blue Spark Technologies, Inc. Body temperature logging patch
US10631731B2 (en) 2014-12-31 2020-04-28 Blue Spark Technologies, Inc. Body temperature logging patch
US10849501B2 (en) 2017-08-09 2020-12-01 Blue Spark Technologies, Inc. Body temperature logging patch

Similar Documents

Publication Publication Date Title
US8025202B2 (en) Method for manufacturing sealed battery
KR101627061B1 (en) Manufacturing method and manufacturing device for secondary battery
CN100472845C (en) Cell
CN102782897A (en) Laminate outer packaging storage device
KR101145973B1 (en) Method for manufacturing electrode for battery
CN103858254A (en) Non-aqueous electrolyte secondary battery
JP2008235255A (en) Lithium secondary cell using laminate housing material
KR20190086006A (en) Aluminum-plastic packaging films and lithium ion batteries using them
CN107851768A (en) The manufacture method of electrochemical device
JP4720186B2 (en) Battery pack
CN105283997A (en) Method and device for manufacturing layered cell and layered cell
JPS63119155A (en) Manufacture of flat cell
JPH076771A (en) Film battery and manufacture thereof
JP2001167744A (en) Lithium secondary battery and method for fabricating the same
KR101124327B1 (en) Lithium Battery and its assembly method
CN218039725U (en) Battery with a battery cell
JPH07312226A (en) Organic solid electrolytic battery
JP2004247159A (en) Battery pack and its manufacturing method
JPH03108278A (en) Thin type battery
CN216436012U (en) Button type lithium ion battery, combined cover suitable for button type lithium ion battery and electronic product
JP6454164B2 (en) Laminate exterior power storage device and manufacturing method thereof
JPS6050855A (en) Manufacture of flat type battery
JP2002231315A (en) Nonaqueous electrolyte battery and manufacturing method therefor
JPH01213955A (en) Manufacture of flat type battery
JPH09288999A (en) Sealed battery, and its manufacture