JPS63118643A - Scanning electron microscope or similar device for attaining crystal azimuth distribution image - Google Patents

Scanning electron microscope or similar device for attaining crystal azimuth distribution image

Info

Publication number
JPS63118643A
JPS63118643A JP61264925A JP26492586A JPS63118643A JP S63118643 A JPS63118643 A JP S63118643A JP 61264925 A JP61264925 A JP 61264925A JP 26492586 A JP26492586 A JP 26492586A JP S63118643 A JPS63118643 A JP S63118643A
Authority
JP
Japan
Prior art keywords
electron beam
sample
sample surface
angle
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61264925A
Other languages
Japanese (ja)
Inventor
Shojiro Tagata
田形 昭次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP61264925A priority Critical patent/JPS63118643A/en
Publication of JPS63118643A publication Critical patent/JPS63118643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To check plural azimuth distribution images of crystal particles in a short period by making an electron beam incident on each picture element point on a sample surface while switching the angle of incidence and moving the sample surface to obtain a detection signal and comparing it with a reference value. CONSTITUTION:An electron beam 1 is deflected by coils 2 and 3 to obtain an electron beam 1', and this electron beam is projected to a sample 4. The angle formed between the electron beam 1' and the X direction is defined as an azimuth angle phi, and that between the electron beam 1 and the sample surface 4 is defined as an inclination angle theta. Three kinds of desired specific crystal azimuth (phia, thetaa, phib, thetab, phic, thetac) are set, and the electron beam 1' is projected to each picture element on the sample surface 4 while auccessively switched to these crystal azimuthal angles. The sample surface 4 is moved in X and Y directions and is scanned. The reflected electron beam from the sample surface 4 is detected by a detector 5, and the detection value is compared with the reference value to display distribution images of crystal particles having one azimuth and another on a CRT 14. Since the angle of incidence of the electric beam is automatically switched and the sample is moved two-dimensionally, distribution images of crystal particles are detected in a wide range with a high precision at a short period.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、走査電子顕微鏡等を用いて試料中の結晶方位
の分布像を得るようにした走査電子顕微鏡又は類似装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a scanning electron microscope or similar apparatus that uses a scanning electron microscope or the like to obtain a distribution image of crystal orientation in a sample.

[従来の技術] 走査電子顕微鏡やX線マイクロアナライザ等を用いて試
料中の複数種の方位を有する結晶粒の分布を求め、表示
することが行なわれている。例えば、特開昭61−25
′O43号に記載の従来装置においては、試料に対する
電子線の入射角を結晶中の特定の結晶面と電子線とがチ
ャ、ンネリングを生ずる角度に設定した上、試料表面に
おいて電子線を二次元的に走査し、この走査によって得
られた検出信号を画像記憶装置の第1画面情報記憶領域
に記憶させ、次に電子線の入射角を結晶中の他の特定の
結晶面と電子線とがチャンネリングを生ずる角度に設定
して電子線を二次元的に走査し、この走査によって得ら
れる検出信号を前記画像記憶装置の第2画面記憶領域に
記憶させ、これら第1、第2画面の画像情報を単一の画
面に重畳展開することにより、特定な複数種の結晶方位
を有する結晶粒の分布を色調の相異等により弁別表示す
るようにしている。
[Prior Art] The distribution of crystal grains having a plurality of orientations in a sample is determined and displayed using a scanning electron microscope, an X-ray microanalyzer, or the like. For example, JP-A-61-25
In the conventional apparatus described in 'O43, the incident angle of the electron beam on the sample is set to an angle that causes channeling between the electron beam and a specific crystal plane in the crystal, and the electron beam is two-dimensionally incident on the sample surface. The detection signal obtained by this scanning is stored in the first screen information storage area of the image storage device, and then the incident angle of the electron beam is adjusted to match other specific crystal planes in the crystal and the electron beam. The electron beam is scanned two-dimensionally by setting an angle that causes channeling, and the detection signal obtained by this scanning is stored in the second screen storage area of the image storage device, and the images of the first and second screens are stored. By superimposing and developing information on a single screen, the distribution of crystal grains having a plurality of specific crystal orientations can be displayed in a differentiated manner based on differences in color tone, etc.

[発明が解決しようとする問題点] しかしながら、上述した従来装置においては、試料面の
走査を電子線走査によって行なっているため、広い領域
の結晶方位分布像を得ようとすると、電子線の偏向収差
が大きくなり、精度良く電子線の試料への入射角を所定
の値に保持できなくなる。そのため、従来の装置におい
ては、広領域の結晶方位分布像を精度良く得ることはで
きない。
[Problems to be Solved by the Invention] However, in the conventional apparatus described above, the sample surface is scanned by electron beam scanning, so when trying to obtain a crystal orientation distribution image over a wide area, the deflection of the electron beam The aberration becomes large, and the angle of incidence of the electron beam on the sample cannot be maintained at a predetermined value with high precision. Therefore, in the conventional apparatus, it is not possible to accurately obtain a crystal orientation distribution image over a wide area.

このような点を解決するため、電子線の試料への入射角
度を前記のように第1の角度に設定して試料を機械的に
二次元移動させた後、電子線の試料への入射角を第2の
角度に設定して試料を再度機械的に二次元移動させるこ
とも考えられるが、試料の機械的な移動には時間を要す
ため、複数種の方位を有する結晶粒の分布像を短時間に
表示することはできない。
In order to solve this problem, after setting the incident angle of the electron beam on the sample to the first angle as described above and mechanically moving the sample in two dimensions, the incident angle of the electron beam on the sample It is also possible to set the angle to a second angle and mechanically move the sample two-dimensionally again, but since mechanically moving the sample takes time, the distribution image of crystal grains with multiple types of orientations may be considered. cannot be displayed in a short period of time.

本発明は、このような従来の問題を解決し、複数の方位
を有する結晶粒の広域にわたる分布を短時間゛に精度良
く表示することのできる結晶方位分布像を得る走査電子
顕微鏡又は類似装置を提供することを目的としている。
The present invention solves these conventional problems and provides a scanning electron microscope or similar device for obtaining a crystal orientation distribution image that can accurately display the distribution of crystal grains having multiple orientations over a wide area in a short period of time. is intended to provide.

[問題点を解決するための手段1 そのため本発明は、試料に電子線を照射し、該電子線と
試料との相互作用によって得られる信号の検出に基づい
て像表示を行なう走査電子顕微鏡又は類似装置において
°、試料面上の各画素点(X。
[Means for Solving the Problems 1] Therefore, the present invention provides a scanning electron microscope or similar device that irradiates a sample with an electron beam and displays an image based on the detection of a signal obtained by the interaction between the electron beam and the sample. ° in the apparatus, each pixel point (X) on the sample surface.

y)の各々に対して電子線の入射角を自動的に切換えて
設定した複数の角度で電子線を入射させるための手段と
、試料を二次元的に移動させるための手段と、前記複数
の入射角度で電子線が試料に入射した際に得られる検出
信号の値を弁別して取得し予め設定した複数の基準値と
各々比較するための手段と、該比較手段より各画素点に
対して得られる検出信号と基準値とが一致しているか否
かを表わす情報信号に基づいて複数の方位のうちの一方
の方位を有する結晶粒の二次元的な分布と、該方位のう
ちの他方の方位を有する結晶粒の二次元的な分布を表示
する手段を備えていることを特徴としている。
y) means for automatically switching the incident angle of the electron beam to make the electron beam incident at a plurality of set angles, a means for moving the sample two-dimensionally, and a means for moving the sample two-dimensionally; A means for discriminating and acquiring the value of a detection signal obtained when an electron beam is incident on a sample at an incident angle and comparing each with a plurality of preset reference values; A two-dimensional distribution of crystal grains having one of a plurality of orientations based on an information signal indicating whether or not a detected signal and a reference value match, and the other of the orientations. The present invention is characterized by comprising means for displaying a two-dimensional distribution of crystal grains having .

[実施例] 以下、図面に基づき本発明の実施例を詳述する。[Example] Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例を示すための図であり、図中
1は図示外の集束レンズ系によって集束された電子線、
2は第1段の偏向コイル、3は第2段の偏向コイル、4
は試料、5は反射電子検出器、6は偏向信号発生回路、
7X、7Yは試料4をX及びY方向に移動させるための
モータ、8はモータ7X、7Yを駆動するための信号を
送る駆動回路、9は増幅器、10はAD変換器、11は
パスライン、12はCPU、13は記憶装置、14はカ
ラーCRT、15は操作卓である。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 1 indicates an electron beam focused by a focusing lens system not shown;
2 is the first stage deflection coil, 3 is the second stage deflection coil, 4
is a sample, 5 is a backscattered electron detector, 6 is a deflection signal generation circuit,
7X and 7Y are motors for moving the sample 4 in the X and Y directions; 8 is a drive circuit that sends signals to drive the motors 7X and 7Y; 9 is an amplifier; 10 is an AD converter; 11 is a pass line; 12 is a CPU, 13 is a storage device, 14 is a color CRT, and 15 is an operator console.

上述した構成において、いま、コイル2.3で偏向され
る電子線1′と光軸Cとを含む面を考え、この面と試料
との交差によって生ずる線がX方向と成す角を方向角φ
、試料面と入射電子線とが成す角を傾斜角θと表わすと
き、その分布を求めようとする特定の結晶方位を例えば
3種選び、その3種の結晶の方位の各々に対して電子線
がチャンネリングを生ずるのに必要な方向角φ、傾斜角
θを入力装置15を用いて入力する。この特定の結晶包
囲の選択は、試料上の適当な3点に対して順次電子線を
固定照射した状i”c電子線の試料に対する入射角を走
査して3種のチャンネリング酸をCRTに表示せしめ、
このチャンネリング酸の極点をライトペン又はカーソル
で指示し、この指示をCI)U12に伝達す葛ことによ
り行なう。このライトベン等で入力された角度を各々(
φa、θa)、、(φb、θb)、(φC0θ、c )
とすると、CPU12は、このような指示を受けて、前
記3種の角度を実現するために必要な偏向コイル2゜3
の偏向量を算出し、この偏向量に対応した信号値をCP
U12の内部記憶装置に保持する。又、前記3種の方位
の結晶に対して電子線がチャンネリングを生じた際に得
られる反射電子検出信号値を前記各極点の輝度信号値を
ライトベンを用いてサンプリングすることにより予め求
め、これらの値の各々に対応した基準値La、Lb、L
cを入力装置15により入力する。CPU12は内部記
憶装置にこれらの値も保持する。
In the above-mentioned configuration, now consider a plane containing the electron beam 1' deflected by the coil 2.3 and the optical axis C, and the angle formed by the line created by the intersection of this plane and the sample with the X direction is defined as the direction angle φ.
, when the angle formed by the sample surface and the incident electron beam is expressed as the inclination angle θ, select, for example, three specific crystal orientations whose distribution is to be determined, and apply the electron beam to each of the three crystal orientations. The direction angle φ and the inclination angle θ necessary for causing channeling are input using the input device 15. The selection of this specific crystal surrounding is achieved by sequentially fixedly irradiating three appropriate points on the sample with an electron beam, scanning the incident angle of the electron beam on the sample, and applying three types of channeling acids to the CRT. display,
This is done by indicating the extreme point of this channeling acid with a light pen or cursor and transmitting this instruction to CI U12. Each angle input with this light ben etc. (
φa, θa), (φb, θb), (φC0θ, c)
Then, upon receiving such an instruction, the CPU 12 adjusts the deflection coil 2°3 necessary to realize the three types of angles.
The amount of deflection is calculated, and the signal value corresponding to this amount of deflection is set as CP.
It is held in the internal storage device of U12. In addition, the backscattered electron detection signal values obtained when the electron beam channels the crystals in the three types of orientations are obtained in advance by sampling the luminance signal values at each of the pole points using a light vane, and these values are calculated in advance. Reference values La, Lb, L corresponding to each of the values of
c is input using the input device 15. CPU 12 also maintains these values in internal storage.

そこで、入力装置15により測定の開始を命じると、C
PU12は駆動回路8を制御して試料4の左上隅が光軸
C上に配置されるように試料4を移動させる。CPU1
2はまず、最初の画素点(xi 、yl)に電子線が前
記3種の角度で順次入射するように、内部記憶装置に保
持した偏向信号を順次偏向信号発生回路6に送る。その
結果、電子線は方向角φ、傾斜角θを第1図に示すよう
に順次(φa、θa)、(φb、θb)、(φC2θC
)とするように、コイル2,3により偏向されて画素点
(xl 、 yl )に入射する。その結果、反!8電
子検出器5より3種の角度の入射に対して検出信号1a
11 、  I bll 、  I C11が得られる
。これら検出信号はデジタル信号に変換された後、記憶
装置13に一旦記憶される。CPU12は検出信号値1
a11 、  I bll 、  I C11を読み出
してその各々を基準値La、Lb、LCと比較する。即
ら、Iallとl−aとの差が予め定めた許容誤差範囲
内か否かを判定し、以内であればこの画素を第1種の方
゛位を有する結晶の存在画素として記憶装置13内の第
1の画像情報記憶領域に記憶する。1b11、Ic11
についても同様の比較判定を行なう。
Therefore, when the input device 15 is used to command the start of measurement, C
The PU 12 controls the drive circuit 8 to move the sample 4 so that the upper left corner of the sample 4 is placed on the optical axis C. CPU1
First, the deflection signal held in the internal storage device is sequentially sent to the deflection signal generation circuit 6 so that the electron beam is sequentially incident on the first pixel point (xi, yl) at the three angles mentioned above. As a result, the electron beam has a direction angle φ and an inclination angle θ sequentially (φa, θa), (φb, θb), (φC2θC
), it is deflected by the coils 2 and 3 and enters the pixel point (xl, yl). As a result, anti! Detection signal 1a from 8 electron detector 5 for three types of incident angles
11, I bll and I C11 are obtained. After these detection signals are converted into digital signals, they are temporarily stored in the storage device 13. CPU12 detects signal value 1
a11, I bll, and I C11 are read out and compared with reference values La, Lb, and LC, respectively. That is, it is determined whether the difference between Iall and 1-a is within a predetermined tolerance range, and if it is within the range, the storage device 13 determines that this pixel is a pixel in which a crystal having the first type orientation exists. The image information is stored in the first image information storage area within the image information storage area. 1b11, Ic11
A similar comparative judgment is also made for .

CPU12は最初の画素点における信号の収集と前述し
た比較判定作業を終えると、駆動回路8に制御信号を送
って試料4を1画素分だけ移動させ、次の点(x2 、
yl )にも3種の角度で順次電子線を入射させる。そ
の際得られた検出信号1a21゜I b21 、  I
 c21を各々la、lb、l−cと比較して判定を行
ない、その判定結果を記憶装置13の第1.第2.第3
の画像情報記憶#A賊の画素(X2、yl)に対応する
記憶番地に記憶させる。このようにして、CPU12は
各画素(Xi 、 yj )の各々について3種の角度
で電子線を入射させながら、検出信号Iaij 、  
Ib1j 、  Ic1jを各々La、lb、l−cと
比較して行き、試料4上の所定の二次元領域の各点につ
いて電子線の照射を終える。その結果、記憶装置13の
第1の画像情報記憶領域には第1種の方位の結晶である
画素に1”が記憶され、第1種の方位の結晶でない画素
にはII O11が記憶される。同様に第2種、第3種
の方位の結晶の存在画素は、同様に第2.第3の画像情
報記憶領域に111 ITとして記憶される。そこで、
入力装置15により第1.第2.第3種の方位の結晶が
存在している画素を各々赤、黄色、緑で表示するよう指
示すると、CPU12は記憶装置13に記憶されている
画像信号を読み出して、この読み出された情報に基づい
て各方位の結晶の存在画素をCRT14上に色別に表示
する。その結果、CRT14上には、例えば、第2図に
示すような結晶粒分布像が表示される。第2図において
斜線は赤で表示される第1の方位の結晶が分布する領域
、点線による斜線部は黄色で表示される第2種の方位の
結晶が存在する領域、−点鎖線による斜線部は緑で表示
される第3種の方位の結晶が存在する領域を表わしてい
る。このようにして、試料4を機械的に1度だけ二次元
的に移動させるだけで、特定の複数種の方位の結晶粒の
分布を短時間に精度良く表示することができる。
After the CPU 12 completes the signal collection at the first pixel point and the comparison and determination work described above, it sends a control signal to the drive circuit 8 to move the sample 4 by one pixel, and moves the sample 4 by one pixel, and moves the sample 4 by one pixel to move the sample 4 to the next point (x2,
The electron beam is also sequentially incident on yl) at three different angles. The detection signal 1a21゜I b21 , I obtained at that time
c21 is compared with la, lb, and lc to make a determination, and the determination results are stored in the first .c21 of the storage device 13. Second. Third
Image information storage #A is stored at the memory address corresponding to the pirate pixel (X2, yl). In this way, the CPU 12 makes the electron beam incident on each pixel (Xi, yj) at three different angles, and generates the detection signals Iaij,
Ib1j and Ic1j are compared with La, lb, and lc, respectively, and irradiation of each point in a predetermined two-dimensional area on the sample 4 with the electron beam is completed. As a result, in the first image information storage area of the storage device 13, 1'' is stored in pixels that are crystals in the first type of orientation, and II O11 is stored in pixels that are not crystals in the first type of orientation. Similarly, pixels in which crystals of the second type and third type orientation exist are similarly stored as 111 IT in the second and third image information storage areas.
The input device 15 allows the first. Second. When instructed to display pixels in which crystals of type 3 orientation are present in red, yellow, and green, the CPU 12 reads out the image signal stored in the storage device 13 and uses this read information. Based on this, pixels in which crystals exist in each direction are displayed on the CRT 14 in different colors. As a result, a crystal grain distribution image as shown in FIG. 2, for example, is displayed on the CRT 14. In Figure 2, the diagonal line is the area where the crystals of the first orientation are distributed, which is shown in red, the area where the crystals with the second orientation are present, which is shown in yellow, is the area where the diagonal line is shown with the dotted line. represents a region where crystals of the third type of orientation exist, which are displayed in green. In this way, by mechanically moving the sample 4 only once two-dimensionally, the distribution of crystal grains in a plurality of specific orientations can be displayed with high precision in a short time.

上述した実施例は本発明の一実施例に過ぎず、変形もて
実施することができる。
The embodiment described above is only one embodiment of the present invention, and modifications can be made.

例えば、上述した実施例においては、第1.第2、第3
の角度で電子線を試料に入射させる都度、1画素分ずつ
試料を機械的に移動させるようにしたが、電子線の偏向
収差が無視できる程度の領域内は電子線の試料入射角度
を順次第1.第2.第3の角度に設定した状態で電子線
を偏向することによりこの領域内の画鋲を二次元的に走
査した後、次の領域に移動するため試料を機械的に移動
するよう、にしても良い。
For example, in the embodiment described above, the first. 2nd, 3rd
The sample was mechanically moved one pixel each time the electron beam was incident on the sample at an angle of 1. Second. The sample may be moved mechanically to move to the next area after two-dimensionally scanning the thumbtack in this area by deflecting the electron beam with the electron beam set at the third angle. .

又、第1.第2.第3の入射角度に応じた偏向信号の発
生は以下のようにしても良い。即ち、CRT画面に表示
された極点等をライトベン又はカーソル等で指示し、こ
の指示に基づいて、指示点に対応した偏向信号値をサン
プルホールド回路にホールドするようにし、このホール
ドされた信号値をデジタル信号に変換した後ラッチし、
このようにしてラッチされた複数の信号をサイクリック
に取り出すことにより偏向信号を発生させるようにして
も良い。
Also, 1st. Second. The generation of the deflection signal according to the third angle of incidence may be performed as follows. That is, the polar point displayed on the CRT screen is indicated with a light ben or a cursor, and based on this instruction, the deflection signal value corresponding to the indicated point is held in the sample and hold circuit, and this held signal value is Latch after converting to digital signal,
A deflection signal may be generated by cyclically extracting a plurality of signals latched in this manner.

又、各点に電子線を照射する都度、Ia、Ib。Also, each time each point is irradiated with an electron beam, Ia and Ib.

lcとl−a、l−b、lcとの比較を行なうようにし
たが、各走査点におけるIa、Ib、Icの値を画像情
報記憶領域に記憶させておき、1画面分のこれら画像情
報が取得された後、比較判定処理を行なうようにしても
良い。
lc and l-a, l-b, lc are compared, but the values of Ia, Ib, and Ic at each scanning point are stored in the image information storage area, and these image information for one screen are stored. After the information is acquired, a comparison and determination process may be performed.

又、上述した実施例においては、各画素点に対して3種
の角度で電子線を入射させるようにしたが、2種あるい
は、3秤よりも多くとも良い。
Further, in the above-described embodiment, the electron beam is incident on each pixel point at three different angles, but two or more angles may be used.

又、上述した実施例においては、検出信号として反射電
子検出信号を用いたが、吸収電子検出信号等に基づいて
結晶方位分布画像を表示することもできる。
Further, in the above-described embodiment, a reflected electron detection signal is used as a detection signal, but a crystal orientation distribution image can also be displayed based on an absorbed electron detection signal or the like.

更に又、上述した実施例においては、異なった方位を有
する結晶粒の分布を単一の画面に弁別して表示するよう
にしたが、各方位の結晶粒の分布毎に異なった画面に表
示するようにしても良い。
Furthermore, in the above-described embodiment, the distribution of crystal grains having different orientations is displayed in a differentiated manner on a single screen, but it is possible to display the distribution of crystal grains in each orientation on a different screen. You can also do it.

[発明の効果] 上述した説明から明らかなように、本発明においては、
試料面上の各画素点(x、y)の各々に対して電子線の
入射角を自動的に切換えて設定した複数の角度で電子線
を入射させると共に、試料を二次元的に移動させ、前記
複数の入射角度で電子線が試料に入射した際に得られる
検出信号の値を弁別して取得して予め設定した複数の基
準値と各々比較し、この比較手段より各画素点に対して
得られる検出器1号と基準値とが一致しているか否かね
表わす情報信号に紅づいて特定の方位を有する結晶粒の
分布を表示するようにしているため、本発明によれば試
料の機械的な二次、元移動を全表示域に対して1回行な
うだけで良く、広域にわたる精度の良い結晶粒分布像を
短時間に得ることができる。
[Effect of the invention] As is clear from the above explanation, the present invention has the following effects:
The incident angle of the electron beam is automatically switched to each pixel point (x, y) on the sample surface, and the electron beam is made incident at a plurality of set angles, and the sample is moved two-dimensionally, The value of the detection signal obtained when the electron beam is incident on the sample at the plurality of incident angles is discriminated and obtained and compared with a plurality of preset reference values, and the comparison means calculates the value obtained for each pixel point. According to the present invention, the distribution of crystal grains having a specific orientation is displayed by reddening the information signal indicating whether the detector No. 1 and the reference value match or not. It is only necessary to perform two-dimensional and original movement once for the entire display area, and a highly accurate crystal grain distribution image over a wide area can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すための図、第2図はC
RTによる結晶方位分布の表示例を示すだめの図である
。 1:電子線     2.3:0iii向コイル4:試
料      5:反射電子検出器6:偏向信号発生回
路 7X、7Y:モータ7
FIG. 1 is a diagram showing one embodiment of the present invention, and FIG. 2 is a diagram showing an embodiment of the present invention.
FIG. 3 is a diagram illustrating an example of display of crystal orientation distribution by RT. 1: Electron beam 2.3: 0iii direction coil 4: Sample 5: Backscattered electron detector 6: Deflection signal generation circuit 7X, 7Y: Motor 7

Claims (1)

【特許請求の範囲】[Claims] 試料に電子線を照射し、該電子線と試料との相互作用に
よって得られる信号の検出に基づいて像表示を行なう走
査電子顕微鏡又は類似装置において、試料面上の各画素
点(x、y)の各々に対して電子線の入射角を自動的に
切換えて設定した複数の角度で電子線を入射させるため
の手段と、試料を二次元的に移動させるための手段と、
前記複数の入射角度で電子線が試料に入射した際に得ら
れる検出信号の値を弁別して取得し予め設定した複数の
基準値と各々比較するための手段と、該比較手段より各
画素点に対して得られる検出信号と基準値とが一致して
いるか否かを表わす情報信号に基づいて複数の方位のう
ちの一方の方位を有する結晶粒の二次元的な分布と、該
方位のうちの他方の方位を有する結晶粒の二次元的な分
布を表示する手段を備えていることを特徴とする結晶方
位分布像を得る走査電子顕微鏡又は類似装置。
In a scanning electron microscope or similar device that irradiates a sample with an electron beam and displays an image based on the detection of a signal obtained by the interaction between the electron beam and the sample, each pixel point (x, y) on the sample surface is means for automatically switching the incident angle of the electron beam and making the electron beam incident at a plurality of set angles, and means for moving the sample two-dimensionally;
means for discriminating and acquiring the values of detection signals obtained when the electron beam is incident on the sample at the plurality of incident angles and comparing them with a plurality of preset reference values; A two-dimensional distribution of crystal grains having one of a plurality of orientations based on an information signal indicating whether or not a detection signal obtained for a reference value matches a reference value; A scanning electron microscope or similar device for obtaining a crystal orientation distribution image, comprising means for displaying a two-dimensional distribution of crystal grains having the other orientation.
JP61264925A 1986-11-07 1986-11-07 Scanning electron microscope or similar device for attaining crystal azimuth distribution image Pending JPS63118643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264925A JPS63118643A (en) 1986-11-07 1986-11-07 Scanning electron microscope or similar device for attaining crystal azimuth distribution image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264925A JPS63118643A (en) 1986-11-07 1986-11-07 Scanning electron microscope or similar device for attaining crystal azimuth distribution image

Publications (1)

Publication Number Publication Date
JPS63118643A true JPS63118643A (en) 1988-05-23

Family

ID=17410099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264925A Pending JPS63118643A (en) 1986-11-07 1986-11-07 Scanning electron microscope or similar device for attaining crystal azimuth distribution image

Country Status (1)

Country Link
JP (1) JPS63118643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036747A (en) * 1997-10-02 1999-05-25 가나이 쓰도무 Pattern defect inspection method and inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036747A (en) * 1997-10-02 1999-05-25 가나이 쓰도무 Pattern defect inspection method and inspection device
KR100721846B1 (en) * 1997-10-02 2007-05-28 가부시끼가이샤 히다치 세이사꾸쇼 Patterned wafer inspection method and apparatus therefor

Similar Documents

Publication Publication Date Title
JP2563134B2 (en) Scanning transmission type phase contrast electron microscope
JP3230911B2 (en) Scanning electron microscope and image forming method thereof
JPS63118643A (en) Scanning electron microscope or similar device for attaining crystal azimuth distribution image
JP4133458B2 (en) Pattern inspection method and pattern inspection apparatus
US3917946A (en) Electron-optical device for the recording of selected diffraction patterns
JPH053013A (en) Automatic focus adjustment system
JP4011455B2 (en) Sample observation method using transmission electron microscope
JP4397730B2 (en) Electron microscope aperture correction method and apparatus
JP2004271270A (en) Pattern inspection method and pattern inspection device
JP4275786B2 (en) electronic microscope
JP2000123774A (en) Scanning tunneling electron microscope
US4737640A (en) Electron microscope
US20230115486A1 (en) Charged Particle Beam System and Control Method Therefor
JPH0729536A (en) Scanning electron microscope
JP3081231B2 (en) electronic microscope
JP3112548B2 (en) Image signal processing method in charged particle beam device
JP2001006588A (en) Scanning electron microscope
JPH01109650A (en) High speed display of secondary charged particle image
JPH06231716A (en) Ion micro beam device
JPH05258700A (en) Scanning image observing method and scanning electron microscope
JPH05325860A (en) Method for photographing image in scanning electron microscope
JPH0139394Y2 (en)
JPH06124678A (en) Charged particle microscope
JPH0425803Y2 (en)
JPH0238367Y2 (en)