JPS6311850A - Method and apparatus for detecting pin hole or the like of insulator - Google Patents

Method and apparatus for detecting pin hole or the like of insulator

Info

Publication number
JPS6311850A
JPS6311850A JP15502586A JP15502586A JPS6311850A JP S6311850 A JPS6311850 A JP S6311850A JP 15502586 A JP15502586 A JP 15502586A JP 15502586 A JP15502586 A JP 15502586A JP S6311850 A JPS6311850 A JP S6311850A
Authority
JP
Japan
Prior art keywords
corona discharge
insulator
specimen
discharge electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15502586A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kaneko
金子 良明
Takekatsu Kawamura
川村 雄克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Denshi Kogyo KK
Original Assignee
Sanki Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Denshi Kogyo KK filed Critical Sanki Denshi Kogyo KK
Priority to JP15502586A priority Critical patent/JPS6311850A/en
Publication of JPS6311850A publication Critical patent/JPS6311850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To enable detection of the entire area of a sample in a short time, by attaching ions generated by a corona discharge onto the surface of a sample comprising a insulated body to detect a pin hole or the like from the size of current leaking from the sample. CONSTITUTION:A sample 5 has one side of metal base material 6 covered with an insulation this film 7 and an open periphery of an insulated container 1 is put tight on the surface of the thin film 7 to form a closed space with both the parts. Now, when an output voltage of a DC power source 3 to be applied to a corona discharge electrode 2 is increased to generate a corona discharge, ions generated by the corona discharge diffuse within the close space formed with the container 1 and the thin film 7 with a potential gradient between the electrode 2 and the thin film 7, a part of the diffused ions attach onto the surface of the thin film 7 and leakage current due to the ions attached flows to a circuit of a current detector 8 through the thin film 7 and the base material 6. Thus, the presence of a pin hole or the like can be detected in the thin film 7 depending on a difference between readings of the detector 8 when the thin film 7 has no flaw and when it 7 has a pin hole or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば缶ビール又は缶コーヒー等の容器のよ
うに、有底筒状の金属母材の表面に合成樹脂膜等より成
る絶縁薄膜を被着せしめて成る容器の絶縁薄膜における
ピンホール又は傷等の有無或いは一般の絶縁膜、絶縁板
又は瓶等におけるピンホール又は傷等の有無を探知する
方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to coating a bottomed cylindrical metal base material with an insulating thin film made of a synthetic resin film or the like, such as a container for canned beer or canned coffee. The present invention relates to a method and apparatus for detecting the presence or absence of pinholes or scratches in an insulating thin film of a container, or the presence or absence of pinholes or scratches in a general insulating film, insulating plate, bottle, or the like.

従来の技術 従来におけるピンホール等の探知装置は1例えば検体の
金属母材を対極とし、この対極との間に高電圧の印加さ
れる刷毛状可動電極を金属母材の表面に設けた絶縁膜に
直接接触摺動せしめ、両電極間における放電電流の大小
によってピンホール等の有無を探知するように構成され
ている。
Conventional technology A conventional pinhole detection device uses an insulating film, for example, in which a metal base material of the sample is used as a counter electrode, and a brush-like movable electrode to which a high voltage is applied is provided on the surface of the metal base material between the counter electrode and the counter electrode. The structure is such that the presence or absence of pinholes, etc. is detected by sliding the electrodes in direct contact with the electrodes and checking the magnitude of the discharge current between the two electrodes.

発明が解決しようとする問題点 に記従来装置においては、刷毛状可動電極を直接検体の
絶縁膜に接触摺動せしめるため、絶縁11りが−Vい場
合又は膜質が柔らかい場合等には、絶縁膜を損傷するお
それがあり、又、未摺動部分、即ち、探知漏れ部分を生
ずるおそれがあるばかりでなく、検体の絶縁膜の厚さに
対して印加電圧が過大なるときは絶縁膜を破壊し、過小
なるときは探知不能となるため、絶縁膜の厚さに応じて
予め実験的に最適印加電圧を求めておく必要があり、探
知準備に比較的多くの時間と労力を要する。
Problems to be Solved by the Invention In the conventional device, the brush-like movable electrode is brought into direct contact with the insulating film of the sample. There is a risk of damaging the membrane, and there is also a risk of causing non-sliding areas, that is, areas where detection is missed.If the applied voltage is too high for the thickness of the insulating film of the sample, the insulating film may be destroyed. However, if the voltage is too low, detection becomes impossible, so it is necessary to determine the optimum applied voltage experimentally in advance depending on the thickness of the insulating film, which requires a relatively large amount of time and effort to prepare for detection.

問題点を解決するための手段 本発明は、コロナ放電に因り生じたイオンを。Means to solve problems The present invention uses ions generated due to corona discharge.

絶縁容器及びその開0部に密着せしめた検体の絶縁11
りによって形成される密閉空間内において拡散せしめ、
検体の絶縁膜の内表面に付着したイオンに因り生ずる絶
縁膜からの漏洩電流の大きさを414定して検体の絶縁
膜におけるピンホール又は傷等の有無を探知する方法及
びその装置である。
Insulation 11 of the specimen brought into close contact with the insulating container and its opening
diffused in a closed space formed by
A method and apparatus for detecting the presence or absence of pinholes, scratches, etc. in an insulating film of a specimen by determining the magnitude of leakage current from the insulating film caused by ions attached to the inner surface of the insulating film of the specimen.

作用 本発明においては、検体の絶縁膜におけるピンホール等
の有無に応じて検体の絶縁膜を介して漏洩する電流の大
きさに著しい差を生ぜしめることが可能で、したがって
、この漏洩電流値を測定することによってピンホール等
の有無を探知することが出来る。
Function In the present invention, it is possible to produce a significant difference in the magnitude of the current leaking through the insulating film of the specimen depending on the presence or absence of pinholes etc. in the insulating film of the specimen, and therefore, it is possible to make a significant difference in the magnitude of the current leaking through the insulating film of the specimen. By measuring, the presence or absence of pinholes etc. can be detected.

実施例 第1図は、本発明の一実施例を示す図で、1は半球状又
は断面円形成いは方形の有底筒状をなす電気的絶縁容器
、2はコロナ放電電極で、細線状電極又は先端を先鋭な
らしめた針状電極より成る。3は直流電源で、Ov乃至
数10kVの範囲に互って出力電圧を変化せしめ得る。
Embodiment FIG. 1 is a diagram showing an embodiment of the present invention, in which 1 is an electrically insulating container in the form of a hemispherical, circular or rectangular bottomed cylinder; 2 is a corona discharge electrode; It consists of an electrode or a needle-like electrode with a sharp tip. Reference numeral 3 is a DC power supply, which can vary the output voltage in the range of Ov to several tens of kV.

4は放電電流制限抵抗、5は検体で、金属母材6の片面
に絶縁薄膜7を被着せしめて成り、この絶縁薄膜7の表
面に絶縁容器1の開口周縁を密着せしめ、両者によって
密閉空間を形成する。8は電流計又はオシロスコープ等
の電流検出器である。
Reference numeral 4 indicates a discharge current limiting resistor, and reference numeral 5 indicates a specimen, which is made up of a metal base material 6 with an insulating thin film 7 coated on one side, and the periphery of the opening of the insulating container 1 is brought into close contact with the surface of this insulating thin film 7. form. 8 is a current detector such as an ammeter or an oscilloscope.

コロナ放電電極2に加える直流電源3の出力電圧を高め
てコロナ放電を生ぜしめると、このコロナ放電に因り生
じたイオンは、イオン相互の反発力及びコロナ放電電極
2と絶縁油1197間の゛上位勾配によって、絶縁容器
l及び絶縁薄膜7により形成された密閉空間内に拡散し
、拡散イオンの一部が絶縁薄膜7の表面に付着し、更に
、旧情イオンの−・部に因る漏洩電流が絶縁薄膜7及び
金属母材6を介して電流検出器8の回路に流れる。
When the output voltage of the DC power supply 3 applied to the corona discharge electrode 2 is increased to generate a corona discharge, the ions generated due to this corona discharge are caused by the repulsion between the ions and the upper layer between the corona discharge electrode 2 and the insulating oil 1197. Due to the gradient, the ions are diffused into the closed space formed by the insulating container l and the insulating thin film 7, and a part of the diffused ions adheres to the surface of the insulating thin film 7, and furthermore, a leakage current due to the - part of the old ions is generated. The current flows through the insulating thin film 7 and the metal base material 6 to the circuit of the current detector 8 .

絶縁薄膜7が無傷の場合における電流検出器8の指示値
と、絶縁薄膜7にピンホール又は傷等が存在する場合に
おける電流検出器8の指示値の差から絶縁薄膜7におけ
るピンホール等のイ(無を探知することが出来る。
The presence of pinholes, etc. in the insulating thin film 7 can be determined from the difference between the indicated value of the current detector 8 when the insulating thin film 7 is intact and the indicated value of the current detector 8 when the insulating thin film 7 has pinholes or scratches. (Can detect nothingness.

本発明者等が、試作装ごについて行った実験に基づく具
体数値により説明すると、絶縁容器lをゴムを以て形成
すると共に、その直径を略100mmとし、コロナ放電
電極2を先端の先鋭な針状電極を以て形成し、その先端
と絶縁薄膜7の表面との間隔を略50mmとし、検体に
おける金属母材6をアルミニウム板を以て、絶縁薄膜7
を厚さ略35gmのポリエチレンを以てそれぞれ形成す
ると共に、放電電流制限抵抗4の抵抗値を100MΩに
選び、電流検出器8としてオシロスコープを用いて電流
値を観測した結果によれば、直流電源3の電圧を徐々に
上昇せしめると2kV付近でコロナ放電を生じて漏洩電
流が流れ始め、10kVに上昇せしめた際の漏洩電流値
は略2.GJLAで、検体を同一材質で同−構成及び同
一寸法の他の検体と交換して漏洩電流値を測定した結果
、検体によって多少の差はあるが、漏洩電流値の変化範
囲は略2.3 JLA乃至略2.7pAで、漏洩電流値
の大きさ及びその変化範囲は、共に極めて小であった。
The present inventors will explain this using specific numerical values based on experiments conducted on each prototype device.The insulating container l is made of rubber, its diameter is approximately 100 mm, and the corona discharge electrode 2 is a needle-like electrode with a sharp tip. The distance between the tip and the surface of the insulating thin film 7 is approximately 50 mm, and the metal base material 6 in the specimen is formed using an aluminum plate.
were formed from polyethylene with a thickness of about 35 gm, and the resistance value of the discharge current limiting resistor 4 was selected to be 100 MΩ.According to the results of observing the current value using an oscilloscope as the current detector 8, it was found that the voltage of the DC power supply 3 When the voltage is gradually increased, corona discharge occurs at around 2kV and leakage current begins to flow, and when the voltage is increased to 10kV, the leakage current value is approximately 2. At GJLA, we measured the leakage current value by replacing the sample with another sample of the same material, same configuration, and same dimensions. Although there were some differences depending on the sample, the change range of the leakage current value was approximately 2.3. JLA or approximately 2.7 pA, and both the magnitude of the leakage current value and its variation range were extremely small.

次に、検体における絶縁薄膜7の表面に縦横の各長さ略
1mg+の傷を付して、直流電源3の電圧を前記と同様
10kVに上昇せしめた場合、絶縁薄膜7からの漏洩電
流値は略Ei、0JLAで、傷の大きさを変化せしめた
場合、又、肉眼で識別し得ない程度の微小なる傷の場合
でも、漏洩電流値は矢張り略8.0.Aで変化を認めら
れず、無傷の場合の漏洩電流値2.3JLA乃至2.7
jLAの略2倍乃至3倍で、両者の差は極めて大であっ
た。
Next, when the surface of the insulating thin film 7 in the specimen is scratched with a length of approximately 1 mg+ in length and width, and the voltage of the DC power supply 3 is increased to 10 kV as above, the leakage current value from the insulating thin film 7 is When the size of the flaw is changed at approximately Ei and 0 JLA, and even in the case of a minute flaw that cannot be discerned with the naked eye, the leakage current value is approximately 8.0. Leakage current value 2.3JLA to 2.7 when no change is observed in A and there is no damage
It was approximately two to three times that of jLA, and the difference between the two was extremely large.

第2図は、L記実験における漏洩電流を示す曲線図で、
横軸は経過時間T(秒)、縦軸は漏洩電流値I (gA
)、実線で示した曲線は、ピンホール及び傷等の全く存
在しない検体における漏洩電流の変化を示し、破線で示
した曲線は、傷を有する検体における漏洩電流の変化を
示したものである。
Figure 2 is a curve diagram showing the leakage current in the L experiment.
The horizontal axis is the elapsed time T (seconds), and the vertical axis is the leakage current value I (gA
), the curve shown with a solid line shows the change in leakage current in a specimen without any pinholes or scratches, and the curve shown with a broken line shows the change in leakage current in a specimen with scratches.

この曲線図の場合は、コロナ放電電極に最初から10k
Vの直流電圧を印加したが、これより数秒後に破線の場
合には略Ei、0JLAの大きさで安定し。
In the case of this curve diagram, 10k is applied to the corona discharge electrode from the beginning.
A DC voltage of V was applied, but after a few seconds, it stabilized at approximately Ei and 0JLA in the case of the broken line.

実線の場合には略2.3.A乃至略2.7ILAで安定
した。
In the case of a solid line, approximately 2.3. It was stable at A to about 2.7 ILA.

尚、直流電源3の電圧を15kV乃至17kVにまで」
ニ昇せしめると、検体の中には絶縁破壊を生ずるものが
あり、この絶縁破壊は、絶縁破壊前後における漏洩電流
値の急激な変化によって認め得たが、絶縁破壊後、直流
電源電圧を1OkVに低下せしめて測定した漏洩電流値
は、矢張り略6.0μAであった。
In addition, the voltage of DC power supply 3 can be set to 15kV to 17kV.
Some specimens caused dielectric breakdown when the temperature was increased to 100 kW, and this dielectric breakdown was recognized by the rapid change in the leakage current value before and after the dielectric breakdown. The leakage current value measured after lowering was approximately 6.0 μA.

」二記実験結果から明らかなように、同一材質、同−構
成及び同一寸法の検体群から任意の検体を抽出し、コロ
ナ放゛セ電様に加える直流電圧を零ボルトから徐々に上
昇せしめて漏洩電流の流れ始めを検出し、更に、直流電
圧を上昇せしめて絶縁破壊に因る漏洩電流の大幅増加を
検出し、漏洩電流が流れ始めた際の直流電源電圧と絶縁
破壊を生じた際の直流電源電圧との間の任意の直流電圧
をコロナ放電電極に印加した際の漏洩電流値から検体の
絶縁薄膜におけるピンホール等の有無を探知し得ること
となる。
As is clear from the experimental results described in Section 2, an arbitrary specimen was extracted from a group of specimens of the same material, same configuration, and same size, and the DC voltage applied to the corona discharge voltage was gradually increased from zero volts. It detects the beginning of leakage current flow, and then increases the DC voltage to detect a significant increase in leakage current due to dielectric breakdown. The presence or absence of pinholes, etc. in the insulating thin film of the specimen can be detected from the leakage current value when an arbitrary DC voltage between the DC power supply voltage and the corona discharge electrode is applied.

実際には検体の個体差を考慮して、任意の抽出検体にお
ける絶縁破壊電圧より適宜低い電圧及び漏洩電流が流れ
始めた印加電圧より適宜高い電圧の間の電圧をコロナ放
電電極に印加して探知を行うことが望ましい。
In practice, taking into account the individual differences between samples, detection is performed by applying a voltage to the corona discharge electrode that is between a voltage that is appropriately lower than the dielectric breakdown voltage of any extracted sample and a voltage that is appropriately higher than the applied voltage at which leakage current begins to flow. It is desirable to do so.

任意に抽出した検体の漏洩電流が、コロナ放電電極への
印加電圧の低い段階から比較的大電流である場合には、
他の検体と交換してコロナ放電電極への印加電圧を零ボ
ルトから漸次上昇せしめて探知電圧範囲を求めればよい
こと勿論である。
If the leakage current of an arbitrarily extracted sample is a relatively large current at a stage where the voltage applied to the corona discharge electrode is low,
Of course, the detection voltage range may be determined by replacing the sample with another sample and gradually increasing the voltage applied to the corona discharge electrode from zero volts.

以」二は、金属ハI材の片面に絶縁薄膜を被着せしめて
成る検体の絶縁薄膜におけるピンホール又は傷等の有無
の探知について説明したが、検体が合成樹脂+1Q等の
みから成り、金属母材を持たない場合には、検体の片面
に金属板又は金属箔を密着させ、検体の他面に絶縁容器
の開口周縁を密着せしめて、第1図について説明したと
同様にして探知を行えばよい。
In the following, we have explained the detection of the presence or absence of pinholes or scratches in the insulating thin film of a specimen made of a metal HI material with an insulating thin film coated on one side. If a base material is not used, the detection is performed in the same manner as explained in Figure 1 by placing a metal plate or metal foil in close contact with one side of the sample and the opening edge of the insulating container with the other side of the sample. That's fine.

検体が、例えば合成樹脂膜等より成る食品包装袋等の場
合には、袋の中へ金属板又は金属箔を挿入密着せしめ、
この金属板又は金属箔に電流検出器を接続し、袋の一方
の外表面に絶縁容器の開口周縁を密着せしめて探知を行
い1次に袋の他方の外表面に絶縁容器の開口周縁を密着
せしめて探知を行うこととなる。
If the specimen is, for example, a food packaging bag made of a synthetic resin membrane, etc., insert a metal plate or metal foil into the bag and bring it into close contact.
A current detector is connected to this metal plate or metal foil, and the opening rim of the insulating container is brought into close contact with the outer surface of one side of the bag to detect the current.First, the opening rim of the insulating container is brought into close contact with the other outer surface of the bag. At the very least, detection will be carried out.

検体の面積が広く、1回の探知によって検体の全域を探
知し得ない場合には、絶縁容器の開口周縁の密着個所を
逐次ずらせて探知を繰り返すこととなるが、検体が金属
母材を持たない場合には検体の片面全域に金属板又は金
属箔を密着せしめ、絶縁容器の開「1周縁の密着個所を
逐次ずらせて探知を繰り返すか、検体の片面に密着せし
める金属板又は金属箔の面積を絶縁容器の開口部の面積
よりも適宜大ならしめ、絶縁容器の開口周縁の密着個所
の移動に応じて金属板又は金属箔の密着個所を逐次移動
せしめて探知を繰り返すようにしてもよい。
If the area of the specimen is large and the entire area of the specimen cannot be detected in one detection, the detection will be repeated by sequentially shifting the contact points around the opening of the insulating container, but if the specimen has a metal base material, If not, place a metal plate or metal foil in close contact with the entire surface of one side of the specimen, and repeat the detection by sequentially shifting the contact points around one edge of the insulating container, or measure the area of the metal plate or metal foil that is brought into close contact with one side of the specimen. may be made larger than the area of the opening of the insulating container, and the detection may be repeated by sequentially moving the contact point of the metal plate or metal foil in accordance with the movement of the contact point around the opening of the insulating container.

第3図は、例えば缶ビール又は缶入りの各種清涼飲料等
の容器、即ち、金属缶の内外表面に合成樹脂等の薄膜を
被着せしめて成る容器の合成樹脂119等におけるピン
ホール又は傷等の有無の探知に本発明を実施した−・例
を示す図で、信は検体で、右底筒状の金属ハI材81の
内外表面に耐食性を有する電気的絶縁薄膜71及び72
を被着し、金FfS母材61の開目周縁部62は蓋との
嵌合のために絶縁薄膜を被着することなく、金属m材6
1を露出せしめである。電流検出器8は、この周縁露出
部62に接続しである。絶縁容器lの開口部の直径は、
これを検体の開口周縁部62の直径に略等しく形成し、
絶縁容器lの開口周縁部を検体の開口周縁部に密着せし
めて両者により密閉空間を形成した際に、検体の金属1
iI4+8+が露出している開口周縁部B2が密閉空間
内に露出するおそれのある場合には、絶縁容器1の開口
周縁部に図示のように段部を設ける等の手段を講じて、
検体の開口周縁部62を遮蔽する必要のあること勿論で
ある。
FIG. 3 shows pinholes or scratches in the synthetic resin 119 of a container for, for example, canned beer or various canned soft drinks, that is, a container made by coating a thin film of synthetic resin on the inner and outer surfaces of a metal can. The present invention is implemented to detect the presence or absence of
The opening periphery 62 of the gold FfS base material 61 is coated with the metal m material 6 without being coated with an insulating thin film for fitting with the lid.
1 is exposed. The current detector 8 is connected to this peripheral exposed portion 62. The diameter of the opening of the insulating container l is
This is formed approximately equal to the diameter of the opening peripheral portion 62 of the specimen,
When the opening periphery of the insulating container 1 is brought into close contact with the opening periphery of the specimen to form a sealed space, the metal 1 of the specimen
If there is a risk that the opening periphery B2 where iI4+8+ is exposed may be exposed in the closed space, take measures such as providing a step on the opening periphery of the insulating container 1 as shown in the figure.
Of course, it is necessary to shield the opening periphery 62 of the specimen.

そして本実施例においては、第4図に要部の拡大斜視図
を示すように、複数の細線状電極又はt1状電極2ノを
、互いに適宜間隔(コロナ放電を生ぜしめ得る間隔で、
例えば、略20m+o)を隔てて電極支持導体21の先
端部に取り付けてコロナ放電電極を形成しである。
In this embodiment, as shown in an enlarged perspective view of the main part in FIG.
For example, a corona discharge electrode is formed by attaching it to the tip of the electrode supporting conductor 21 at a distance of approximately 20 m+o.

他の符号及び構成は、第1図と同様である。Other symbols and configurations are the same as in FIG. 1.

本実施例においても直流電源3の電圧を適当な高圧に上
昇せしめると、コロナ放電に因り生じたイオンが密閉空
間内に拡散して一部が検体の絶縁薄膜7Iに付着し、刺
着イオンの一部に因る漏洩電流が外部回路に流れるから
、漏洩電流の大きさを電流検出器8で測定することによ
り、絶縁薄膜71におけるピンホール等の有無を探知す
ることが出来る。
In this embodiment as well, when the voltage of the DC power supply 3 is increased to an appropriate high voltage, ions generated due to corona discharge diffuse into the closed space and some of them adhere to the insulating thin film 7I of the specimen, causing the stuck ions to Since some leakage current flows to the external circuit, by measuring the magnitude of the leakage current with the current detector 8, it is possible to detect the presence or absence of pinholes, etc. in the insulating thin film 71.

この実施例においては、コロナ放電電極を電極支持導体
21の先端部に複数の細線状電極又は針状電極22を設
けて形成しであるため、電極支持導体21の長さを適当
ならしめることにより、電極22を検体の内部空間にま
で挿入することが出来るから、コロナ放電に因り生じた
イオンの一部を速やかに絶縁薄膜71の全表面に付着せ
しめ得る利点を右するが、第1図に示したような単一の
細線状電極又は針状電極を用いてもよい。
In this embodiment, since the corona discharge electrode is formed by providing a plurality of thin wire electrodes or needle electrodes 22 at the tip of the electrode supporting conductor 21, by adjusting the length of the electrode supporting conductor 21 appropriately. Since the electrode 22 can be inserted into the internal space of the specimen, it has the advantage that some of the ions generated due to corona discharge can be quickly attached to the entire surface of the insulating thin film 71. A single thin wire or needle electrode as shown may also be used.

缶状容器の蓋の絶縁薄膜におけるピンホール等の有無の
探知は、第1図に示した実施例における絶縁容器lの開
口部の直径を蓋の直径と略等しく形成し、絶縁容器lの
開口周縁部を蓋の周縁部に密着せしめると共に、蓋の周
縁部における金属母材の露出部、即ち、容器本体の開口
周縁部との嵌合のため絶縁薄膜を被着せしめることなく
、全周に亙って金属母材を露出せしめである縁部に電流
検出器を接続することにより、第1図について説明した
と全く同様にして探知を行うことが出来る。
The presence or absence of pinholes, etc. in the insulating thin film of the lid of a can-shaped container can be detected by forming the diameter of the opening of the insulating container l to be approximately equal to the diameter of the lid in the embodiment shown in FIG. The periphery is brought into close contact with the periphery of the lid, and the exposed part of the metal base material at the periphery of the lid, that is, the exposed part of the metal base material, is fitted to the opening periphery of the container body, so the entire periphery is coated with an insulating thin film. Detection can be carried out in exactly the same manner as described in connection with FIG. 1 by connecting a current detector to the edge where the metal matrix is exposed.

以上はコロナ放電電極として、細線状電極、針状電極(
第1図)又は支持導線の先端部に複数の細線状電極或い
は針状電極を設けて形成した電極(第3図及び第4図)
を用いた場合を例示したが、この他、例えば細い導線を
多数撚り合せて□1本の導線とし、先端部をほぐして成
る電極を用いてもよく、撚り合せる各導線として、極め
て細い導線を用いることにより比較的低圧を以てコロナ
放電を生せしめることが出来、又、単一の細線状電極又
は針状電極を以てコロナ放電電極を形成した場合に比し
、コロナ放電に因り生ずるイオンの量を大ならしめ、拡
散を速やかならしめることが出来る。
The above are corona discharge electrodes such as thin wire electrodes and needle electrodes (
(Fig. 1) or an electrode formed by providing a plurality of thin wire-like electrodes or needle-like electrodes at the tip of a supporting conductor (Figs. 3 and 4)
In addition to this, for example, an electrode may be used in which a large number of thin conductive wires are twisted together to form a single conductor, and the tips are loosened. By using this method, corona discharge can be generated at a relatively low pressure, and the amount of ions generated due to corona discharge can be greatly reduced compared to when a corona discharge electrode is formed using a single thin wire electrode or needle electrode. This can be used to quickly stop the spread.

以上側れの実施例においても、コロナ放電に囚って生じ
たイオン相互の反発力及びコロナ放電電極と絶縁薄膜間
の電位勾配によって密閉空間内に拡散したイオンの一部
が検体の絶縁薄膜に付着するように構成した場合を例示
したが、第5図に示すように、コロナ放電電極2の前面
にリング状の加速電極9を設け、コロナ放電電極2に加
えられる電圧と逆極性の電圧を直流電源lOによって与
えると共に、加速電極9の直径の大きさ、加速電極面と
コロナ放電電極2の先端との間隔、直流電源lOの電圧
等を適当ならしめると、コロナ放電電極2の先端部近傍
に生じたイオンは加速電極9に吸引加速され、一部は加
速電極9に捕捉されるが、大部分は加速電極9内を通過
して検体の絶縁油+1!I! 7の前面に達し、略一様
に分布する。
Even in the above-mentioned embodiments, some of the ions diffused into the closed space due to the mutual repulsion of ions generated by corona discharge and the potential gradient between the corona discharge electrode and the insulating thin film reach the insulating thin film of the specimen. Although the case in which the corona discharge electrode 2 is configured to adhere is illustrated as an example, as shown in FIG. If the diameter of the accelerating electrode 9, the distance between the accelerating electrode surface and the tip of the corona discharge electrode 2, the voltage of the DC power source lO, etc. are adjusted appropriately, the area near the tip of the corona discharge electrode 2 The generated ions are attracted and accelerated by the accelerating electrode 9, and some are captured by the accelerating electrode 9, but most of them pass through the accelerating electrode 9 and pass through the insulating oil of the specimen + 1! I! 7 and is distributed almost uniformly.

したがって、イオン相互の反発力及びコロナ放電電極と
絶縁薄膜間の電位勾配によって拡散する場合に比し、ピ
ンホール等の探知時間を短縮することが出来る。
Therefore, compared to the case where ions are diffused by mutual repulsion and the potential gradient between the corona discharge electrode and the insulating thin film, the detection time for pinholes etc. can be shortened.

リング状の加速電極を設ける代りに、第6図に示すよう
に、コロナ放電電極2に加えられる電圧と逆極性の電圧
を直流電源11によって検体の金属IJ材6に加え、イ
オン相互の反発力、コロナ放電電極2と絶縁薄膜7間の
電位勾配及び金属母材6の吸引力とによってイオンの拡
散を速やかならしめるように構成してもよく、第5図に
示したリング状の加速電極9によるイオンの加速手段と
、第6図に示した金属母材6に吸引電圧を与えることに
よる・イオンの吸引手段とを併用してもよい。
Instead of providing a ring-shaped accelerating electrode, as shown in FIG. 6, a voltage with the opposite polarity to the voltage applied to the corona discharge electrode 2 is applied to the metal IJ material 6 of the specimen by the DC power supply 11, and the mutual repulsive force between ions is applied. , the structure may be such that the potential gradient between the corona discharge electrode 2 and the insulating thin film 7 and the attractive force of the metal base material 6 speed up the diffusion of ions, and the ring-shaped accelerating electrode 9 shown in FIG. The ion acceleration means may be used in combination with the ion attraction means by applying an attraction voltage to the metal base material 6 shown in FIG.

上記何れの実施例においても絶縁容器lにわける開口部
の周縁と検体の絶縁薄膜との密着部分に出来るだけ間隙
を生ずることのないようにする必要がある。即ち、密着
部分に間隙を生じ、この間隙を介して密閉空間内の空気
と外部空間における空気とが互いに交流するような場合
には、この空気の交流に伴なって密閉空間内のイオンが
流出し、正確な探知を行うことが不可能となるおそれが
あるため、例えば絶縁容器lの少なくとも開口部の周縁
を適当な弾力性又は柔軟性を有する材料、例えばゴム等
を以て形成するか、第7図に示すように、絶縁容器lに
おける開口部の縁部にリング状の反発電極12を設け、
コロナ放電電極2に加える電圧と同極性の電圧を直流電
源13によって加えることにより、密着部分における間
隙からのイオンの流出を抑えるように構成してもよく、
絶縁容器lにおける開口部の縁部をり一方性又は柔軟性
を有する材料を以て形成する手段と、開口部の縁部に反
発電極を設ける手段とを併用するようにしてもよい。
In any of the above-mentioned embodiments, it is necessary to minimize the gap between the periphery of the opening of the insulating container 1 and the insulating thin film of the sample. In other words, if a gap is created between the close contact parts and the air in the closed space and the air in the outside space interact with each other through this gap, ions in the closed space will flow out due to this exchange of air. However, since accurate detection may be impossible, for example, the periphery of at least the opening of the insulating container l should be made of a material with appropriate elasticity or flexibility, such as rubber, or As shown in the figure, a ring-shaped repulsion electrode 12 is provided at the edge of the opening in the insulating container l,
By applying a voltage of the same polarity as the voltage applied to the corona discharge electrode 2 by the DC power supply 13, it may be configured to suppress the outflow of ions from the gap in the close contact part.
A method of forming the edge of the opening in the insulating container l using a flexible or flexible material and a method of providing a repulsion electrode at the edge of the opening may be used in combination.

尚、第5図乃至第7図における他の符号及び構成は、第
1図と同様である。
Note that other symbols and configurations in FIGS. 5 to 7 are the same as in FIG. 1.

上記各実施例においては、何れもコロナ放′iニ電極2
又は22に負電圧を加えて負イオン(酸素イオン)を発
生せしめた場合を例示したが、何れの実施例においても
コロナ放電電極に正電圧を加えて正イオン(窒素イオン
)を生ぜしめても本発明を実施することが出来る。
In each of the above embodiments, the corona radiation electrode 2
Or, the case where negative ions (oxygen ions) are generated by applying a negative voltage to the corona discharge electrode is illustrated, but in any of the examples, even if a positive voltage is applied to the corona discharge electrode to generate positive ions (nitrogen ions), the present invention will not occur. Able to carry out inventions.

この場合には、第5図に示したリング状の加速電極9に
加える電圧及び第6図に示した金属母材6に加える電圧
を、それぞれ負電圧とし、第7図に示したリング状の反
発電極12に加える電圧を正電圧とすべきこと勿論であ
る。
In this case, the voltage applied to the ring-shaped accelerating electrode 9 shown in FIG. 5 and the voltage applied to the metal base material 6 shown in FIG. Of course, the voltage applied to the repulsion electrode 12 should be a positive voltage.

」二記各実施例においては、コロナ放電電極2又は22
に直流電圧を印加したが1例えば商用電源周波数の交流
電圧を印加しても本発明を実施することが出来る。
”2 In each embodiment, the corona discharge electrode 2 or 22
Although a DC voltage is applied to the voltage, the present invention can also be carried out by applying an AC voltage at the commercial power frequency, for example.

コロナ放電電極に交流電圧を印加した場合には、第5図
に示した加速電極9及び第6図における金属母材6には
、それぞれコロナ放電電極2に加える交流電圧と同一周
波数で逆相の交流電圧を加え、第7図に示した反発電極
12には、コロナ放電電極2に加える交流電圧と同一周
波数で同相の交流電圧を加えることとなるが、コロナ放
電電極2の先端部と加速電極9、金属母材6及び反発電
極12との各間隔が数100m5以下であれば、交流電
圧の周期に対するイオンの移動の遅れ時間の影響は殆ど
認められず、加速、吸引又は反発効果を十分に呈せしめ
ることが出来る。
When an AC voltage is applied to the corona discharge electrode, the accelerating electrode 9 shown in FIG. 5 and the metal base material 6 in FIG. An AC voltage is applied to the repulsion electrode 12 shown in FIG. 7, which has the same frequency and phase as the AC voltage applied to the corona discharge electrode 2. 9. If the distance between the metal base material 6 and the repulsion electrode 12 is several hundred meters or less, the influence of the delay time of ion movement on the cycle of the AC voltage will hardly be recognized, and the acceleration, attraction, or repulsion effect will be sufficiently achieved. It can be shown.

又、」−記各実施例においては、何れも絶縁容器1内に
コロナ放電電極2又は22を取り封け、絶縁容器l内に
おいてコロナ放電に因ってイオンを発生せしめるように
構成した場合を例示したが、絶縁容器の外部に、おいて
イオンを発生せしめ、これを適当な絶縁流路を介して絶
縁容器と検体によって形成される密閉空間内に導入する
ように構成しても本発明を実施することが出来る。
Furthermore, in each of the embodiments described above, the corona discharge electrode 2 or 22 is sealed in the insulating container 1, and ions are generated by corona discharge in the insulating container 1. Although the example has been given, the present invention may also be implemented by generating ions outside the insulating container and introducing them into the closed space formed by the insulating container and the sample through a suitable insulating flow path. It can be implemented.

第8図は、その一実施例を示す図で、iはイオナイザで
、従来公知のイオナイザと同様の構成、ttUも、金属
筐体15.コロナ放電電極IB、絶縁体17及び圧縮空
気流入「118等より成る。18はイオンの流路で、例
えば絶縁パイプより成る。20は絶縁容器lに1i9け
た空気の流出口である。
FIG. 8 is a diagram showing an embodiment thereof, in which i is an ionizer, which has the same configuration as a conventionally known ionizer, and ttU also has a metal casing 15. It consists of a corona discharge electrode IB, an insulator 17, a compressed air inlet 118, etc. 18 is an ion flow path, for example, made of an insulated pipe. 20 is an air outlet of 1i9 orders of magnitude into the insulating container l.

他の符号及び構成は、第1図と同様である。Other symbols and configurations are the same as in FIG. 1.

イオナイザ14のコロナ放電電極1Gに直流高電圧を印
加するど共に圧縮空気流入「11Bから圧縮空気を流入
せしめると、イオンを全く含まない空気が金属筐体15
、絶縁パイプ18及び絶縁容器lから流出する。イオン
を全く含まない空気の流出後、又は最初から絶縁容器l
の開口部を検体の絶縁薄膜7の表面に密着せしめると、
絶縁パイプ19を介して絶縁容器lと絶縁台膜7により
形成される空間内に流入せしめられたイオンが絶縁薄膜
7の表面に付着し、前記各実施例と同様にしてピンホー
ル等の有無の探知を行うことが出来る。
When a DC high voltage is applied to the corona discharge electrode 1G of the ionizer 14 and compressed air is allowed to flow in from the inlet 11B, air containing no ions flows into the metal casing 15.
, flows out from the insulating pipe 18 and the insulating container l. After the outflow of air that does not contain any ions, or from the beginning, the insulating container l
When the opening of is brought into close contact with the surface of the insulating thin film 7 of the specimen,
The ions flowing into the space formed by the insulating container l and the insulating base film 7 through the insulating pipe 19 adhere to the surface of the insulating thin film 7, and the presence or absence of pinholes etc. is determined in the same manner as in the previous embodiments. Detection can be performed.

゛この場合、絶縁容器lと絶縁台膜7より成る空間内に
流入せしめられた圧縮空気は、絶縁容器1に1没けた空
気の流出「】20から流出するが、圧縮空気中に含まれ
るイオンの絶縁薄膜7−2の付着は阻害されないから、
探知に支障を来すおそれはない。
゛In this case, the compressed air that has flowed into the space formed by the insulating container 1 and the insulating base membrane 7 flows out from the air outlet 20 immersed in the insulating container 1, but the ions contained in the compressed air Since the adhesion of the insulating thin film 7-2 is not inhibited,
There is no risk of interfering with detection.

第8図には、金属母材6の表面に絶縁薄膜7を被着せし
めて成る検体の探知の場合を例示しであるが、検体が絶
縁体のみから成り、金属11材を持たない場合には、検
体の片面に金属板又は金属箔を密着せしめ、これに電流
検出器を接続して探知を行うこと勿論である。
FIG. 8 shows an example of detection of a specimen made by coating an insulating thin film 7 on the surface of a metal base material 6, but when the specimen consists only of an insulator and does not have a metal 11 material Of course, detection can be performed by closely adhering a metal plate or metal foil to one side of the specimen and connecting a current detector to this.

以−Lは、金属母材の片面に絶縁薄膜を設けた検体、飲
用液体の缶状容器及びその蓋のように金属lす材の両面
に絶縁薄1漠を設けた検体又は食品包装袋のように絶縁
薄膜のみから成る検体等の絶縁薄膜におけるピンホール
又は傷等の有無の探知について説明したが、この他、自
動車又は航空機等における各部の塗装膜のピンホール或
いは傷等の探知若しくはガラス又は合成樹脂等より成る
瓶類の傷の探知等にも本発明を実施することが出来るが
、自動車又は航空機等の塗装膜の場合は、第1図又は第
3図について説明したと同様にして探知を行い、瓶等の
場合には、第3図又は第8図について説明したと同様に
して探知を行えばよい。
-L is a specimen with a thin insulating film on one side of a metal base material, a specimen with a thin insulating film on both sides of a metal material such as a can-shaped container for drinking liquid and its lid, or a food packaging bag. As described above, the detection of pinholes or scratches in the insulating thin film of a sample consisting only of an insulating thin film has been explained. The present invention can also be implemented to detect scratches on bottles made of synthetic resin, etc., but in the case of paint films on automobiles, aircraft, etc., detection can be performed in the same manner as explained with reference to FIG. 1 or 3. In the case of a bottle or the like, detection may be performed in the same manner as described with reference to FIG. 3 or FIG.

発明の効果 本発明においては、従来のように可動電極を直接検体の
表面に接触摺動せしめることなく、コロナ放電に因り生
じたイオンを検体の表面に付着せしめ、検体からの漏洩
゛1「流を311定することによりピンホール又は傷等
の有無を探知するものであるから検体を損傷するおそれ
及び探知漏れを生ずるおそれなく、極めて短時間内に検
体全域の探知がi+)能で、又、コロナ放電電極に加え
る直流電圧は、コロナ放電を生ぜしめ([Iる電圧から
検体の絶縁破壊を生ずる電圧より適宜低い′電圧の範囲
であれば、任意の1し圧をコロナ放電電極に加えて探知
を行うことが可能で、その選択範囲は極めて広く、その
−L限及び下限の検出も容易迅速に行い得るので、従来
のように探知準備に多くの時間と労力を要することもな
い等の利点あるもので、その効果用だ大である。
Effects of the Invention In the present invention, ions generated due to corona discharge are attached to the surface of the specimen without directly sliding the movable electrode on the surface of the specimen as in the past, thereby reducing leakage from the specimen. Since it detects the presence or absence of pinholes or scratches by determining The DC voltage applied to the corona discharge electrode can be applied to the corona discharge electrode by applying an arbitrary voltage to the corona discharge electrode, as long as it is in the range of a voltage that is suitably lower than the voltage that causes dielectric breakdown of the specimen, which causes corona discharge. It is possible to perform detection, the selection range is extremely wide, and the -L limit and lower limit can be detected easily and quickly, so there is no need for a lot of time and effort for detection preparation as in the past. It has many advantages and its effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図、第5図乃至第8図は、本発明の実施例
を示す図、第2図は、その作動説明のための曲線図、第
4図は、コロナ放電電極の構成の〜例を示す拡大斜視図
で、l:絶縁容器、2:コロナ放電電極、2!:電極支
持導体、21:コロナ放電電極、3:直流電源、4:放
電電流制限抵抗。 5及び5ド検体、6及び6ド金属母材、62:金属Il
材の縁部、7.71及び72:絶縁薄膜、8:電流検出
器、9:リング状加速電極、lO及び11:直流電源、
12:リング状反発電極、13;直流電源、14:イオ
ナイザ、15:金属筐体、16ニコロナ放電電極、17
:絶縁体、18:圧縮空気流入[」、18:絶縁パイプ
、20:空気の流出口である。
1, 3, 5 to 8 are diagrams showing embodiments of the present invention, FIG. 2 is a curve diagram for explaining its operation, and FIG. 4 is a configuration of a corona discharge electrode. An enlarged perspective view showing an example of ~, l: insulating container, 2: corona discharge electrode, 2! : Electrode supporting conductor, 21: Corona discharge electrode, 3: DC power supply, 4: Discharge current limiting resistor. 5 and 5 specimens, 6 and 6 metal base materials, 62: Metal Il
edge of material, 7.71 and 72: insulating thin film, 8: current detector, 9: ring-shaped accelerating electrode, lO and 11: DC power supply,
12: Ring-shaped repulsive electrode, 13: DC power supply, 14: Ionizer, 15: Metal casing, 16 Nicorona discharge electrode, 17
: insulator, 18: compressed air inflow, 18: insulating pipe, 20: air outlet.

Claims (16)

【特許請求の範囲】[Claims] (1)コロナ放電に因り生じたイオンを絶縁体より成る
検体の表面に付着せしめ、この検体を介して漏洩する電
流の大きさから前記検体におけるピンホール等の有無を
探知することを特徴とする絶縁体におけるピンホール等
の探知方法。
(1) Ions generated due to corona discharge are attached to the surface of a specimen made of an insulator, and the presence or absence of pinholes, etc. in the specimen is detected from the magnitude of the current leaking through the specimen. Method for detecting pinholes, etc. in insulators.
(2)検体における金属母材の表面に設けられた絶縁体
と共に密閉空間を形成する絶縁容器と、前記密閉空間内
に設けたコロナ放電電極と、このコロナ放電電極に電圧
を印加する電源と、前記検体の金属母材に接続される電
流検出器とより成ることを特徴とする絶縁体におけるピ
ンホール等の探知装置。
(2) an insulating container that forms a sealed space together with an insulator provided on the surface of a metal base material in the specimen, a corona discharge electrode provided in the sealed space, and a power source that applies voltage to the corona discharge electrode; A device for detecting pinholes, etc. in an insulator, comprising a current detector connected to the metal base material of the specimen.
(3)絶縁体より成る検体と共に密閉空間を形成する絶
縁容器と、前記密閉空間内に設けたコロナ放電電極と、
このコロナ放電電極に電圧を印加する電源と、前記検体
の外表面に密着せしめられる金属体と、この金属体に接
続される電流検出器とより成ることを特徴とする絶縁体
におけるピンホール等の探知装置。
(3) an insulating container that forms a sealed space together with the specimen made of an insulator; a corona discharge electrode provided in the sealed space;
The insulator is characterized by comprising a power source that applies voltage to the corona discharge electrode, a metal body that is brought into close contact with the outer surface of the specimen, and a current detector that is connected to this metal body. Detection device.
(4)コロナ放電電極が、細線状電極より成る特許請求
の範囲第2項又は第3項記載の絶縁体におけるピンホー
ル等の探知装置。
(4) A device for detecting pinholes, etc. in an insulator according to claim 2 or 3, wherein the corona discharge electrode is a thin wire electrode.
(5)コロナ放電電極が、先端を先鋭ならしめた針状電
極より成る特許請求の範囲第2項又は第3項記載の絶縁
体におけるピンホール等の探知装置。
(5) A device for detecting pinholes, etc. in an insulator according to claim 2 or 3, wherein the corona discharge electrode is a needle-like electrode with a sharp tip.
(6)コロナ放電電極が、電極支持導体に複数の細線状
電極を設けて成る特許請求の範囲第2項又は第3項記載
の絶縁体におけるピンホール等の探知装置。
(6) A device for detecting pinholes or the like in an insulator according to claim 2 or 3, wherein the corona discharge electrode comprises a plurality of thin wire electrodes provided on an electrode supporting conductor.
(7)コロナ放電電極が、電極支持導体に複数の針状電
極を設けて成る特許請求の範囲第2項又は第3項記載の
絶縁体におけるピンホール等の探知装置。
(7) A device for detecting pinholes or the like in an insulator according to claim 2 or 3, wherein the corona discharge electrode comprises a plurality of needle-like electrodes provided on an electrode supporting conductor.
(8)コロナ放電電極が、多数の細線を撚り合せ、その
先端部をほぐして成る特許請求の範囲第2項又は第3項
記載の絶縁体におけるピンホール等の探知装置。
(8) A device for detecting pinholes or the like in an insulator according to claim 2 or 3, wherein the corona discharge electrode is formed by twisting together a large number of thin wires and loosening their tips.
(9)電源が直流電源である特許請求の範囲第2項又は
第3項記載の絶縁体におけるピンホール等の探知装置。
(9) A device for detecting pinholes or the like in an insulator according to claim 2 or 3, wherein the power source is a DC power source.
(10)電源が交流電源である特許請求の範囲第2項又
は第3項記載の絶縁体におけるピンホール等の探知装置
(10) The device for detecting pinholes, etc. in an insulator according to claim 2 or 3, wherein the power source is an AC power source.
(11)コロナ放電電極に印加される電圧と逆極性の電
圧が印加されるリング状の加速電極を、コロナ放電電極
の前面に設けて成る特許請求の範囲第2項又は第3項記
載の絶縁体におけるピンホール等の探知装置。
(11) The insulation according to claim 2 or 3, comprising a ring-shaped accelerating electrode to which a voltage of opposite polarity to the voltage applied to the corona discharge electrode is provided on the front surface of the corona discharge electrode. A device to detect pinholes, etc. in the body.
(12)電流検出器と直列に接続され、コロナ放電電極
に印加される電圧と逆極性の電圧を検体の金属母材に印
加する電源を設けた特許請求の範囲第2項記載の絶縁体
におけるピンホール等の探知装置。
(12) In the insulator according to claim 2, the insulator is connected in series with the current detector and is provided with a power source that applies a voltage of opposite polarity to the voltage applied to the corona discharge electrode to the metal base material of the specimen. Detection device for pinholes, etc.
(13)電流検出器と直列に接続され、コロナ放電電極
に印加される電圧と逆極性の電圧を検体の外表面に密着
せしめられる金属体に印加する電源を設けた特許請求の
範囲第3項記載の絶縁体におけるピンホール等の探知装
置。
(13) Claim 3, which is provided with a power supply connected in series with the current detector and applying a voltage of opposite polarity to the voltage applied to the corona discharge electrode to a metal body that is brought into close contact with the outer surface of the specimen. A device for detecting pinholes, etc. in the described insulator.
(14)絶縁容器における開口部の縁部に、コロナ放電
電極に印加される電圧と同極性の電圧の印加されるリン
グ状の反発電極を設けた特許請求の範囲第2項又は第3
項記載の絶縁体におけるピンホール等の探知装置。
(14) Claim 2 or 3, wherein a ring-shaped repulsion electrode to which a voltage of the same polarity as the voltage applied to the corona discharge electrode is applied is provided on the edge of the opening in the insulating container.
A device for detecting pinholes, etc. in an insulator as described in 2.
(15)検体における金属母材の表面に設けられた絶縁
体と共に密閉空間を形成する絶縁容器と、前記密閉空間
内にイオンを流入せしめるイオナイザと、前記検体の金
属母材に接続される電流検出器とより成ることを特徴と
する絶縁体におけるピンホール等の探知装置。
(15) An insulating container that forms a sealed space together with an insulator provided on the surface of the metal base material of the specimen, an ionizer that causes ions to flow into the sealed space, and a current detection device that is connected to the metal base material of the specimen. A device for detecting pinholes, etc. in an insulator, characterized by comprising a container.
(16)絶縁体より成る検体と共に密閉空間を形成する
絶縁容器と、前記密閉空間内にイオンを流入せしめるイ
オナイザと、前記検体の外表面に密着せしめられる金属
体に接続される電流検出器とより成ることを特徴とする
絶縁体におけるピンホール等の探知装置。
(16) An insulating container that forms a sealed space together with the specimen made of an insulator, an ionizer that causes ions to flow into the sealed space, and a current detector that is connected to a metal body that is brought into close contact with the outer surface of the specimen. A device for detecting pinholes, etc. in an insulator, characterized by:
JP15502586A 1986-07-03 1986-07-03 Method and apparatus for detecting pin hole or the like of insulator Pending JPS6311850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15502586A JPS6311850A (en) 1986-07-03 1986-07-03 Method and apparatus for detecting pin hole or the like of insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15502586A JPS6311850A (en) 1986-07-03 1986-07-03 Method and apparatus for detecting pin hole or the like of insulator

Publications (1)

Publication Number Publication Date
JPS6311850A true JPS6311850A (en) 1988-01-19

Family

ID=15597023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15502586A Pending JPS6311850A (en) 1986-07-03 1986-07-03 Method and apparatus for detecting pin hole or the like of insulator

Country Status (1)

Country Link
JP (1) JPS6311850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674941A (en) * 1992-08-27 1994-03-18 Toyo Seikan Kaisha Ltd Defect inspecting method and device for inside surface coating film of metallic can
FR2710747A1 (en) * 1993-09-30 1995-04-07 Ateq Method and device for detecting leaks from an object
US5510718A (en) * 1992-03-24 1996-04-23 Enderby; George R. Container leak testing
CN112687617A (en) * 2020-12-24 2021-04-20 中国电子科技集团公司第十三研究所 Preparation method of insulator needle and insulator needle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510718A (en) * 1992-03-24 1996-04-23 Enderby; George R. Container leak testing
JPH0674941A (en) * 1992-08-27 1994-03-18 Toyo Seikan Kaisha Ltd Defect inspecting method and device for inside surface coating film of metallic can
FR2710747A1 (en) * 1993-09-30 1995-04-07 Ateq Method and device for detecting leaks from an object
CN112687617A (en) * 2020-12-24 2021-04-20 中国电子科技集团公司第十三研究所 Preparation method of insulator needle and insulator needle
CN112687617B (en) * 2020-12-24 2022-07-22 中国电子科技集团公司第十三研究所 Preparation method of insulator needle and insulator needle

Similar Documents

Publication Publication Date Title
Davies The examination of the electrical properties of insulators by surface charge measurement
Bartnikas Some observations on the character of corona discharges in short gap spaces
JP7056998B2 (en) Systems and methods for AC-DC high voltage leak detection
US6707055B2 (en) Method and apparatus for detecting pinhole defects in a dielectric layer
CN103250051A (en) A method and a device for detecting defects in a packaging material
US20180210026A1 (en) Systems and methods for propagating brush discharge testing
KR19980701796A (en) Sealing Retention Method
US6204669B1 (en) Detection of defects in protective barriers
JPS6311850A (en) Method and apparatus for detecting pin hole or the like of insulator
Weinberg et al. Measurement of the steady− state potential difference across a thin insulating film in a corona discharge
US5455507A (en) Method and apparatus for detecting leaks in electrically-insulative protective articles such as condoms, surgical gloves and the like using gaseous electrostatic ions
CA2432475C (en) Process and apparatus for testing multi-layer composites and containers produced therefrom
Pohl Nonuniform field effects in poorly conducting media
Ebihara et al. Application of the dielectric barrier discharge to detect defects in a teflon coated metal surface
JPS62180282A (en) Nondestructive inspecting method for defect in insulation of low-pressure rotary machine
JP2799361B2 (en) Inspection method of sealed container
JP2015034817A (en) Semiconductor element heat generation analyzer and semiconductor element heat generation analysis method
Berger Investigations of the occurrence of erratic low breakdown voltages in compressed air
KR840004186A (en) Plating control inspection method and device
JPH10185852A (en) Apparatus and method for inspection of pinhole
RU1776976C (en) Specimen strain measurement method
JPS63273073A (en) Test of cable insulation
JP2000214123A (en) Method for inspecting sealed packaged object
KR200188736Y1 (en) Electric test apparatus using magnetic material
JPS5543880A (en) Non-contact measurement of semiconductor carrier concentration and conductivity by capacitance-coupling