JPS6311737B2 - - Google Patents

Info

Publication number
JPS6311737B2
JPS6311737B2 JP7945979A JP7945979A JPS6311737B2 JP S6311737 B2 JPS6311737 B2 JP S6311737B2 JP 7945979 A JP7945979 A JP 7945979A JP 7945979 A JP7945979 A JP 7945979A JP S6311737 B2 JPS6311737 B2 JP S6311737B2
Authority
JP
Japan
Prior art keywords
thin film
heat
vacuum
panel
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7945979A
Other languages
Japanese (ja)
Other versions
JPS563940A (en
Inventor
Seihachiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7945979A priority Critical patent/JPS563940A/en
Publication of JPS563940A publication Critical patent/JPS563940A/en
Publication of JPS6311737B2 publication Critical patent/JPS6311737B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/20Manufacture of screens on or from which an image or pattern is formed, picked up, converted or stored; Applying coatings to the vessel
    • H01J9/22Applying luminescent coatings
    • H01J9/227Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines
    • H01J9/2271Applying luminescent coatings with luminescent material discontinuously arranged, e.g. in dots or lines by photographic processes
    • H01J9/2272Devices for carrying out the processes, e.g. light houses
    • H01J9/2273Auxiliary lenses and filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 この発明はカラー受像管における熱吸収性物質
薄膜の製造装置、詳しくはガラスフエースプレー
ト内面に蒸着される光反射性金属薄膜の上に熱吸
収性物質薄膜を蒸着する装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a thin film of heat absorbing material in a color picture tube, and more specifically, an apparatus for depositing a thin film of heat absorbing material on a light reflective metal thin film deposited on the inner surface of a glass face plate. It is related to.

通常のカラー受像管の螢光面は受像管の管体の
一部を構成するガラスフエースプレート(以下
「パネル」という。)の内面に被着した螢光体膜上
にこの螢光体膜から発した光を有効にカラー受像
管前方へ取り出すための光反射性金属薄膜を蒸着
したいわゆるメタルバツク構造が一般的である。
The phosphor surface of a normal color picture tube is coated on a phosphor film attached to the inner surface of a glass face plate (hereinafter referred to as "panel") that constitutes a part of the tube body of the picture tube. A so-called metal back structure in which a light-reflecting metal thin film is deposited to effectively extract emitted light to the front of the color picture tube is common.

第1図は前記受像管を簡略的に示す断面図で、
外囲器1の一部であるパネル1aの内面に螢光体
膜2を形成し、この螢光体膜2を覆うように光反
射性金属薄膜4が蒸着されており、この光反射性
金属薄膜4から一定間隔離してシヤドウマスク6
が配置されている。また、外囲器1の通常ネツク
部1bといわゆる部分に電子銃7が配置され、電
子銃7から発射される多くの電子ビームはシヤド
ウマスク6に衝突する。その衝突エネルギーが熱
となり、シヤドウマスク6の温度が上昇する。そ
の結果、シヤドウマスク6が熱膨張して、電子ビ
ームの螢光面を発光させる位置がずれる。すなわ
ち、ドーミング現象が発生する。この現象に付随
して発生する色ずれをミスランデイングという
が、このミスランデイングが生じると、カラー画
質が低下する。そこで、第2図のようにミスラン
デイングを軽減するため、光反射性金属薄膜4の
上、つまり電子銃側に熱吸収性物質薄膜5を形成
することにより、シヤドウマスク6の発熱を吸収
し、熱膨張を抑えることが行われている。この熱
吸収性物質薄膜5としては、一般に黒化アルミニ
ウム薄膜が用いられており、その形成方法を第2
図を参照しながら説明する。
FIG. 1 is a cross-sectional view schematically showing the picture tube,
A phosphor film 2 is formed on the inner surface of the panel 1a which is a part of the envelope 1, and a light reflective metal thin film 4 is deposited to cover the phosphor film 2. A shadow mask 6 is isolated from the thin film 4 for a certain period of time.
is located. Further, an electron gun 7 is arranged in a so-called normal network portion 1b of the envelope 1, and many electron beams emitted from the electron gun 7 collide with a shadow mask 6. The collision energy becomes heat, and the temperature of the shadow mask 6 increases. As a result, the shadow mask 6 thermally expands, and the position where the fluorescent surface of the electron beam emits light is shifted. That is, a doming phenomenon occurs. The color shift that occurs along with this phenomenon is called mislanding, and when this mislanding occurs, the color image quality deteriorates. Therefore, in order to reduce mislanding as shown in FIG. Efforts are being made to suppress the expansion. As this heat absorbing material thin film 5, a blackened aluminum thin film is generally used, and its formation method is
This will be explained with reference to the figures.

光反射性金属薄膜4を蒸着したパネル1aを、
タングステン線の3本あるいは4本撚線によりバ
スケツト状とした1個あるいは複数個の蒸発源8
を有する真空外囲器9内の所定位置に支持し、
0.1〜0.5Torrの真空中で蒸発源8の温度を上昇
し、アルミニウム線10を光反射性金属薄膜4の
表面に溶融蒸着させて熱吸収性物質薄膜5を形成
している。
A panel 1a on which a light reflective metal thin film 4 is deposited,
One or more evaporation sources 8 formed into a basket shape using three or four twisted tungsten wires.
supported at a predetermined position within a vacuum envelope 9 having
The temperature of the evaporation source 8 is raised in a vacuum of 0.1 to 0.5 Torr, and the aluminum wire 10 is melt-evaporated onto the surface of the light-reflective metal thin film 4 to form the heat-absorbing substance thin film 5.

上記方法では蒸発源8として、タングステン線
からなるコイルを用いているので、寿命が短かい
という欠点がある。また、別のパネル1aを蒸着
するごとに装置内部が大気に触え、多量のガス吸
着のため、所望の真空度に達するまでに長時間を
必要とし、多数のパネルを処理するためには、同
様の装置を数多く準備する必要があつた。また、
後者の場合には各装置間に必然的に特性の差が現
われ、形成される蒸着膜の厚さ分布および光反射
効率,熱吸収効率のバラツキが大きく、かつ、数
多くの装置を必要とするため、故障保修件数が多
くなり、またメインテナス時間が長くなるなどの
欠点があつた。
Since the above method uses a coil made of tungsten wire as the evaporation source 8, it has a drawback of short life. In addition, each time another panel 1a is deposited, the inside of the device comes into contact with the atmosphere, and a large amount of gas is adsorbed, so it takes a long time to reach the desired degree of vacuum. It was necessary to prepare many similar devices. Also,
In the latter case, there will inevitably be differences in characteristics between each device, and there will be large variations in the thickness distribution, light reflection efficiency, and heat absorption efficiency of the deposited film formed, and a large number of devices will be required. However, there were disadvantages such as an increase in the number of malfunction maintenance cases and a longer maintenance time.

上記欠点の1つである加熱体が短寿命であると
いう問題を解決するため、タングステン線コイル
に代えて抵抗加熱体を使用する手段が考案され、
実用に供されている。抵抗加熱体としては、窒化
硼素を主成分とするものが一般に用いられるが、
この種の抵抗体では成形加工時にタングステン線
コイルと同様のバスケツト状に形成することが困
難である。このため、第3図のように抵抗加熱体
13は直方体状にして、その上面に凹部13aを
形成したいわゆるボート状の構造としている。な
お、凹部13aを時に設けず単に平面としたもの
でもよい。また、他の欠点である多数の装置を必
要とし、真空到達までに時間がかかる問題につい
ては、機能的に分割された真空槽を連続配置して
構成することにより、光反射性金属薄膜4と熱吸
収性物質薄膜5の蒸着を連続的に行うようにした
装置が考案され、実用に供されている。
In order to solve one of the above drawbacks, which is that the heating element has a short lifespan, a means of using a resistance heating element in place of the tungsten wire coil was devised.
It is put into practical use. As a resistance heating element, one whose main component is boron nitride is generally used.
It is difficult to form this type of resistor into a basket shape similar to a tungsten wire coil during molding. For this reason, as shown in FIG. 3, the resistance heating body 13 is shaped like a rectangular parallelepiped and has a so-called boat-like structure in which a recess 13a is formed on the upper surface. Note that the recess 13a may not be provided and may simply be a flat surface. In addition, to solve the problem of requiring a large number of devices and taking a long time to reach a vacuum, the light-reflecting metal thin film 4 and the light-reflecting metal thin film 4 can be solved by arranging functionally divided vacuum chambers in series. An apparatus for continuously depositing the heat-absorbing substance thin film 5 has been devised and put into practical use.

以下、第4図を参照して上記装置を説明する。
真空外囲器入口室11a、光反射性金属薄膜蒸着
室11b、熱吸収性物質薄膜蒸着室11c、真空
外囲器出口室11dの各真空槽を一連に記し、こ
れら各室の出入部にそれぞれ真空弁12aを設
け、また各室の継ぎ目には仕切弁12bを介在さ
せ、各室にはそれぞれ所望する真空度に応じて排
気機器(図示せず)を接続する。さらに、2つの
蒸着室11b,11cには窒化硼素を主成分とす
る抵抗加熱体13と蒸着物質自動挿入器14とが
所定の位置に設けられている。このような抵抗加
熱体13を備えることにより、従来から蒸発源と
して用いられていたタングステン線コイルの持つ
短寿命や毎回蒸着物質を補給という欠点が除か
れ、長時間連続して蒸着が行えるようになつた。
The above device will be explained below with reference to FIG.
A series of vacuum chambers, ie, a vacuum envelope entrance chamber 11a, a light-reflective metal thin film deposition chamber 11b, a heat-absorbing substance thin film deposition chamber 11c, and a vacuum envelope outlet chamber 11d, are shown in series, and the entrance and exit portions of these chambers are respectively marked. A vacuum valve 12a is provided, a gate valve 12b is interposed at the joint between each chamber, and exhaust equipment (not shown) is connected to each chamber depending on the desired degree of vacuum. Furthermore, a resistance heating body 13 whose main component is boron nitride and an automatic vapor deposition material inserter 14 are provided at predetermined positions in the two vapor deposition chambers 11b and 11c. By providing such a resistance heating element 13, the drawbacks of the short life of the tungsten wire coil conventionally used as an evaporation source and the need to replenish the evaporation material each time are eliminated, and it is possible to perform evaporation continuously for a long time. Summer.

以下、熱吸収性物質薄膜5を蒸着する場合につ
いて説明する。1aはパネル、2はこのパネル1
aの内面に被着された螢光膜、3はこの螢光膜2
の表面を平滑にするための有機物質を主成分とす
るフイルム用ラツカー材料により形成した中間膜
で、しかるのちにベーキング処理により除去す
る。この中間膜3を形成したパネル1aを真空弁
12aを開けて入口室11aに搬入し真空弁12
aを閉じて入口室11aと出口室11dを0.05〜
0.01Torrの真空度にする。つぎに仕切弁12b
を開き、入口室11aのパネル1aを常に真空状
態の蒸着室11bへ搬送し、仕切弁12bを閉じ
て、蒸着室11bの真空度を1〜2×10-4Torr
にし、光反射性金属を必要量だけ蒸着する。一
方、入口室11aと出口室11dを大気圧として
真空弁12aを開き、別の中間膜3を形成したパ
ネル1aを入口室11aに搬入し、真空弁12a
を閉じて、入口室11aと出口室11dを0.05〜
0.01Torrの真空度にする。他方、蒸着室11b
のパネル1aには光反射性金属を必要量だけ蒸着
し、蒸着室11cのパネル1aには熱吸収性物質
薄膜5を蒸着させる。その方法としては、蒸着室
11cを0.1〜0.5Torrの真空度に調圧して、所定
の位置に設置された抵抗加熱体13に通電し、加
熱温度を約1500℃とする。つぎに蒸着物質自動挿
入器14からアルミニウム線10を挿入し、溶融
蒸発させて熱吸収性物質薄膜5を蒸着する。蒸着
完了後、仕切弁12bを開き、蒸着室11cのパ
ネルを出口室11dに、蒸着室11bのパネル1
aを蒸着室11cに、入口室11aのパネル1a
を蒸着室11bにそれぞれ搬送して仕切弁12b
を閉じる。つぎに入口室11aと出口室11dを
大気として各真空弁12aを開き、出口室11d
のパネル1aを真空外囲器9外へ搬出し、蒸着工
程を完了する。また、入口室11aには別の中間
膜3の形成されたパネル1aが搬入され、上記し
たような工程がくり返される。
Hereinafter, the case of depositing the heat absorbing material thin film 5 will be described. 1a is panel, 2 is this panel 1
A fluorescent film adhered to the inner surface of a, 3 is this fluorescent film 2
An intermediate film formed from a film lacquer material containing an organic substance as a main component to smooth the surface of the film, and is then removed by baking. The panel 1a on which the interlayer film 3 has been formed is carried into the entrance chamber 11a by opening the vacuum valve 12a.
Close a and open the inlet chamber 11a and outlet chamber 11d by 0.05~
Create a vacuum of 0.01 Torr. Next, the gate valve 12b
is opened, the panel 1a of the entrance chamber 11a is transported to the deposition chamber 11b which is always in a vacuum state, the gate valve 12b is closed, and the degree of vacuum in the deposition chamber 11b is set to 1 to 2×10 -4 Torr.
Then, the required amount of light-reflective metal is deposited. On the other hand, the vacuum valve 12a is opened by setting the inlet chamber 11a and the outlet chamber 11d to atmospheric pressure, and the panel 1a on which another interlayer film 3 has been formed is carried into the inlet chamber 11a, and the vacuum valve 12a is opened.
Close the inlet chamber 11a and outlet chamber 11d to 0.05~
Create a vacuum of 0.01 Torr. On the other hand, the vapor deposition chamber 11b
A necessary amount of light-reflective metal is deposited on the panel 1a of the chamber 11c, and a heat-absorbing material thin film 5 is deposited on the panel 1a of the deposition chamber 11c. As a method, the pressure in the vapor deposition chamber 11c is adjusted to a degree of vacuum of 0.1 to 0.5 Torr, and electricity is supplied to the resistance heating element 13 installed at a predetermined position, so that the heating temperature is set to about 1500°C. Next, the aluminum wire 10 is inserted from the automatic vapor deposition material inserter 14, and the heat absorbing material thin film 5 is vapor deposited by melting and vaporizing the aluminum wire 10. After the vapor deposition is completed, the gate valve 12b is opened, and the panel in the vapor deposition chamber 11c is placed in the outlet chamber 11d, and the panel 1 in the vapor deposition chamber 11b is placed in the outlet chamber 11d.
a to the vapor deposition chamber 11c, panel 1a of the entrance chamber 11a
are respectively conveyed to the vapor deposition chamber 11b and connected to the gate valve 12b.
Close. Next, each vacuum valve 12a is opened to make the inlet chamber 11a and the outlet chamber 11d atmospheric, and the outlet chamber 11d is opened.
The panel 1a is carried out of the vacuum envelope 9, and the vapor deposition process is completed. Further, a panel 1a on which another interlayer film 3 is formed is carried into the entrance chamber 11a, and the above-described steps are repeated.

上記した工程には以下に述べる様な問題があ
る。すなわち、熱吸収性物質薄膜5の膜厚分布が
パネル1aの中央部で厚く、周辺部で薄いという
点である。蒸着膜分布の一例は第5図に曲線aで
示すようになり、中央部(原点0)と周辺部との
膜厚比が6:1と大きくなる。実験においては熱
吸収性物質薄膜5が1000Å増すごとに明るさが
7.5%減少することが認められており、必要以上
の膜厚となると、熱吸収性物質薄膜5で電子のエ
ネルギーが減少するため、カラー受像管の輝度が
低下する。また、パネル中央部と周辺部の輝度差
が増大するなどの欠点があり、熱吸収性物質薄膜
5でミスランデイングを軽減する目的のものが輝
度低下という別の問題を誘発していたが、この問
題を解消するため、均一な膜厚分布の熱吸収性物
質薄膜5を蒸着できるように以下の方法がとられ
ている。第4図において、パネル1aの内面に螢
光体を塗布し、これを乾燥させて螢光体膜2を形
成し、さらにこの上に中間膜3を形成する工程は
従来の場合と同様である。また、蒸着されるでき
パネル1aの搬送や真空外囲器内の真空ないし圧
力除件の設定タイミングなども従来の場合と同様
である。熱吸収性物質薄膜蒸着室11cにおい
て、蒸着分布を均一化する手段としては第6図に
示すように被蒸着物質であるパネル1aと抵抗加
熱体13との距離を400mmに設定して、両者の中
間である抵抗加熱体13上200mmの中央部直上位
置に230mmの上向円弧をもつた直径180mmのステン
レス板製遮蔽物15を配置し、抵抗加熱体13を
約1500℃に加熱してアルミニウム線10を挿入し
蒸発飛散させる。このとき、抵抗加熱体13の直
上、すなわちパネル1aの中央部により多く蒸発
飛散する熱吸収性物質薄膜5は遮蔽物15が配置
されていることにより、この部分に特に多く飛散
するアルミニウムの一部が遮蔽物15に付着し、
他は分散されて光反射性金属薄膜4上に第5図に
線bで示すように略均一な膜厚分布、つまりドー
ミング現象を軽減するに必要な最小の膜厚でかつ
均一な厚さの熱吸収性物質薄膜5が蒸着される。
The above process has the following problems. That is, the thickness distribution of the heat-absorbing material thin film 5 is thick at the center of the panel 1a and thin at the periphery. An example of the distribution of the deposited film is as shown by curve a in FIG. 5, where the film thickness ratio between the central part (origin 0) and the peripheral part is as large as 6:1. In the experiment, the brightness increased as the heat absorbing material thin film 5 increased by 1000 Å.
It is recognized that the reduction is 7.5%, and if the film thickness is greater than necessary, the energy of electrons will be reduced in the heat-absorbing material thin film 5, resulting in a decrease in the brightness of the color picture tube. Additionally, there are drawbacks such as an increase in the brightness difference between the center and periphery of the panel, and the heat-absorbing thin film 5 used to reduce mislanding causes another problem of reduced brightness. In order to solve this problem, the following method has been adopted to deposit the heat-absorbing material thin film 5 with a uniform thickness distribution. In FIG. 4, the steps of applying a phosphor to the inner surface of the panel 1a, drying it to form a phosphor film 2, and further forming an intermediate film 3 thereon are the same as in the conventional case. . Furthermore, the timing for conveying the finished panel 1a to be vapor-deposited and setting the vacuum or pressure relief conditions in the vacuum envelope are the same as in the conventional case. In the heat-absorbing material thin film deposition chamber 11c, as a means to make the deposition distribution uniform, as shown in FIG. A shield 15 made of stainless steel plate with a diameter of 180 mm and an upward arc of 230 mm is placed directly above the central part of the resistance heating element 13, which is 200 mm in the middle, and the resistance heating element 13 is heated to approximately 1500°C. 10 is inserted and allowed to evaporate and scatter. At this time, the heat-absorbing material thin film 5 that evaporates and scatters more directly above the resistance heating element 13, that is, in the center of the panel 1a, is a part of the aluminum that evaporates and scatters more in this area because the shield 15 is arranged. adheres to the shield 15,
The other components are dispersed and coated on the light reflective metal thin film 4 with a substantially uniform film thickness distribution as shown by line b in FIG. A thin film 5 of heat absorbing material is deposited.

しかし、前記遮蔽物15蒸着中の振動や装置始
動時の設置ミスなどにより抵抗加熱体13の直上
より数mm以上位置が移動すると、パネル1aの中
央部により多く蒸発飛散するアルミニウムは遮蔽
物15に付着されず、第7図の曲線Cで示すよう
に不均一な膜厚分布となる。前記傾向は、第8図
に示す上下方向イおよびパネル短辺方向ロに比
べ、パネル長辺方向ハにより顕著に現われる。
However, if the position of the shield 15 is moved several mm or more from directly above the resistance heating element 13 due to vibrations during deposition or an installation error when starting the apparatus, more aluminum evaporates and scatters to the center of the panel 1a, and the aluminum is deposited on the shield 15. The film is not adhered, resulting in an uneven film thickness distribution as shown by curve C in FIG. The above-mentioned tendency is more noticeable in the long side direction C of the panel than in the vertical direction A and the panel short side direction B shown in FIG.

このような不均一な膜厚分布になると、極部的
な輝度低下を生じるため、このような現象が発生
するごとに、蒸着装置を停止し、真空状態を大気
圧にもどし、再調整を行なわなければらなず、真
空復帰に長時間を必要とする。
This type of uneven film thickness distribution causes a localized reduction in brightness, so whenever this phenomenon occurs, the evaporation equipment must be stopped, the vacuum condition returned to atmospheric pressure, and readjustment performed. It takes a long time to return to vacuum.

この発明は上記の欠点に鑑みてなされたもの
で、熱吸収性物質薄膜蒸着時の遮蔽物の設定位置
を真空状態のまま調整することができるカラー受
像管における熱吸収性物質薄膜の製造装置を提供
するものである。
This invention has been made in view of the above-mentioned drawbacks, and provides an apparatus for manufacturing a heat-absorbing substance thin film in a color picture tube, which is capable of adjusting the setting position of a shield during the deposition of a heat-absorbing substance thin film in a vacuum state. This is what we provide.

以下、この発明の一実施例について述べる。第
9図はこの発明の一実施例に使用される蒸着装置
の要部を概略的に示す構成図である。熱吸収性物
質薄膜5を蒸着する場合、遮蔽物15の位置ずれ
による蒸着膜厚分布の変化は、第8図に示したよ
うに、パネル長辺方向ハに顕著に現われるので、
この実施例では熱吸収性物質薄膜蒸着室11cの
外側から、パネル長辺方向ハについてのみ、遮蔽
物15の設定位置を調整できるようにした。その
調整装置20は遮蔽物支持棒16を歯車機構21
を介して操作棒17と連結させるとともに、操作
棒17の外端部にハンドル18を設けてなる。す
なわち、遮蔽物15の設定位置はのぞき窓19か
ら見ながら、ハンドル18を回転させることによ
り、パネル長辺方向ハに調整される。もちろん、
操作棒17と蒸着室11c間が真空シールされて
いることは明白である。
An embodiment of this invention will be described below. FIG. 9 is a block diagram schematically showing the main parts of a vapor deposition apparatus used in an embodiment of the present invention. When the heat-absorbing substance thin film 5 is deposited, the change in the deposited film thickness distribution due to the positional shift of the shield 15 appears conspicuously in the long side direction of the panel, as shown in FIG.
In this embodiment, the setting position of the shield 15 can be adjusted only in the long side direction of the panel from the outside of the heat-absorbing substance thin film deposition chamber 11c. The adjusting device 20 connects the shield support rod 16 to a gear mechanism 21.
The operating rod 17 is connected to the operating rod 17 via a handle 18, and a handle 18 is provided at the outer end of the operating rod 17. That is, the set position of the shield 15 is adjusted in the long side direction C of the panel by rotating the handle 18 while looking through the viewing window 19. of course,
It is clear that the operation rod 17 and the vapor deposition chamber 11c are vacuum sealed.

この実施例では、遮蔽物15の設定位置は水平
方向でかつパネル長辺方向ハのみを調整可能とし
たが、必要に応じてパネル短辺方向または上下方
向にも調整可能に構成することができる。また、
操作棒17はモータによる電動駆動とすることも
可能である。
In this embodiment, the setting position of the shield 15 is horizontal and can be adjusted only in the long side direction of the panel, but it can also be configured to be adjustable in the short side direction or up and down direction of the panel as necessary. . Also,
The operating rod 17 can also be electrically driven by a motor.

以上のように、この発明によれば、真空外囲器
の外部より遮蔽物の設定位置を調整することがで
きるので、この調整のために、真空状態を大気圧
にもどす必要がなく、従来の真空復帰に要した時
間が節約される。
As described above, according to the present invention, the setting position of the shield can be adjusted from the outside of the vacuum envelope, so there is no need to return the vacuum state to atmospheric pressure for this adjustment, and it is not necessary to return the vacuum state to atmospheric pressure. The time required for returning to vacuum is saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカラー受像管を説明するための断面
図、第2図は従来の熱吸収性物質薄膜の蒸着装置
で蒸発源にタングステン線コイルを使用したもの
を概略的に示す構成図、第3図は窒化硼素を主成
分とするボート状抵抗加熱体の斜視図、第4図は
蒸発源に窒化硼素を主成分とするボート状抵抗加
熱体を用いて間欠的に光反射性金属薄膜と熱吸収
性物質薄膜を蒸着する蒸着装置の1例を概略的に
示す構成図、第5図は熱吸収性物質薄膜の膜厚分
布を示す曲線図、第6図は熱吸収性物質薄膜を略
均一に蒸着するため遮蔽物を設置した蒸着装置を
示す構成図、第7図は遮蔽物の位置ずれにより熱
吸収性物質薄膜が不均一になることを示す曲線
図、第8図は遮蔽物の位置移動をパネルを基準に
示す概略図、第9図はこの発明の一実施例を示す
構成図である。 1a…ガラスフエースプレート、2…螢光体
膜、4…光反射性金属薄膜、5…熱吸収性物質薄
膜、9…真空外囲器、13…抵抗加熱体、15…
遮蔽物、20…調整装置。
Fig. 1 is a cross-sectional view for explaining a color picture tube, Fig. 2 is a schematic configuration diagram of a conventional heat-absorbing substance thin film deposition apparatus using a tungsten wire coil as an evaporation source, and Fig. 3 is a sectional view for explaining a color picture tube. The figure is a perspective view of a boat-shaped resistance heating element whose main component is boron nitride, and Figure 4 is a perspective view of a boat-shaped resistance heating element whose main component is boron nitride. A configuration diagram schematically showing an example of a vapor deposition apparatus for depositing a thin film of heat absorbing material, FIG. 5 is a curve diagram showing the film thickness distribution of a thin film of heat absorbing material, and FIG. 6 shows a substantially uniform thin film of heat absorbing material. Fig. 7 is a curve diagram showing that the heat-absorbing material thin film becomes uneven due to the positional shift of the shield, and Fig. 8 shows the position of the shield. FIG. 9 is a schematic diagram showing the movement based on the panel, and is a configuration diagram showing an embodiment of the present invention. 1a... Glass face plate, 2... Fluorescent film, 4... Light reflective metal thin film, 5... Heat absorbing material thin film, 9... Vacuum envelope, 13... Resistance heating element, 15...
Shielding object, 20...adjustment device.

Claims (1)

【特許請求の範囲】[Claims] 1 フエースプレートの内面に螢光体膜を形成
し、その上に光反射性金属薄膜を形成した螢光面
を有するカラー受像管に対して、平面または凹面
の蒸着物質載置部を有する抵抗加熱体を蒸発源と
して用い、前記抵抗加熱体の中央部直上で上記プ
レートとの間に遮蔽物を配置し、抵抗加熱体の中
央部直上に蒸発飛散する熱吸収性物質の一部を前
記遮蔽物に付着しながら、上記光反射性金属薄膜
上に熱吸収性物質薄膜をほぼ均一に真空蒸着する
熱吸収性物質薄膜の製造装置において、前記遮蔽
物の設定位置を真空外囲器外より調整する調整装
置を設けたことを特徴とするカラー受像管におけ
る熱吸収性物質薄膜の製造装置。
1. Resistance heating with a flat or concave evaporation material placement part for a color picture tube with a fluorescent surface in which a phosphor film is formed on the inner surface of the face plate and a light reflective metal thin film is formed thereon. A shield is placed between the resistive heating body and the plate directly above the center of the resistance heating body, and a portion of the heat-absorbing substance that evaporates and scatters directly above the center of the resistance heating body is evaporated by the shield. In the apparatus for producing a heat absorbing substance thin film, which vacuum evaporates a heat absorbing substance thin film almost uniformly on the light reflective metal thin film while adhering to the light reflecting metal thin film, the setting position of the shielding member is adjusted from outside the vacuum envelope. 1. An apparatus for producing a thin film of heat-absorbing material for a color picture tube, characterized in that it is provided with an adjustment device.
JP7945979A 1979-06-20 1979-06-20 Production apparatus of thin film of heat-absorptive material in color television picture tube Granted JPS563940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7945979A JPS563940A (en) 1979-06-20 1979-06-20 Production apparatus of thin film of heat-absorptive material in color television picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7945979A JPS563940A (en) 1979-06-20 1979-06-20 Production apparatus of thin film of heat-absorptive material in color television picture tube

Publications (2)

Publication Number Publication Date
JPS563940A JPS563940A (en) 1981-01-16
JPS6311737B2 true JPS6311737B2 (en) 1988-03-15

Family

ID=13690459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7945979A Granted JPS563940A (en) 1979-06-20 1979-06-20 Production apparatus of thin film of heat-absorptive material in color television picture tube

Country Status (1)

Country Link
JP (1) JPS563940A (en)

Also Published As

Publication number Publication date
JPS563940A (en) 1981-01-16

Similar Documents

Publication Publication Date Title
US4884004A (en) Color cathode-ray tube having a heat dissipative, electron reflective coating on a color selection electrode
JPS6311737B2 (en)
JP4164992B2 (en) Cathode ray tube and manufacturing method thereof
JPS6153816B2 (en)
JPH02295026A (en) Color display tube
US20030030910A1 (en) Multi-layer antistatic/antireflective coating for video display screen with adjustable light transmission
JP2977659B2 (en) Method of depositing anti-doming material for shadow mask
US6428840B2 (en) Method of producing cathode ray tube and method of forming films
JPH07111881B2 (en) Color display tube
JPH0817070B2 (en) Method for forming blackened aluminum thin film of color picture tube
CA1061193A (en) Cathode ray tube
JPH03187133A (en) Shadow mask of color cathode-ray tube
JPH04229934A (en) Manufacture of color cathode-ray tube for minimizing thermal deformation of shadow mask
JPS6139701B2 (en)
JP2003217450A (en) Method of manufacturing cathode ray tube
JPS6139698B2 (en)
KR950001746B1 (en) Crt and manufacturing method thereof
JPS6141094B2 (en)
JPH11213884A (en) Manufacture of color cathode-ray tube
KR20010077781A (en) Shadow mask in cathode ray tube
JPH113654A (en) Manufacture of color cathode-ray tube
JPS6139699B2 (en)
JP2002170490A (en) Manufacturing method for color cathode-ray tube and color cathode-ray tube
JPH08190862A (en) Method for forming heat absorbing film of color cathode-ray tube, and device for forming the heat absorbing film
JPS6153815B2 (en)