JPS63114201A - Manufacture of super-fine barium ferrite grain - Google Patents

Manufacture of super-fine barium ferrite grain

Info

Publication number
JPS63114201A
JPS63114201A JP61260352A JP26035286A JPS63114201A JP S63114201 A JPS63114201 A JP S63114201A JP 61260352 A JP61260352 A JP 61260352A JP 26035286 A JP26035286 A JP 26035286A JP S63114201 A JPS63114201 A JP S63114201A
Authority
JP
Japan
Prior art keywords
barium ferrite
barium
temperature
grain
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61260352A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Juichi Nishii
西井 重一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61260352A priority Critical patent/JPS63114201A/en
Publication of JPS63114201A publication Critical patent/JPS63114201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain barium ferrite of fine-grain for high density vertical magnetic recording, by performing a heat treatment of barium ferrite powder added with low melting point oxide at a specified temperature range in the air. CONSTITUTION:Iron, barium, etc., are dissolved by a composition wherein hexagonal barium ferrite is produced, a solution containing excessively alkali hydroxide more than or equal to 30 mol/1 as compared with reaction equivalent to metal salt is kept at a temperature higher than or equal to 70 deg.C and mixed by stirring. After that, the produced slurry is introduced into an auto-clape, and treated at a temperature of 130-250 deg.C. After the produced deposit is mixed with a low melting point oxide, it is subjected to a heat treatment at a temperature of 600-900 deg.C, and barium ferrite super fine-grain is obtained. Thus barium ferrite super fine-grain having characteristics desired for the material of high density magnetic recording can be effectively obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録用の微粒子状バリウムフェライトご
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing fine particulate barium ferrite for magnetic recording.

特に、水熱合成法の改良による高密度磁気記録用の微粒
子状バリウムフェライトを製造する方法に関するもので
ある。
In particular, the present invention relates to a method for producing particulate barium ferrite for high-density magnetic recording by improving a hydrothermal synthesis method.

〔従来の技術〕[Conventional technology]

バリウムフェライトは高保持力特性?利用して、従来よ
り永久磁石材料として広く用いられてきたが、年々記録
の高密度化指向が高まる中で、垂直磁気記録という高密
度化でさる新しい記録方式が提唱されてから、その材料
の一つとして一躍注目され、研究開発が進行中である。
Does barium ferrite have high coercivity? It has traditionally been widely used as a permanent magnet material, but as the trend towards higher density recording increases year by year, a new recording method called perpendicular magnetic recording with higher density was proposed, It has quickly attracted attention, and research and development is currently underway.

バリウムフェライト粉末は六角板状結晶であり、磁化容
易軸が板面に対して垂直方向にあるので、垂直磁気記録
方式には理想的な材料である。
Barium ferrite powder is a hexagonal plate-shaped crystal with an axis of easy magnetization perpendicular to the plate surface, making it an ideal material for perpendicular magnetic recording.

又、従来より実績のある塗布方式に使用でさることから
、これまで蓄積された塗布技術が活用でき、量産性に優
れ且つ安価であるというメリットがある。
Furthermore, since it can be used in a coating method that has been proven in the past, it has the advantage of being able to utilize the coating techniques that have been accumulated up to now, being superior in mass production, and being inexpensive.

しかし、従来法によるバリウムフェライト粉末のま\で
は保磁力が50000e以上と高過ぎて、磁気記録用と
しては使えない為、通常Ease  O(7)Feの一
部’5;AlTi、Co % Mn s Or % N
i、Cu、Zn。
However, barium ferrite powder produced by the conventional method has a coercive force that is too high (more than 50,000e) and cannot be used for magnetic recording. Or%N
i, Cu, Zn.

Nb、 Sb、 Taなどの一種以上で置換して磁気記
録用に適した保磁力(500〜15000e)に調整し
ている。
The coercive force (500 to 15,000 e) suitable for magnetic recording is adjusted by substituting one or more of Nb, Sb, Ta, etc.

バリウムフェライト粉末を高密度磁気記録材料として用
いる場合には、粒径が0.1μm以下で粒度分布が狭く
均一で、且つ粒子の凝集、焼結がないことが必要である
が、従来より知られている水熱合成法では種々の欠点が
あり、未だ満足できる材料を得るに至っていない。
When using barium ferrite powder as a high-density magnetic recording material, it is necessary to have a particle size of 0.1 μm or less, a narrow and uniform particle size distribution, and no agglomeration or sintering of the particles. The hydrothermal synthesis method currently used has various drawbacks, and a satisfactory material has not yet been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記の欠点がなく優れた微粒子の磁気
記録用バリウム7エライトコ製造する方法、特に水熱合
成法の改良による高密度垂直磁気記録用の微粒子状バリ
ウムフェライトを製造する方法を提供することにある。
An object of the present invention is to provide an excellent method for producing fine-grained barium 7-elite for magnetic recording without the above-mentioned drawbacks, and in particular, to provide a method for producing fine-grained barium ferrite for high-density perpendicular magnetic recording by improving the hydrothermal synthesis method. It's about doing.

〔問題点ご解決するための手段〕[Means for solving problems]

鉄及びバリウム等が六方晶系バリウムフェライトを生成
する組成で浴解し且つ該金属塩に対して水酸化アルカリ
を反応当量よりも3 mol/l以上過剰に含有する溶
液を70C以上に保持して攪拌した後、生成したスラリ
ーをオートクレープに装入して130〜250Cで処理
し、生成した沈殿物に低融点酸化物を混合した後、60
0〜900cで熱処理してバリウムフェライト超微粒子
企製造するというものである。
A solution in which iron, barium, etc. are bath-dissolved with a composition that produces hexagonal barium ferrite, and which contains alkali hydroxide in excess of 3 mol/l or more than the reaction equivalent with respect to the metal salt, is maintained at a temperature of 70C or higher. After stirring, the generated slurry was charged into an autoclave and treated at 130 to 250C, and a low melting point oxide was mixed with the generated precipitate.
Barium ferrite ultrafine particles are manufactured by heat treatment at 0 to 900c.

〔作用〕[Effect]

本発明の方法において使用するFe(1)及びBa(1
))は、各々公知の硫酸塩、硝酸塩、塩化物、水酸化物
等であり、水酸化アルカリとしては、水酸化ナトリウム
、水酸化カリウムが好ましい。
Fe(1) and Ba(1) used in the method of the present invention
)) are known sulfates, nitrates, chlorides, hydroxides, etc., and the alkali hydroxide is preferably sodium hydroxide or potassium hydroxide.

低融点酸化物としては特定するものではないが、B2O
3、P2O5、Pb0% v2o、、B12O3等が好
ましい。
Although not specified as a low melting point oxide, B2O
3, P2O5, Pb0% v2o, B12O3, etc. are preferred.

本発明法において、Fe(1)とB a (It)イオ
ンの混合比(Fe/Ba)は6〜12が好ましい。6未
満では非磁性のBaOが過剰に存在し、12以上ではα
・Fe 0が混在してくる為である。
In the method of the present invention, the mixing ratio (Fe/Ba) of Fe(1) and B a (It) ions is preferably 6 to 12. If it is less than 6, non-magnetic BaO exists in excess, and if it is more than 12, α
- This is because Fe 0 is mixed.

水酸化アルカリの過剰濃度を3 mol/l以上とする
理由は、3 mol/l未満では、生成するバリウムフ
ェライトの粒度が粗大となり好ましくない。
The reason why the excessive concentration of alkali hydroxide is set to 3 mol/l or more is that if it is less than 3 mol/l, the particle size of the barium ferrite produced becomes coarse, which is not preferable.

尚、過剰濃度3 rnol/lを超えても格別の効果は
得られないので3〜8 mol/lが好ましい。
Incidentally, even if the excessive concentration exceeds 3 rnol/l, no particular effect can be obtained, so a range of 3 to 8 mol/l is preferable.

水酸化アルカリは、鉄及びバリウム等を溶解した水溶液
を70 C以上に加温してから添加するか、室温で添加
した後、70 C以上に加温するか、いずれの方法を採
っても良い。
Alkali hydroxide may be added after heating an aqueous solution containing iron, barium, etc. to 70 C or higher, or added at room temperature and then heated to 70 C or higher. .

70 C以上での攪拌保持時間は0.5〜3時間時間刃
充分である。
The stirring holding time at 70 C or higher is sufficient for 0.5 to 3 hours.

次にオートクレープでの水熱処理温度は、130〜25
0C,好ましくは180〜230Cの範囲とする。
Next, the hydrothermal treatment temperature in the autoclave is 130 to 25
0C, preferably in the range of 180 to 230C.

この温度以下では反応速度が遅く生産性に欠け、六角板
状以外の結晶が混在したり、あるいはバリウムフェライ
ト相まで反応が進まない。250″C以上では粒子の成
長により目的とするバリウムフェライト超微粒子が得ら
れないからである。オートクレープによる水熱処理時間
は1〜10時間程度で完了する。
Below this temperature, the reaction rate is slow and productivity is lacking, crystals other than hexagonal plate shapes are mixed, or the reaction does not proceed to the barium ferrite phase. This is because if the temperature exceeds 250''C, the target barium ferrite ultrafine particles cannot be obtained due to particle growth.The hydrothermal treatment using an autoclave is completed in about 1 to 10 hours.

このようにして得られたバリウムフェライト粉は、X線
回折の同定によりバリウムフェライトな生成しているが
、飽和磁化値(以下σBと記す)が小さい為、次工程の
熱処理によりσSを向上させるが、熱処理する前に低融
点酸化物を添加する理由は、熱処理による粒子間焼結に
より、粒子が粗大化するのを防ぐためである。
The barium ferrite powder thus obtained is identified as barium ferrite by X-ray diffraction, but since the saturation magnetization value (hereinafter referred to as σB) is small, the σS is improved by heat treatment in the next step. The reason why a low melting point oxide is added before heat treatment is to prevent particles from becoming coarse due to interparticle sintering caused by heat treatment.

添加量としては、バリウムフェライト粉に対して重量比
で1以上とする。これ以下では低融点酸化物の十分な効
果が得られない。
The amount added is 1 or more in weight ratio to the barium ferrite powder. Below this range, the sufficient effect of the low melting point oxide cannot be obtained.

低融点酸化物を添加したバリウムフェライト粉の熱処理
は大気中600〜900Cの範囲とする。この温度以下
では50 emu/g以上の高08値を有するバリウム
フェライトが得られず、900Cを超える温度で行なう
と、急激な粒成長により粒子が粗大化する。
The barium ferrite powder to which the low melting point oxide is added is heat treated in the air at a temperature of 600 to 900C. Below this temperature, barium ferrite having a high 08 value of 50 emu/g or more cannot be obtained, and if it is carried out at a temperature exceeding 900C, the particles become coarse due to rapid grain growth.

本発明によれば、高密度磁気記録用材料に望まれる特性
な有したバリウムフェライト超微粒子が効率良く得られ
る。尚、公知であるAl、Ti、COlMu s cr
 s Ni、Cus Zns Nbs 5bSTaなど
の一種以上でFeの一部を置換し、保磁力を制御する方
法も適用可能なことは勿論である。
According to the present invention, ultrafine barium ferrite particles having characteristics desired for high-density magnetic recording materials can be efficiently obtained. In addition, publicly known Al, Ti, COlMuscr
Of course, a method of controlling the coercive force by replacing a part of Fe with one or more types of Fe, such as sNi, CusZnsNbs, and 5bSTa, is also applicable.

〔実施例〕〔Example〕

以下実施例について説明する。 Examples will be described below.

実施例1 硝酸第二鉄0.48 mol、水酸化バリウム0.06
mol、硝酸コバルト及び四塩化チタンな各々0.03
49 molを水470m1に溶解し、加温して70C
に攪拌保持しながら、これに水酸化ナトリウム386g
を48wt%の水溶液とし、全量1)になるように添加
したところ茶褐色沈殿が生成した。
Example 1 Ferric nitrate 0.48 mol, barium hydroxide 0.06
mol, cobalt nitrate and titanium tetrachloride each 0.03
Dissolve 49 mol in 470ml of water and heat to 70C.
While stirring, add 386 g of sodium hydroxide to this.
was made into a 48 wt % aqueous solution and added so that the total amount was 1), and a brown precipitate was formed.

この温度に30分間保持した後、得られたスラリーの全
量をオートクレープに装入し、230Cで4時間水熱処
理を行ない、生成した沈殿を温水洗浄によりアルカリを
除去した後、弱酸で過剰のBaを除去し、再び水洗した
。その後アルコール処理を行ない真空乾燥した。
After maintaining this temperature for 30 minutes, the entire amount of the obtained slurry was charged into an autoclave and subjected to hydrothermal treatment at 230C for 4 hours. After washing the generated precipitate with hot water to remove alkali, excess Ba was was removed and washed again with water. Thereafter, it was treated with alcohol and dried in vacuum.

得られた乾燥粉末に重量比で1対2のB2O3を加えて
ボールミルで混合し、この混合物を磁製ルツボに入れ、
810Cで2時間加熱処理した後、放冷し次いで該粉末
を2.5重量%の酢酸水溶液で洗浄処理し、BOを完全
に除去した後乾燥した。
B2O3 in a weight ratio of 1:2 was added to the obtained dry powder, mixed in a ball mill, and this mixture was placed in a porcelain crucible.
After heat treatment at 810C for 2 hours, the powder was allowed to cool, and then the powder was washed with a 2.5% by weight acetic acid aqueous solution to completely remove BO, and then dried.

得られた生成物の粉末特性及び磁気特性結果を表1に示
す。
Table 1 shows the powder properties and magnetic properties of the obtained product.

実施例2 硝酸第二鉄0.5 mol %水酸化バリウム0.06
 mol 。
Example 2 Ferric nitrate 0.5 mol% Barium hydroxide 0.06
mol.

硝酸コバルト及び四塩化チタンを各々0.0349 m
otご水715m1に溶解し、加温して80Cに攪拌保
持しながら、これに水酸化ナトリウム206gを48w
t%の水溶液とし、全量1tになるように添加したとこ
ろ茶褐色沈殿が生成した。
0.0349 m each of cobalt nitrate and titanium tetrachloride
Dissolve in 715ml of water, heat and stir and maintain at 80C, add 48w of 206g of sodium hydroxide to this.
When the solution was made into an aqueous solution with a total concentration of 1 t, a brown precipitate was formed.

この温度に30分間保持した後、得られたスラリーの全
量号オートクレープに装入し、190Cで7時間水熱処
理を行ない、生成した沈殿を温水洗浄によりアルカリを
除去した後、弱酸で過剰のBaご除去し、再び水洗した
。その後アルコール処理を行ない真空乾燥した。
After maintaining this temperature for 30 minutes, the entire amount of the slurry obtained was charged into a No. 1 autoclave, and hydrothermally treated at 190C for 7 hours. After washing the generated precipitate with hot water to remove alkali, excess Ba was It was removed and washed again with water. Thereafter, it was treated with alcohol and dried in vacuum.

得られた乾燥粉末に重量比で1対1のBi Oを加えて
ボールミルで混合し、この混合物を磁性ルツボに入れ、
840Cで2時間加熱処理した後、放を 冷し次いで該粉梁4.5重量%の酢酸水溶液で洗浄し、
Bi Oを完全に除去した後乾燥した。得られた生成物
の粉末特性及び磁気特性結果を表1に示す0 比較例 低融点酸化物を使用しなかった以外は、実施例1と同様
に処理し、磁性粉末を得た。その結果表1に示すように
粒子が粗大化し微細粒子は得られなかった。
BiO was added to the obtained dry powder in a weight ratio of 1:1, mixed in a ball mill, and this mixture was placed in a magnetic crucible.
After heat treatment at 840C for 2 hours, the powder was cooled and then washed with a 4.5% by weight acetic acid aqueous solution.
After completely removing Bi 2 O, it was dried. The results of the powder properties and magnetic properties of the obtained product are shown in Table 1. Comparative Example A magnetic powder was obtained in the same manner as in Example 1 except that the low melting point oxide was not used. As a result, as shown in Table 1, the particles became coarse and fine particles were not obtained.

表     1 〔発明の効果〕 本発明によれば、高密度磁気記録媒体用として好適な平
均粒径0.1μm以下で且つ高飽和磁化値を有する板状
バリウムフェライト粒子が効率良く得られる。
Table 1 [Effects of the Invention] According to the present invention, plate-shaped barium ferrite particles having an average particle diameter of 0.1 μm or less and a high saturation magnetization value suitable for use in high-density magnetic recording media can be efficiently obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)鉄及びバリウム等が六方晶系バリウムフェライト
を生成する組成で溶解され且つ該金属塩に対して水酸ア
ルカリを反応当量よりも3mol/l以上過剰に含有す
る溶液を70℃以上に保持して攪拌し、生成したスラリ
ーをオートクレープに装入して、130〜250℃で処
理し、生成した沈殿物に低融点酸化物を混合した後、6
00〜900℃で熱処理することを特徴とするバリウム
フェライト超微粒子の製造方法。
(1) A solution in which iron, barium, etc. are dissolved in a composition that produces hexagonal barium ferrite, and which contains an alkali hydroxide in excess of 3 mol/l or more relative to the reaction equivalent of the metal salt, is maintained at 70°C or higher. The resulting slurry was charged into an autoclave and treated at 130 to 250°C, and a low melting point oxide was mixed with the resulting precipitate.
A method for producing ultrafine barium ferrite particles, characterized by heat treatment at 00 to 900°C.
JP61260352A 1986-10-31 1986-10-31 Manufacture of super-fine barium ferrite grain Pending JPS63114201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260352A JPS63114201A (en) 1986-10-31 1986-10-31 Manufacture of super-fine barium ferrite grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260352A JPS63114201A (en) 1986-10-31 1986-10-31 Manufacture of super-fine barium ferrite grain

Publications (1)

Publication Number Publication Date
JPS63114201A true JPS63114201A (en) 1988-05-19

Family

ID=17346768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260352A Pending JPS63114201A (en) 1986-10-31 1986-10-31 Manufacture of super-fine barium ferrite grain

Country Status (1)

Country Link
JP (1) JPS63114201A (en)

Similar Documents

Publication Publication Date Title
JPH0148207B2 (en)
JP2607456B2 (en) Magnetic powder for magnetic recording and method for producing the same
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS63114201A (en) Manufacture of super-fine barium ferrite grain
JPH0359007B2 (en)
JPS62176921A (en) Preparation of fine powdery platy barium ferrite
JPS6135135B2 (en)
JPH0417897B2 (en)
JPH0526727B2 (en)
JPS60255629A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS6366903A (en) Manufacture of barium ferrite ultrafine particle
KR960011787B1 (en) Proces for preparing ferromagnetic fine particles for magnetic recording
JPS6334608B2 (en)
JPS6312107A (en) Manufacture of superfine barium ferrite superfine grain
JPS63170218A (en) Production of ferrite powder
JPH01707A (en) Method for manufacturing barium ferrite powder
JPH0645462B2 (en) Method for manufacturing barium ferrite powder
JPS6090829A (en) Treatment of barium ferrite
JPH0142894B2 (en)
JPH0545528B2 (en)
JPS62209807A (en) Preparation of barium ferrite particulate for magnetic recording
JPS6366904A (en) Manufacture of barium ferrite ultrafine particle
JPS6256325A (en) Production of barium ferrite powder
JPH06104575B2 (en) Method for producing tabular Ba ferrite fine particle powder
JPH0314782B2 (en)