JPS63110828A - Wavelength divided multiplex optical communication equipment - Google Patents

Wavelength divided multiplex optical communication equipment

Info

Publication number
JPS63110828A
JPS63110828A JP61257330A JP25733086A JPS63110828A JP S63110828 A JPS63110828 A JP S63110828A JP 61257330 A JP61257330 A JP 61257330A JP 25733086 A JP25733086 A JP 25733086A JP S63110828 A JPS63110828 A JP S63110828A
Authority
JP
Japan
Prior art keywords
wavelength
laser
signals
optical
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257330A
Other languages
Japanese (ja)
Inventor
Minoru Shikada
鹿田 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61257330A priority Critical patent/JPS63110828A/en
Publication of JPS63110828A publication Critical patent/JPS63110828A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To transmit an optical signal equivalent to wavelength subjected to division and multiplex by employing a single transmission light source with a relatively wide range of variable wavelength and selecting a wavelength corresponding to a channel. CONSTITUTION:After signals 5-8 inputted to channels 1-4 are multiplexed 9 in terms of time division, they are waveformconverted 10 into a laser 11 and a drive waveform 12(i1-i4). The waveform 12 is designed so that where the channel signals 5-8 stand at '1', the laser 11 oscillates by corresponding wavelengths lambda1-lambda4 and so that where the signals 5-8 stand at '0', the laser 11 oscillates by lambda5. By linking to an optical fiber transmission line 14, the output beam 13 of the laser is propagated and made incident on an optical demultiplexer 15. A diffraction grating demultiplexes the beam on a waveform basis and makes the demultiplexed beam 20-23 incident on respective reception parts 24-27 through optical fibers 16-19 on a reception side, thereby demodulating the signals 5-8 for the channels 1-4 on a transmission side. Since one laser 11 can function as a light source for four channels, advanced IC techniques allow a small-sized device even if a multiplex circuit 9 and a waveform conversion circuit 10 are added to it, and its cost is substantially slashed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光フアイバ通信装置、特に波長多重光ファイバ
通信装置に属する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention pertains to optical fiber communication devices, particularly wavelength multiplexed optical fiber communication devices.

(従来技術とその問題点) 半導体レーザ、光検出器および光ファイバ等の高性能化
に伴って光フアイバ通信システム普及が急速に広まって
いる。この光フアイバ通信システムにおいて、光通信回
線の利用効率を高め通信コストを下げるには、信号伝送
速度を上げることや、波長多重通信により1本の回線で
多数の信号を送受信する等の装置を用いるのが有効であ
る。例えば後者の例としては石尾らにより電子通信学会
技術研究報告、C378−28,1978年5月24日
号に記載された双方向波長分割多重システムをあげるこ
とができる。このシステムは、第7図に示すように、伝
送装置70内の、波長がそれぞれ人1〜λ3の第1〜第
3の光源71〜73の出力光を光合波器74により合波
して1本の光フアイバ76内に結合、伝搬させ、受信側
の光分波器75において各波長ごとに分波し、別々に受
信するシステムである。ところでこのシステムでは各信
号チャンネルごとに波長の異なる光源を用意しなければ
ならないが、チャンネル数の多いシステムを構築する場
合、所望の波長の光源を用意することは必ずしも簡単で
はなく、また光源を多数使うため伝送装置が大形化する
等の問題点があった。そのためチャンネル数が多い波長
多重通信装置の実現は困難であった。
(Prior art and its problems) Optical fiber communication systems are rapidly becoming popular as semiconductor lasers, photodetectors, optical fibers, and the like become more sophisticated. In this optical fiber communication system, in order to increase the utilization efficiency of optical communication lines and reduce communication costs, it is necessary to increase the signal transmission speed and use devices such as wavelength division multiplexing to transmit and receive multiple signals on one line. is valid. An example of the latter is the bidirectional wavelength division multiplexing system described by Ishio et al. in IEICE Technical Report, C378-28, May 24, 1978. As shown in FIG. 7, this system combines the output lights of first to third light sources 71 to 73 with wavelengths of 1 to λ3, respectively, in a transmission device 70 using an optical multiplexer 74. This is a system in which the signals are coupled and propagated within a main optical fiber 76, separated into wavelengths by an optical demultiplexer 75 on the receiving side, and received separately. By the way, in this system, a light source with a different wavelength must be prepared for each signal channel, but when building a system with a large number of channels, it is not always easy to prepare a light source with the desired wavelength, and it is necessary to prepare a light source with a different wavelength for each signal channel. There were problems such as the size of the transmission equipment needed to be used. Therefore, it has been difficult to realize a wavelength division multiplexing communication device with a large number of channels.

(発明の目的) 本発明の目的はこのような欠点を除き、波長の異なる多
数の光源を必要とせず、しかも小形にできる波長分割多
重光通信装置を提供すφことにある。
(Object of the Invention) An object of the present invention is to eliminate such drawbacks, provide a wavelength division multiplexing optical communication device that does not require a large number of light sources with different wavelengths, and can be made compact.

(発明の構成) 本発明によれば、出力光の波長の変調が可能な送信光源
と、前記出力光を伝送する光フアイバ伝送路と、第1〜
第n(nは2以上の正の整数)の通過波長域を有し前記
光フアイバ伝送路を伝搬した前記出力光を波長分波する
分波器と、この分波器の第1〜第nの通過波長域に対応
した出力端に各々接続された光受信部とを含み、前記送
信光源を前記分波器の第1〜第nの通過波長域に対応し
た波長で多値の周波数変調することを特徴とする波長分
割多重光通信装置が得られる。
(Structure of the Invention) According to the present invention, a transmission light source capable of modulating the wavelength of output light, an optical fiber transmission line for transmitting the output light, and first to
a demultiplexer that has an n-th (n is a positive integer of 2 or more) passing wavelength range and wavelength-demultiplexes the output light propagated through the optical fiber transmission line; an optical receiver connected to each output end corresponding to a passing wavelength range of the splitter, and performs multi-value frequency modulation of the transmitting light source with a wavelength corresponding to the first to nth passing wavelength ranges of the demultiplexer. A wavelength division multiplexing optical communication device is obtained.

(発明の原理) 本発明は、比較的広い可変波長範囲を持つ単一の送信光
源を用い、各チャンネルに対応した波長を選びだして順
次時間分割で送出することにより、単一の光源で波長分
割多重と等価な光信号を送出する装置である。これによ
り多数の光源を必要とせず、しかも伝送装置が小形の波
長分割多重光通信装置を提供できる。
(Principle of the Invention) The present invention uses a single transmitting light source with a relatively wide variable wavelength range to select wavelengths corresponding to each channel and sequentially transmit them in a time-division manner. This is a device that sends out optical signals equivalent to division multiplexing. This makes it possible to provide a wavelength division multiplexing optical communication device that does not require a large number of light sources and has a small transmission device.

(実施例1) 次に図面を用いて本発明の詳細な説明する。第1図は本
発明によって得られる波長分割多重光通信装置の第1の
実施例を示すブロック図、第2図は同じく各部の信号波
形を示す図である。第1〜第4のチャンネル端子1〜4
に入力した各信号(第1〜第4のチャンネル信号5〜8
の各波形は第2図(a)に示す)は多重化回路9によっ
て第2図(b)に示す信号波形に時分割多重された後波
形変換回路10によって半導体レーザ11の駆動波形1
2に変換される。
(Example 1) Next, the present invention will be explained in detail using the drawings. FIG. 1 is a block diagram showing a first embodiment of a wavelength division multiplexing optical communication device obtained by the present invention, and FIG. 2 is a diagram showing signal waveforms of each part. 1st to 4th channel terminals 1 to 4
Each signal input to (first to fourth channel signals 5 to 8)
The waveforms shown in FIG. 2(a) are time-division multiplexed by the multiplexing circuit 9 into the signal waveforms shown in FIG.
It is converted to 2.

駆動波形12は、第1〜第4の各チャンネル信号5〜8
がマーク(又は1)の時には半導体レーザ11の波長が
それぞれに対応したλ1〜A4の波長で発振し、またス
ペース(又は0)の時にはλ5の波長で発振するように
したもので、第2図(C)のような波形である。この駆
動波形12によって動作する半導体レーザ11は第2図
(d)に示すような波長の出力光13を出射するが、こ
の出力光13は光フアイバ伝送路14に結合して伝搬し
、充分波器15に入射する。この充分波器15は回折格
子により構成されたもので、出力光13を波長別に分波
して、それぞれの波長に対応する第1〜第4の受信側光
ファイバ16〜19に結合させる。第1〜第4の受信側
光ファイバ16〜19を伝搬した第1〜第4の分波出力
光20〜23(第2図(e))はそれぞれ第1〜第4の
光受信部24〜27に入射し、送信側の第1〜第4の各
チャンネル信号5〜8が、それぞれ対応する第1〜第4
の光受信部24〜27で復調される。
The drive waveform 12 includes first to fourth channel signals 5 to 8.
When is a mark (or 1), the wavelength of the semiconductor laser 11 oscillates at the corresponding wavelength λ1 to A4, and when it is a space (or 0), the semiconductor laser 11 oscillates at the wavelength λ5. The waveform is as shown in (C). The semiconductor laser 11 operated by this driving waveform 12 emits an output light 13 having a wavelength as shown in FIG. The light enters the vessel 15. This sufficient wave splitter 15 is constituted by a diffraction grating, and separates the output light 13 into wavelengths and couples them to the first to fourth receiving optical fibers 16 to 19 corresponding to each wavelength. The first to fourth demultiplexed output lights 20 to 23 (FIG. 2(e)) propagated through the first to fourth receiving side optical fibers 16 to 19 are transmitted to the first to fourth optical receivers 24 to 23, respectively. 27, and each of the first to fourth channel signals 5 to 8 on the transmitting side is input to the corresponding first to fourth channel signals 5 to 8.
The optical receivers 24 to 27 demodulate the signal.

半導体レーザ11としては第3図に示すような分布反射
構造形の半導体レーザを使用した。この種の半導体レー
ザの動作原理および構造については特願昭58−241
267(昭和58年10月21日出願)に詳しく記載さ
れているので、詳細な説明は省略するが、この半導体レ
ーザ11はInP基板30上に液相成長法で形成された
InGaAsPの活性層領域31、分布反射器として働
く回折格子領域32および活性層領域31に直流電流3
4を注入する第1の電極33と回折格子領域32に駆動
波形12に対応した信号電流35を注入する第2の電極
36等から成っている。この半導体レーザ11の出力波
長の信号電流35に対応する依存性を第4図に示す。信
号電流35の大きさに応じて出力波長が飛び飛びの値を
取ることが分る。本実施例では第4図に示すようにλ1
〜λ5の部分を使用し、この波長を発振するように信号
電流35の大きさを決定している。
As the semiconductor laser 11, a semiconductor laser having a distributed reflection structure as shown in FIG. 3 was used. Regarding the operating principle and structure of this type of semiconductor laser, Japanese Patent Application No. 58-241
267 (filed on October 21, 1982), so a detailed explanation will be omitted, but this semiconductor laser 11 has an active layer region of InGaAsP formed on an InP substrate 30 by a liquid phase growth method. 31, a direct current 3 is applied to the diffraction grating region 32 and the active layer region 31 which act as distributed reflectors.
The first electrode 33 injects a signal current 35 corresponding to the drive waveform 12 into the diffraction grating region 32, and the second electrode 36 injects a signal current 35 corresponding to the drive waveform 12 into the diffraction grating region 32. The dependence of the output wavelength of the semiconductor laser 11 on the signal current 35 is shown in FIG. It can be seen that the output wavelength takes discrete values depending on the magnitude of the signal current 35. In this embodiment, as shown in FIG.
~λ5 is used, and the magnitude of the signal current 35 is determined so as to oscillate this wavelength.

第1の実施例においては、1個の半導体レーザ11によ
って4チャンネル分の光源の働きをしたことになる。従
来例に比べると多重回路9や波形変換回路10等の電気
回路系が新たに必要になるが、GaAs−IC等の高速
回路技術を使えばこれらの回路の実現は容易であり、従
来方式で4個の駆動回路と4個の波長の異なる光源が必
要であったのに比べ大きさ、コスト面での改善度は大き
い。また本装置では第7図の従来例に見られるような光
合波用の合波器74を必要としないという新たなメリッ
トも得られた。
In the first embodiment, one semiconductor laser 11 functions as a light source for four channels. Compared to the conventional method, new electrical circuit systems such as the multiplex circuit 9 and the waveform conversion circuit 10 are required, but these circuits can be easily realized using high-speed circuit technology such as GaAs-IC, and the conventional method cannot Compared to the case where four drive circuits and four light sources with different wavelengths were required, the degree of improvement in terms of size and cost is significant. Furthermore, this device has a new advantage in that it does not require a multiplexer 74 for optical multiplexing as seen in the conventional example shown in FIG.

なお、第1の実施例の装置を適用するシステムとしては
、光フアイバ伝送路14として数km〜10km。
Note that in a system to which the device of the first embodiment is applied, the optical fiber transmission line 14 is several kilometers to 10 kilometers.

受信側光ファイバ16〜19として数100m〜数km
ある加入者系通信システム等が“有効である。また第1
〜第4のチャンネル信号5〜8としては各々伝送速度1
00Mb/s以上までの信号が容易に伝送できた。
Receiving side optical fibers 16 to 19 are several hundred meters to several kilometers long
A certain subscriber communication system is “effective.
~The fourth channel signals 5 to 8 each have a transmission rate of 1
Signals of up to 00 Mb/s or more could be easily transmitted.

(実施例2) 第5図は本発明の第2の実施例を示すブロック図である
。第2の実施例は、本質的には第1の実施例を多段に重
ねたものであり、使用している基本デバイスは第1の実
施例と共通なので詳細な説明は省略する。第1〜第4の
送信部40〜43はそれぞれ5チャンネル分の信号を波
長多重して送信する送信部であり、各送信部内には第1
の実施例と同様に多重化回路、波形変換回路、半導体レ
ーザがそれぞれ使用されている。各チャンネル間の波長
差は2人、また各送信部40〜43間の波長差は10n
mに選ばれている。第1〜第4の送信部40〜43から
の第1〜第4の出力光44〜47は、それぞれ第1〜第
4の送信側光ファイバ48〜51を伝搬した後、回折格
子から成る光多重回路52によって合波され光フアイバ
伝送路14を伝搬する。この光フアイバ伝送路14の途
中の第1の分波回路53では第1の出力光44が、第2
の分波回路54では第2の出力光45が、さらに第3の
分波回路55では第3、第4の出力光46.47が分波
され、それぞれ第1〜第4の受信端56〜59に導かれ
る。各受信端56〜59は第1の実施例と類似の充分波
器および光受信部を含んでおり、それぞれ5チャンネル
分の伝送信号が復調されるようになっている。
(Embodiment 2) FIG. 5 is a block diagram showing a second embodiment of the present invention. The second embodiment is essentially the first embodiment multilayered, and the basic device used is the same as the first embodiment, so a detailed explanation will be omitted. The first to fourth transmitting units 40 to 43 are transmitting units that wavelength-multiplex and transmit signals for five channels, and each transmitting unit includes a first transmitter.
As in the embodiment, a multiplexing circuit, a waveform conversion circuit, and a semiconductor laser are used. The wavelength difference between each channel is 2, and the wavelength difference between each transmitter 40 to 43 is 10n.
It has been selected as m. The first to fourth output lights 44 to 47 from the first to fourth transmitters 40 to 43 propagate through first to fourth transmitter side optical fibers 48 to 51, respectively, and then become light beams composed of diffraction gratings. The signals are multiplexed by the multiplex circuit 52 and propagated through the optical fiber transmission line 14. In the first branching circuit 53 in the middle of this optical fiber transmission line 14, the first output light 44 is
In the branching circuit 54, the second output light 45 is branched, and in the third branching circuit 55, the third and fourth output lights 46,47 are branched, respectively, to the first to fourth receiving ends 56 to 47. 59. Each of the receiving ends 56 to 59 includes a sufficient frequency transmitter and an optical receiving section similar to those in the first embodiment, and each of them is designed to demodulate transmission signals for five channels.

第2の実施例は全部で20チャンネル分の波長分割多重
信号を伝送する装置であるが、4個の光源で伝送が可能
になった。
The second embodiment is a device that transmits wavelength division multiplexed signals for 20 channels in total, but transmission is possible using four light sources.

(変形例) 本発明に関しては以上の実施例の他にもさまざまな変形
が可能である。まず半導体レーザ11の変調方法として
、第1の実施例では、マークがλ1〜屓、スペースがλ
5となるように半導体レーザを変調したが、これに限ら
れることはない。第6図に2例を示すが、第6図(a)
はマーク(1)をλ1〜屓の中心波長に、スペース(0
)を隣り合うチャンネルとの中間の波長、即ち充分波器
15の遮断波長域に設定する方法である。また第6図(
b)はλ1〜X4の各波長を中心に、長波長側あるいは
短波長側にそれぞれマーク波長とスペース波長を設定す
る方法である。なお後者の方法では各光受信部24〜2
7でマーク、スペースの波長差を弁別するための光弁別
器あるいは光ヘテロダイン形検波回路の使用が必要であ
る。
(Modifications) Various modifications of the present invention are possible in addition to the above-described embodiments. First, as a method of modulating the semiconductor laser 11, in the first embodiment, the mark is λ1~1 and the space is λ1.
Although the semiconductor laser was modulated so that the number of wavelengths is 5, it is not limited to this. Two examples are shown in Figure 6, and Figure 6(a)
is the mark (1) at the center wavelength of λ1~, and the space (0
) is set at an intermediate wavelength between adjacent channels, that is, at the cutoff wavelength range of the sufficient wavelength filter 15. Also, Figure 6 (
b) is a method of setting mark wavelengths and space wavelengths on the long wavelength side or short wavelength side, centering on each of the wavelengths λ1 to X4. Note that in the latter method, each optical receiver 24 to 2
In step 7, it is necessary to use an optical discriminator or an optical heterodyne detection circuit to discriminate the wavelength difference between marks and spaces.

光源としては分布反射構造形の半導体レーザ11を用い
たが、これ以外のものでも、変調が容易で、しかも十分
な波長偏移の得られるものであれば良い。
Although the semiconductor laser 11 having a distributed reflection structure is used as the light source, any other light source may be used as long as it is easy to modulate and provides a sufficient wavelength shift.

また1個の半導体レーザ11での波長多重数としては4
〜5チヤンネルの例を示したが、各チャンネルの信号伝
送速度が数MHz〜数十MHz程度であれば10チャン
ネル以上の多重も可能である。
In addition, the number of wavelengths multiplexed in one semiconductor laser 11 is 4.
Although an example of ~5 channels has been shown, multiplexing of 10 or more channels is also possible if the signal transmission rate of each channel is about several MHz to several tens of MHz.

(発明の効果) 以上詳しく述べたように本発明によれば、波長の異なる
多数の光源を使う必要がなく従ってこれら光源部モジュ
ール、駆動回路部さらには光多重回路部を必要としない
ため伝送装置の小形化、コストの低減が可能な波長分割
多重光通信装置を得ることができる。
(Effects of the Invention) As described in detail above, according to the present invention, there is no need to use a large number of light sources with different wavelengths, and therefore, there is no need for these light source modules, drive circuit sections, and even optical multiplex circuit sections, so that the transmission device Accordingly, it is possible to obtain a wavelength division multiplexing optical communication device that can be downsized and cost reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示すブロック図、第2
図は同じく各部の信号波形を示す図、第3図、第4図は
それぞれ第1の実施例に使用される光源の構造図および
出力光の波長特性を示す図である。また第5図は第2の
実施例を示すブロック図、第6図は変形例、そして第7
図は従来例を示す図である。図において、 1〜4:チャンネル端子 11:半導体レーザ 14:光フアイバ伝送路 である。      代理人弁理士内原 晋、二、゛・
″第2図 5′ 時間 05  田R世叱 も七、)8日毎j[l[” 第6図 λ1 λ2 λ3 λ4 λ1 χ2 λ3 λ4
FIG. 1 is a block diagram showing a first embodiment of the present invention;
This figure similarly shows signal waveforms at various parts, and FIGS. 3 and 4 are diagrams showing the structure of the light source used in the first embodiment and the wavelength characteristics of output light, respectively. Also, FIG. 5 is a block diagram showing the second embodiment, FIG. 6 is a modified example, and FIG.
The figure shows a conventional example. In the figure, 1 to 4: channel terminal 11: semiconductor laser 14: optical fiber transmission line. Representative Patent Attorney Susumu Uchihara, 2.
``Fig. 2 5' Time 05 every 8 days j[l['' Fig. 6 λ1 λ2 λ3 λ4 λ1 χ2 λ3 λ4

Claims (1)

【特許請求の範囲】[Claims] 複数の信号を時分割多重化する多重化回路及び前記多重
化回路により得られた時分割多重化信号に応じて波長変
調可能な光源を少なくとも備えた送信部と、前記送信部
からの出力光を伝送する光伝送路と、前記光伝送路を伝
搬した光を各波長別に波長分波する分波器及び分波器の
各出力端に接続された光受信部を備えた受信部とを少な
くとも備えていることを特徴とする波長分割多重光通信
装置。
A transmitting section including at least a multiplexing circuit that time-division multiplexes a plurality of signals and a light source capable of wavelength modulation according to the time-division multiplexed signal obtained by the multiplexing circuit; At least a receiver including an optical transmission line for transmitting data, a demultiplexer that demultiplexes the light propagated through the optical transmission line into each wavelength, and an optical receiver connected to each output end of the demultiplexer. A wavelength division multiplexing optical communication device characterized by:
JP61257330A 1986-10-28 1986-10-28 Wavelength divided multiplex optical communication equipment Pending JPS63110828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257330A JPS63110828A (en) 1986-10-28 1986-10-28 Wavelength divided multiplex optical communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257330A JPS63110828A (en) 1986-10-28 1986-10-28 Wavelength divided multiplex optical communication equipment

Publications (1)

Publication Number Publication Date
JPS63110828A true JPS63110828A (en) 1988-05-16

Family

ID=17304862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257330A Pending JPS63110828A (en) 1986-10-28 1986-10-28 Wavelength divided multiplex optical communication equipment

Country Status (1)

Country Link
JP (1) JPS63110828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861965A (en) * 1996-08-30 1999-01-19 Lucent Technologies Inc. Optical communication system employing spectrally sliced optical source
JP2006094519A (en) * 2004-09-24 2006-04-06 Samsung Electronics Co Ltd Bus-structured passive optical network

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966236A (en) * 1982-10-07 1984-04-14 Matsushita Electric Ind Co Ltd Wavelength multiplex communicating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966236A (en) * 1982-10-07 1984-04-14 Matsushita Electric Ind Co Ltd Wavelength multiplex communicating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861965A (en) * 1996-08-30 1999-01-19 Lucent Technologies Inc. Optical communication system employing spectrally sliced optical source
JP2006094519A (en) * 2004-09-24 2006-04-06 Samsung Electronics Co Ltd Bus-structured passive optical network

Similar Documents

Publication Publication Date Title
US7522843B2 (en) Optical repeater converting wavelength and bit rate between networks
US4807227A (en) Optical wavelength-division switching system with coherent optical detection system
US5949563A (en) Wavelength division multiplexing transmitter receiver, optical transmission system, and redundant system switching method
EP0295857B1 (en) Optical multiplexing
EP0688114A1 (en) Bidirectional fibre-obtical telecommunicationsystem with monolithic integrated WDM multiwavelength source and a broadband incoherent optical source
US4991975A (en) Division multiplexing and demultiplexing means lightwave communication system comprising optical time
US4662715A (en) Fiber optic network with reduced coupling losses
US5715075A (en) Optical processing device operating in a wavelength-synchronized mode and an optical circuit exchanger that uses such an optical processing device
JP2763167B2 (en) Optical switching network
US7065298B1 (en) Code-based optical networks, methods, and apparatus
JPH04227139A (en) Bidirectional light waveguide remote communication system
US5657144A (en) Optical processing device operating in a wavelength-synchronized mode and an optical circuit exchanger that uses such an optical processing device
US6721505B2 (en) WDM ring transmission system
US5422772A (en) Secure fiber optic networks
US6782204B1 (en) Network with shared optical sources
JP2001251252A (en) Optical access network, trunk line node unit and branch line node unit
JPS63110828A (en) Wavelength divided multiplex optical communication equipment
RU2124812C1 (en) Method for transmission of signals in digital fiber-optical systems using spectral-code multiplexing and device which implements said method
JP2003244100A (en) Optical wavelength multiplex ring network
JPH0119778B2 (en)
JPS63148726A (en) Wavelength-division multiplex bidirectional optical communication equipment
JPH0991583A (en) Wavelength division multiplexing optical fiber sensor array system
JP3286094B2 (en) Optical WDM Network System
JP2001244884A (en) Optical wavelength multiplex access system and ring network
CA1295059C (en) Optical demultiplexing