JPS6310793B2 - - Google Patents

Info

Publication number
JPS6310793B2
JPS6310793B2 JP2949981A JP2949981A JPS6310793B2 JP S6310793 B2 JPS6310793 B2 JP S6310793B2 JP 2949981 A JP2949981 A JP 2949981A JP 2949981 A JP2949981 A JP 2949981A JP S6310793 B2 JPS6310793 B2 JP S6310793B2
Authority
JP
Japan
Prior art keywords
signal
time
circuit
ultrasonic
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2949981A
Other languages
Japanese (ja)
Other versions
JPS57144476A (en
Inventor
Tsutomu Hondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOKAWA DENKI KK
Original Assignee
YOKOKAWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOKAWA DENKI KK filed Critical YOKOKAWA DENKI KK
Priority to JP2949981A priority Critical patent/JPS57144476A/en
Publication of JPS57144476A publication Critical patent/JPS57144476A/en
Publication of JPS6310793B2 publication Critical patent/JPS6310793B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/529Gain of receiver varied automatically during pulse-recurrence period

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

【発明の詳細な説明】 この発明は、例えば、超音波レベル計における
受信信号を処理する信号検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal detection circuit that processes a received signal in, for example, an ultrasonic level meter.

従来、非接触式で被測定物の流量や、被測定物
までの距離を測定するものとして、超音波測定装
置が広く用いられている。このような超音波測定
装置の動作は、繰返し周期で超音波パルスを被測
定物に向つて発射し、その超音波パルスの伝播時
間を測定して被測定物までの距離又は被測定物の
流量を知る方法である。このような方法による超
音波レベル計の回路構成図を第1図に示し、この
超音波レベル計の構成及び動作を簡単に説明す
る。第1図において符号1は、周期的(例えば
100ms周期)なパルス信号を出力するタイミン
グパルス発生回路であり、この回路の出力は、超
音波発振回路2、可変時間幅電圧発生回路7(以
下TVG電圧発生回路と略記)、フリツプフロツプ
11へ各々供給される。超音波発振回路2はタイ
ミングパルス発生回路1の周期的パルスに基づい
て一定時間超音波信号を発生し、駆動回路3へ供
給する。駆動回路3は超音波発振回路2が発生し
た超音波信号を増幅する回路で、ここで増幅され
た超音波信号は切換回路4を介して送受波器5に
供給される。送受波器5は超音波信号を超音波に
変換して、被測定面6に向つて発射すると共に被
測定面6で反射した超音波を受信するものであ
る。被測定面6で反射した超音波は送受波器5に
より再び超音波信号に変換され、切換回路4を介
して電圧制御増幅器8〔以下VCA(Voltaye
Controled Amp.)と略記する〕に供給される。
VCA8はTVG電圧発生回路7とともにいわゆる
TVG(Time Varing Gain)増幅回路13を構成
している。ここでこの回路13の作用を第2図に
よつて説明する。第2図はタイミング発生回路1
によるパルス信号波形、VCA8の利得波形、
VCA8の入力波形および出力波形を各々示
している。図において符号13は発射超音波およ
びそれにともなう残留振動によるノイズを示す波
形であり、符号14は反射超音波による受信信号
を示す波形である。受信信号14の振幅は受信さ
れる時刻が遅くなるほど、(すなわち被測定面6
と送受波器5が離れているほど)小さくなるが、
前記TVG増幅回路により補正され、その結果
VCA8の出力は図に示す波形に示すように受
信波のみが増幅され、同時に超音波発射時のノイ
ズも取り除かれて自動利得制御増幅回路(以下
AGC回路と略記)9に供給される。AGC回路9
はTVG増幅回路7だけでは安定にならない受信
信号の振幅を一定にする回路である。なお受信信
号の性質は時間とともに単調に減衰するばかりで
なく、反射面の状態変化や超音波伝播路内の状態
により時々刻々変化する。AGC回路9によつて
振幅が一定となつた受信信号は、比較器10に供
給され、予め設定されている基準レベルと比較さ
れる。そして、その受信信号レベルが基準レベル
より大の場合に、比較器10から検出信号が出力
され、フリツプフロツプ11(以下FF11と略
記)へ供給される。FF11はタイミングパルス
発生回路1の周期パルスによつてセツトされ、
FF11の出力は2値信号の“1”となり時間出
力値変換回路12へ供給されていて、比較器10
から出力される検出信号によつてFF11はリセ
ツトされる。時間出力値変換回路12はFF11
の出力が“1”のレベルにある時間を用いて、設
定レベル値に対する現在レベル値の割合を算出
し、所定の信号、例えば、4〜20mAの電流信号
あるいは1〜5Vの電圧信号に変換して出力する
回路である。
BACKGROUND ART Conventionally, ultrasonic measuring devices have been widely used as non-contact methods for measuring the flow rate of an object to be measured and the distance to the object. The operation of such an ultrasonic measuring device is to emit ultrasonic pulses toward an object to be measured in a repetitive cycle, and measure the propagation time of the ultrasonic pulses to determine the distance to the object or the flow rate of the object. This is a way to know. A circuit configuration diagram of an ultrasonic level meter using such a method is shown in FIG. 1, and the configuration and operation of this ultrasonic level meter will be briefly explained. In FIG. 1, numeral 1 indicates periodic (for example
This is a timing pulse generation circuit that outputs a pulse signal with a period of 100ms, and the output of this circuit is supplied to the ultrasonic oscillation circuit 2, variable time width voltage generation circuit 7 (hereinafter abbreviated as TVG voltage generation circuit), and flip-flop 11, respectively. be done. The ultrasonic oscillation circuit 2 generates an ultrasonic signal for a certain period of time based on the periodic pulse of the timing pulse generation circuit 1, and supplies it to the drive circuit 3. The drive circuit 3 is a circuit that amplifies the ultrasonic signal generated by the ultrasonic oscillation circuit 2, and the ultrasonic signal amplified here is supplied to the transducer 5 via the switching circuit 4. The transducer 5 converts the ultrasonic signal into an ultrasonic wave, emits it toward the surface to be measured 6 , and receives the ultrasonic wave reflected from the surface to be measured 6 . The ultrasonic waves reflected by the surface to be measured 6 are converted into ultrasonic signals again by the transducer 5, and then sent to the voltage control amplifier 8 (hereinafter referred to as VCA) via the switching circuit 4.
Controlled Amp.).
VCA8 together with TVG voltage generation circuit 7 is called
A TVG (Time Varing Gain) amplification circuit 13 is configured. The operation of this circuit 13 will now be explained with reference to FIG. Figure 2 shows timing generation circuit 1
Pulse signal waveform, gain waveform of VCA8,
The input waveform and output waveform of VCA8 are shown respectively. In the figure, reference numeral 13 is a waveform representing noise due to emitted ultrasonic waves and residual vibrations associated therewith, and reference numeral 14 is a waveform representing a received signal due to reflected ultrasonic waves. The amplitude of the received signal 14 increases as the reception time becomes later (i.e., the amplitude of the measured surface 6
The further away the transducer and transducer 5 are), the smaller it becomes.
The result is corrected by the TVG amplifier circuit.
As shown in the waveform shown in the figure, the output of VCA8 is such that only the received wave is amplified, and at the same time the noise during ultrasonic emission is removed.
(abbreviated as AGC circuit) 9. AGC circuit 9
is a circuit that stabilizes the amplitude of the received signal, which cannot be stabilized by the TVG amplifier circuit 7 alone. Note that the properties of the received signal not only attenuate monotonically over time, but also change from moment to moment due to changes in the state of the reflecting surface and the state within the ultrasonic propagation path. The received signal whose amplitude has been made constant by the AGC circuit 9 is supplied to a comparator 10 and compared with a preset reference level. When the received signal level is higher than the reference level, a detection signal is output from the comparator 10 and supplied to a flip-flop 11 (hereinafter abbreviated as FF11). FF11 is set by the periodic pulse of the timing pulse generation circuit 1,
The output of the FF 11 becomes a binary signal "1" and is supplied to the time output value conversion circuit 12, and the comparator 10
The FF 11 is reset by the detection signal output from the FF 11. The time output value conversion circuit 12 is FF11
Calculate the ratio of the current level value to the set level value using the time the output of is at the "1" level, and convert it into a predetermined signal, for example, a 4 to 20 mA current signal or a 1 to 5 V voltage signal. This is a circuit that outputs

ところでこのように構成された従来の超音波レ
ベル計には次のような欠点がある。
However, the conventional ultrasonic level meter configured as described above has the following drawbacks.

(1) 受信される信号には、正常な反射波以外にも
空中を飛来する各種の超音波ノイズがあり、さ
らにケーブル等から混入する誘導ノイズもあ
る。TVG増幅回路13は、先に述べたように、
受信時刻が遅くなるほど弱くなる反射波信号に
対して有効であるが、ここで述べたようなラン
ダムに発生する受信ノイズに対して逆の影響を
受け易い結果となる。このような受信ノイズを
除去する手段としては、出力回路に大きな時定
数のフイルタを用いて、出力の突変を防いでい
るが、このフイルタを設けると応答速度が遅く
なるなどの欠点を生じる。
(1) In addition to normal reflected waves, the received signal includes various types of ultrasonic noise flying through the air, as well as induced noise mixed in from cables and the like. As mentioned earlier, the TVG amplifier circuit 13
Although this method is effective for reflected wave signals that become weaker as the reception time becomes later, it is susceptible to the opposite effect from randomly occurring reception noise as described here. As a means for removing such reception noise, a filter with a large time constant is used in the output circuit to prevent sudden changes in the output, but the provision of this filter has drawbacks such as slow response speed.

(2) 受信波を増幅するために、TVG増幅回路1
3とAGC回路9とを直列に用いているため、
それぞれの調整が困難である。
(2) TVG amplifier circuit 1 to amplify the received wave
3 and AGC circuit 9 are used in series,
Each adjustment is difficult.

この発明は、上述した欠点に鑑みなされたも
ので、超音波測定装置において、ノイズに強
く、応答速度が速く、また調整を必要としない
信号検出回路を提供することを目的とし、超音
波送受波器で受信された受信信号を増幅する可
変利得増幅器と、前記可変利得増幅器の出力信
号の振幅をデジタルの振幅データに変換する変
換器と、前記変換器から出力された振幅データ
を取り込むと共に前記可変利得増幅器の利得を
制御する一方、前記超音波送受波器によつて受
信された受信信号の中から、測定対象から正規
に発射して戻つてきた超音波に対応した正規の
受信信号を特定し、前記超音波送受波器が超音
波を発射してから、正規の受信信号が得られる
までの経過時間に対応した測定結果を出力する
演算制御回路(例えば、マイクロコンピユー
タ)とを具備し、前記演算制御回路は、次に正
規の受信信号が得られると予想される受信時刻
が決定できない場合においては、前記超音波送
受波器が超音波を発射してから次の超音波を発
射するまでの全期間にわたつて、前記可変利得
増幅器の利得を時間の経過とともに上げつつ前
記振幅データを取り込み、所定値以上の振幅デ
ータが得られた時点で、正規の受信信号が得ら
れたと見なして、前記可変利得増幅器の利得を
一旦固定し、前記受信時刻を決定する一方、前
記受信時刻が決定できた場合においては、前記
超音波送受波器によつて超音波が発射される毎
に、前記受信時刻の前後一定の時間帯において
得られる前記振幅データを繰り返し取り込み、
これらの振幅データが一定となるように前記可
変利得増幅器の利得を制御して、前記測定結果
を出力することを特徴としている。
This invention was made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a signal detection circuit that is resistant to noise, has a fast response speed, and does not require adjustment in an ultrasonic measuring device. a variable gain amplifier that amplifies the received signal received by the variable gain amplifier; a converter that converts the amplitude of the output signal of the variable gain amplifier into digital amplitude data; While controlling the gain of the gain amplifier, from among the received signals received by the ultrasonic transducer, a regular received signal corresponding to the ultrasound that has been properly emitted from the measurement target and returned is identified. , comprising an arithmetic control circuit (for example, a microcomputer) that outputs a measurement result corresponding to the elapsed time from when the ultrasonic transducer emits an ultrasonic wave until a regular received signal is obtained; If the reception time at which the next normal received signal is expected to be obtained cannot be determined, the arithmetic control circuit determines the time from when the ultrasonic transducer emits an ultrasonic wave until when the next ultrasonic wave is emitted. Over the entire period, the amplitude data is captured while increasing the gain of the variable gain amplifier over time, and when amplitude data equal to or greater than a predetermined value is obtained, it is assumed that a normal received signal has been obtained. While the gain of the variable gain amplifier is once fixed and the reception time is determined, if the reception time can be determined, the reception time is determined every time an ultrasonic wave is emitted by the ultrasonic transducer. Repeatedly capturing the amplitude data obtained in a certain time period before and after,
The present invention is characterized in that the gain of the variable gain amplifier is controlled so that these amplitude data are constant, and the measurement results are output.

以下図面を参照しこの発明の一実施例について
説明する。実施例の説明に先だつて、この発明の
基本的考え方について説明する。一般に、超音波
レベル計は粉体、液体などのレベルの連続測定に
用いられるが、通常これらのレベル変化速度は比
較的に緩慢である。最も早いレベル変化としては
液体面での波立ちが考えられるが、この波の高さ
は測定スパンに対して十分小さい(例えば5%以
下)と考えてよい。すなわち正常な反射波による
受信が行なわれているならば、繰返し測定される
測定値の変化はある範囲(レベルの最大変化速度
又は、液の高さの最大値により定まる)内にある
はずである。したがつて反射波の受信を前回の受
信時間前後の狭い範囲に限定することにより、外
乱ノイズに強い安定な測定が可能となる。この発
明はこのことに着目し、前回の受信信号の振幅を
デジタル化しマイクロコンピユータにより計測
し、この計測結果を基に、次回到来する受信信号
の存在する時間帯、次回の受信増幅器の利得を、
マイクロコンピユータのプログラムによつて定め
るようにしたのである。なおこのような方法によ
ると、受信区間を狭い範囲に限定することによ
り、その区間内では時間による受信信号の減衰が
ほとんど無視できるため、TVG増幅回路に用い
るTVG制御は不要となる。また電源投入直後や、
反射波を見失つた場合は、測定範囲全体から反射
波を探し出す必要があるが、その場合は、正確な
受信時刻を決定しなくてよいのでAGC制御を行
う必要はない。
An embodiment of the present invention will be described below with reference to the drawings. Before explaining the embodiments, the basic idea of the invention will be explained. Generally, ultrasonic level meters are used to continuously measure the level of powder, liquid, etc., but the rate of change in these levels is usually relatively slow. Ripples on the liquid surface can be considered as the fastest level change, but the height of these waves can be considered to be sufficiently small (for example, 5% or less) relative to the measurement span. In other words, if normal reflected wave reception is being performed, the change in the repeatedly measured value should be within a certain range (determined by the maximum rate of change in level or the maximum value of the height of the liquid). . Therefore, by limiting the reception of reflected waves to a narrow range before and after the previous reception time, stable measurement that is resistant to disturbance noise becomes possible. This invention focuses on this, digitizes the amplitude of the previous received signal and measures it with a microcomputer, and based on this measurement result, calculates the time period in which the next received signal exists and the gain of the next receiving amplifier.
It was decided by a microcomputer program. In addition, according to such a method, by limiting the reception period to a narrow range, the attenuation of the received signal due to time can be almost ignored within the period, so that TVG control used in the TVG amplifier circuit is not necessary. Also, immediately after turning on the power,
If the reflected wave is lost, it is necessary to search for the reflected wave throughout the measurement range, but in that case, there is no need to determine the exact reception time, so there is no need to perform AGC control.

第3図はこの発明の一実施例の構成を示すブロ
ツク図である。この図において第1図の各部に対
応する部分には同一符号を付しその説明は省略す
る。第3図において符号14は超音波の送受信タ
イミング制御、受信時のVCA8の利得制御およ
び出力回路18の出力値の算出を行う演算制御回
路であり、例えば、マイクロコンピユータを用い
て構成される。この演算制御回路14は超音波発
振回路2、DAC(デジタルアナログ変換回路)1
5、ADC(アナログデジタル変換器)17および
出力回路18の各々と必要な信号の授受を行う。
DAC15は演算制御回路14からの信号をVCA
8の制御信号に変換するデジタルアナログ変換器
であり、この出力はVCA8の制御端子に供給さ
れる。DAC15により制御されたVCA8の出力
は検波回路16に供給される。検波回路16は
VCA8で増幅された受信信号の包格線を検出す
る回路で、この検波回路16の出力はADC17
に供給される。ADC17はアナログデジタル変
換器で、検波回路16の出力をデジタル化する回
路であり、例えば4bit分の比較器で構成される。
出力回路18は演算制御回路14で算出された出
力値を電流もしくは電圧の標準信号に変換するも
ので、第1図においては時間出力値変換回路12
の一部に含まれている回路である。
FIG. 3 is a block diagram showing the configuration of one embodiment of the present invention. In this figure, parts corresponding to those in FIG. 1 are given the same reference numerals, and their explanations will be omitted. In FIG. 3, reference numeral 14 denotes an arithmetic control circuit that controls the transmission and reception timing of ultrasonic waves, controls the gain of the VCA 8 during reception, and calculates the output value of the output circuit 18, and is configured using, for example, a microcomputer. This arithmetic control circuit 14 includes an ultrasonic oscillation circuit 2, a DAC (digital-to-analog conversion circuit) 1
5. Transfers necessary signals to and from each of the ADC (analog-to-digital converter) 17 and the output circuit 18.
The DAC 15 converts the signal from the arithmetic control circuit 14 into a VCA
This is a digital-to-analog converter that converts the VCA 8 control signal into a VCA 8 control signal, and its output is supplied to the control terminal of the VCA 8. The output of the VCA 8 controlled by the DAC 15 is supplied to the detection circuit 16. The detection circuit 16 is
This is a circuit that detects the envelope of the received signal amplified by VCA8, and the output of this detection circuit 16 is output from ADC17.
is supplied to The ADC 17 is an analog-to-digital converter that digitizes the output of the detection circuit 16, and is composed of, for example, a 4-bit comparator.
The output circuit 18 converts the output value calculated by the arithmetic control circuit 14 into a standard signal of current or voltage, and in FIG.
This is a circuit included in a part of the .

次に、第3図に示す回路の動作を第4図のフロ
ーチヤート図にしたがつて説明する。まず測定を
開始すると、演算制御回路14から出力される。
スタートパルス20によつて、従来の超音波レベ
ル計と同様にして空中に超音波が発射される(第
4図におけるステツプS1)。その後演算制御回路
14は前回までの測定に基づいて、2つの異なつ
た制御を行なう(ステツプS2)。すなわち、第1
の制御は反射波の受信時刻が予想がたたない場合
(これは電源投入直後や、連続して反射波の受信
を誤つた場合)で、超音波発射と同時にDAC1
5を介してVCA8の利得を時間とともに上げる
TVG制御を行ない、それと並行してADC17を
介して受信される受信信号を読込み振幅をチエツ
クする(ステツプS3)。ここであらかじめ設定さ
れた振幅を越える受信信号があつた場合、演算制
御回路14は、その時点の利得の値にVCA8の
利得を固定し(ステツプS4)、再び超音波発射動
作(ステツプS1)に戻る。受信信号が設定された
振幅より小さい場合、すなわち受信信号の検出に
失敗した場合は、ステツプS4に行かずステツプS1
に戻り、受信信号が得られる迄同じ回動をくり返
す(第4図では省略してある)。
Next, the operation of the circuit shown in FIG. 3 will be explained with reference to the flowchart shown in FIG. First, when measurement is started, the arithmetic control circuit 14 outputs.
The start pulse 20 causes ultrasonic waves to be emitted into the air in the same manner as in conventional ultrasonic level meters (step S 1 in FIG. 4). Thereafter, the arithmetic control circuit 14 performs two different controls based on the previous measurements (step S 2 ). That is, the first
This control is performed when the reception time of the reflected wave is unpredictable (this is immediately after the power is turned on, or when the reflected wave is incorrectly received continuously), and the DAC1 is activated at the same time as the ultrasonic wave is emitted.
Increase the gain of VCA8 over time via 5
TVG control is carried out, and in parallel, the received signal received via the ADC 17 is read and the amplitude is checked (step S 3 ). If there is a received signal exceeding the preset amplitude, the arithmetic control circuit 14 fixes the gain of the VCA 8 to the gain value at that time (step S 4 ), and starts the ultrasonic emission operation again (step S 1 ) . ). If the received signal is smaller than the set amplitude, that is, if the reception signal detection fails, the process does not proceed to step S4 and proceeds to step S1.
The same rotation is repeated until the received signal is obtained (omitted in Fig. 4).

次に第2の制御は第1の制御によつて反射波の
受信時刻がほぼ判明した場合および繰返し正常な
反射波を受信している場合で、前回までの測定で
予想される受信時刻の前後狭い範囲の信号を読み
込む(ステツプS6)。次に読み込んだ信号の振幅
を設定値と比較することにより受信失敗か否か、
およびVCA8の利得の良否を判定する(ステツ
プS7)。ここでTVG制御(第1の制御)時に検出
した信号が正規の反射波でない場合は、ステツプ
S7において受信失敗と判定されるが、それ以外に
も反射面などの変化により正常受信動作を繰返し
ている場合でも、受信失敗が発生する。しかしこ
のような場合の受信失敗は繰返して、例えば、5
回発生することはない。したがつて受信失敗の場
合は次のステツプS8で回数チエツクを行ない、失
敗が連続した場合は(例えば5回以上)6回目か
らは第1の制御へ戻る。一方、受信に成功した場
合でも、毎回の振幅変動が大きい場合は正確な受
信時刻の決定が出来ない。この場合毎回の測定周
期は100ms程度であり、連続する測定では受信
信号の振幅は極端に変化しないと考えられるの
で、この受信信号の振幅とともに、次回測定時の
VCA8の利得を決定する(ステツプS9)。このよ
うにして測定された受信信号を基に、演算制御回
路14は出力回路18へ供給する出力の値を計算
し出力することにより出力回路18からは被測定
レベルに対応する。電流又は電圧が出力される
(ステツプS10)。
Next, the second control is performed when the reception time of the reflected wave is almost known by the first control, or when normal reflected waves are repeatedly received, and the reception time is around the expected reception time based on the previous measurement. Read signals in a narrow range (step S6 ). Next, by comparing the amplitude of the read signal with the set value, you can check whether reception has failed or not.
Then, it is determined whether the gain of VCA 8 is good or bad (step S7 ). If the signal detected during TVG control (first control) is not a regular reflected wave, the step
A reception failure is determined in S7 , but a reception failure may also occur even if normal reception operations are repeated due to changes in the reflective surface or the like. However, reception failures in such cases may occur repeatedly, for example, 5
It never occurs. Therefore, in the case of reception failure, the number of times is checked in the next step S8 , and if failure continues (for example, five or more times), the process returns to the first control from the sixth time onward. On the other hand, even if reception is successful, if the amplitude fluctuation each time is large, accurate reception time cannot be determined. In this case, the measurement cycle each time is about 100ms, and it is thought that the amplitude of the received signal will not change drastically in continuous measurements.
Determine the gain of VCA 8 (step S 9 ). Based on the received signal measured in this manner, the arithmetic control circuit 14 calculates and outputs the value of the output to be supplied to the output circuit 18, so that the output value from the output circuit 18 corresponds to the level to be measured. Current or voltage is output (step S 10 ).

このように、この発明では、前回の受信信号に
基づいて次に到来する受信波の時刻を予測して
VCA8の利得を決定するので、予想される受信
時刻の前後の狭い範囲しか信号検出を行なわない
ことになり、ランダムに発生するノイズの影響を
うけなくなる。また出力回路18に時定数の大き
いフイルタを用いる必要がなくなり、応答速度を
速くできる。またこの発明では演算制御回路14
にマイクロコンピユータ等を用いたので、1個の
電圧制御増幅器(VCA8)により、TVG増幅器
13、AGC増幅器9の役割を一括して果たすこ
とができて回路構成が簡単になりかつ調整箇所が
なくなる。
In this way, the present invention predicts the time of the next received wave based on the previous received signal.
Since the gain of the VCA 8 is determined, the signal is detected only in a narrow range before and after the expected reception time, and is not affected by randomly generated noise. Furthermore, there is no need to use a filter with a large time constant in the output circuit 18, and the response speed can be increased. Further, in this invention, the arithmetic control circuit 14
Since a microcomputer or the like is used for this purpose, one voltage control amplifier (VCA 8) can fulfill the roles of the TVG amplifier 13 and the AGC amplifier 9 all at once, simplifying the circuit configuration and eliminating the need for adjustments.

この発明によれば、超音波送受波器で受信され
た受信信号を増幅する可変利得増幅器と、前記可
変利得増幅器の出力信号の振幅をデジタルの振幅
にデータに変換する変換器と、前記変換器から出
力された振幅データを取り込む演算制御回路を折
け、この演算制御回路により、受信信号の状態を
逐次分析し、その結果を基に可変利得増幅器の利
得を制御して、測定対象から正規に発射して戻つ
てきた超音波に対応した正規の受信信号を特定
し、前記超音波受波器が超音波を発射してから、
正規の受信信号が得られるまでの経過時間に対応
した測定結果を出力するようにしたので、次の利
点が得られる。
According to the present invention, there is provided a variable gain amplifier that amplifies a received signal received by an ultrasonic transducer, a converter that converts the amplitude of an output signal of the variable gain amplifier into digital amplitude data, and the converter. The arithmetic and control circuit that takes in the amplitude data output from the arithmetic and control circuit sequentially analyzes the condition of the received signal, and controls the gain of the variable gain amplifier based on the results. Identifying a legitimate reception signal corresponding to the emitted and returned ultrasonic wave, and after the ultrasonic receiver emits the ultrasonic wave,
Since the measurement result corresponding to the elapsed time until a normal received signal is obtained is output, the following advantages can be obtained.

ノイズの影響を除去することができる。 The influence of noise can be removed.

応答時間が速くなる。 Faster response time.

回路構成が簡単になる。 The circuit configuration becomes simpler.

調整の必要がなくなる。 There is no need for adjustment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超音波レベル計の構成を示すブ
ロツク図、第2図は第1図の回路動作を説明する
ための波形図、第3図は本発明の一実施例の構成
を示すブロツク図、第4図は本発明の一実施例の
動作を説明するフローチヤート図である。 5……送受波器、8……VCA(可変利得増幅回
路)、14……演算制御回路、15……デジタル
アナログ変換器(DAC)、17……アナログデジ
タル変換器(ADC)。
FIG. 1 is a block diagram showing the configuration of a conventional ultrasonic level meter, FIG. 2 is a waveform diagram to explain the circuit operation of FIG. 1, and FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention. 4 are flowcharts illustrating the operation of an embodiment of the present invention. 5... Transmitter/receiver, 8... VCA (variable gain amplifier circuit), 14... Arithmetic control circuit, 15... Digital-to-analog converter (DAC), 17... Analog-to-digital converter (ADC).

Claims (1)

【特許請求の範囲】 1 超音波送受波器で受信された受信信号を増幅
する可変利得増幅器と、 前記可変利得増幅器の出力信号の振幅をデジタ
ルの振幅データに変換する変換器と、 前記変換器から出力された振幅データを取り込
むと共に前記可変利得増幅器の利得を制御する一
方、前記超音波送受波器によつて受信された受信
信号の中から、測定対象から正規に発射して戻つ
てきた超音波に対応した正規の受信信号を特定
し、前記超音波送受波器が超音波を発射してか
ら、正規の受信信号が得られるまでの経過時間に
対応した測定結果を出力する演算制御回路とを具
備し、 前記演算制御回路は、次に正規の受信信号が得
られると予想される受信時刻が決定できない場合
においては、前記超音波送受波器が超音波を発射
してから次の超音波を発射するまでの全期間にわ
たつて、前記可変利得増幅器の利得を時間の経過
とともに上げつつ前記振幅データを取り込み、所
定値以上の振幅データが得られた時点で、正規の
受信信号が得られたと見なして、前記可変利得増
幅器の利得を一旦固定し、前記受信時刻を決定す
る一方、 前記受信時刻が決定できた場合においては、前
記超音波送受波器によつて超音波が発射される毎
に、前記受信時刻の前後一定の時間帯において得
られる前記振幅データを繰り返し取り込み、これ
らの振幅データが一定となるように前記可変利得
増幅器の利得を制御して、前記測定結果を出力す
ることを特徴とする信号検出回路。
[Claims] 1. A variable gain amplifier that amplifies a received signal received by an ultrasonic transducer; a converter that converts the amplitude of the output signal of the variable gain amplifier into digital amplitude data; and the converter. While controlling the gain of the variable gain amplifier while taking in the amplitude data output from the an arithmetic control circuit that identifies a regular received signal corresponding to a sound wave and outputs a measurement result corresponding to an elapsed time from when the ultrasonic transducer emits an ultrasonic wave until a regular received signal is obtained; If the reception time at which the next normal reception signal is expected to be obtained cannot be determined, the arithmetic and control circuit transmits the next ultrasound after the ultrasound transducer emits the ultrasound. The amplitude data is captured while increasing the gain of the variable gain amplifier over time until the signal is emitted, and when amplitude data equal to or higher than a predetermined value is obtained, a normal received signal is obtained. Once the gain of the variable gain amplifier is fixed and the reception time is determined, if the reception time can be determined, each time an ultrasonic wave is emitted by the ultrasonic transducer. The method further comprises repeatedly capturing the amplitude data obtained in a certain time period before and after the reception time, controlling the gain of the variable gain amplifier so that the amplitude data becomes constant, and outputting the measurement result. Characteristic signal detection circuit.
JP2949981A 1981-03-02 1981-03-02 Signal detecting circuit Granted JPS57144476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2949981A JPS57144476A (en) 1981-03-02 1981-03-02 Signal detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2949981A JPS57144476A (en) 1981-03-02 1981-03-02 Signal detecting circuit

Publications (2)

Publication Number Publication Date
JPS57144476A JPS57144476A (en) 1982-09-07
JPS6310793B2 true JPS6310793B2 (en) 1988-03-09

Family

ID=12277766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2949981A Granted JPS57144476A (en) 1981-03-02 1981-03-02 Signal detecting circuit

Country Status (1)

Country Link
JP (1) JPS57144476A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3339984A1 (en) * 1983-11-04 1985-05-23 Endress U. Hauser Gmbh U. Co, 7867 Maulburg SOUND AND ULTRASONIC DISTANCE MEASURING DEVICE
JPH0723908B2 (en) * 1985-06-13 1995-03-15 松下電工株式会社 Ultrasonic rangefinder
JPH01295190A (en) * 1988-05-23 1989-11-28 Furuno Electric Co Ltd Fish finder
JPH07193446A (en) * 1993-12-24 1995-07-28 Nec Corp Automatic predictive gain switching circuit
JP2014204195A (en) 2013-04-02 2014-10-27 富士通株式会社 Gain control circuit and ultrasonic image device

Also Published As

Publication number Publication date
JPS57144476A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
TWI333541B (en) Laser range finder and related range measurement method
CN107167808A (en) The circuit compensated for acoustics apart from the flight time
US4346586A (en) Engine knock signal processing circuit
US20030035342A1 (en) Range measuring system
JPS6310793B2 (en)
JPH02183190A (en) Jamming signal checking method and apparatus for ultrasonic proximity initiator
US20040179428A1 (en) Method for determining echo distance using autocorrelation in time of flight ranging systems
US7010973B2 (en) Method and apparatus for improving accuracy in ultrasonic echo ranging systems
JPH06109841A (en) Distance detection method
JP3291102B2 (en) Ultrasonic distance measuring device
JPS5855441B2 (en) How long can you use it?
JPS61147174A (en) Method of transmitting and receiving periodic pulse row
JPS6044626B2 (en) Ultrasonic measuring device
JP3068674B2 (en) Ultrasonic transducer
JP2686963B2 (en) Ultrasonic detector
JP2650424B2 (en) Ultrasonic distance sensor
JPH03180794A (en) Method and instrument for ultrasonic distance measurement
KR0152725B1 (en) Distance measurement method and apparatus using ultrasonic wave
CN115694385A (en) Ultrasonic compensation method, ultrasonic compensation device and ultrasonic transmission/reception device
JPH02161383A (en) Ultrasonic range finder
JPH0449088B2 (en)
JP2003139857A (en) Laser distance measuring apparatus
JPH0587911A (en) Ultrasonic sensor
JPH0894740A (en) Ultrasonic distance measuring apparatus
JPS6015143Y2 (en) Aircraft noise determination device