JPS63103959A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPS63103959A
JPS63103959A JP24838786A JP24838786A JPS63103959A JP S63103959 A JPS63103959 A JP S63103959A JP 24838786 A JP24838786 A JP 24838786A JP 24838786 A JP24838786 A JP 24838786A JP S63103959 A JPS63103959 A JP S63103959A
Authority
JP
Japan
Prior art keywords
platinum
tin oxide
substrate
film
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24838786A
Other languages
Japanese (ja)
Inventor
Kazunari Kubota
窪田 一成
Hideo Takiguchi
滝口 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24838786A priority Critical patent/JPS63103959A/en
Publication of JPS63103959A publication Critical patent/JPS63103959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a sensor which exhibits high sensitivity to gaseous isobutane and is optimum for an alarm for leakage of gaseous propane for general home use by adding platinum to a fine particle film of tin oxide formed by an arc discharge method and using such film as a gas sensitive material. CONSTITUTION:The fine particle film 5 of the tin oxide formed by the arc discharge method is formed on an alumina substrate 1 and the platinum 10 is further added to the film 5 to constitute the gas sensitive material. The fine particle film 5 is formed by generating an arc discharge with a low voltage while evaporating tin in the oxygen controlled to a prescribed reduced pressure state to bring the evaporating tin and oxygen into reaction and to form the fine particles of the tin oxide, and sticking such particles onto the substrate 1 on which platinum electrodes 3, 4 are formed. The addition of the platinum is executed by immersing the substrate 1 formed with the film 5 into a chloroplatinic (IV) acid soln., then taking out the substrate, drying the same, and subjecting the substrate to heat treatment in an electric furnace so as to add the platinum 10 to the film 5. Lead wires 6, 7 for a heater and lead wires 8, 9 for the electrodes are connected to the substrate 1 obtd. in the above- mentioned, by which the sensor is assembled.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は可燃性ガス、特にイソブタンガスに高い感度
を示し、一般家庭用プロパンガスの漏れ警報器に用いら
れるガスセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a gas sensor that exhibits high sensitivity to flammable gases, particularly isobutane gas, and is used in general household propane gas leak alarms.

〔従来技術とその問題点〕[Prior art and its problems]

この種のガスセンサとして、金属ガス蒸気と酸素ガスを
アーク放電下で反応させることにより、ガス感応性金属
酸化物微粒子膜を生成してなるガスセンサが本出願人に
よる先願として出願中である(特願昭61−28693
号)。
As a gas sensor of this type, a gas sensor in which a gas-sensitive metal oxide fine particle film is produced by reacting metal gas vapor and oxygen gas under arc discharge is currently being filed as a prior application by the present applicant. Gansho 61-28693
issue).

しかし、このガス感応性金属酸化物微粒子膜の一つであ
る酸化すず微粒子膜を一般家庭用のプロパンガス漏れ警
報器のガスセンサとして用いた場合、ガス感度がやや不
十分であるため電気回路の構成が複雑となるという実用
上の問題点があった。
However, when this tin oxide fine particle membrane, which is one of the gas-sensitive metal oxide fine particle membranes, is used as a gas sensor for a propane gas leak alarm for general household use, the gas sensitivity is somewhat insufficient, so the electrical circuit configuration There was a practical problem that it became complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は前述の先願にかかるガス感応性金属酸化
物微粒子膜の実用上の問題点を改良し、−a家庭用プロ
パンガス漏れ警報器への使用に適したガスセンサを捷供
することにある。
The purpose of the present invention is to improve the practical problems of the gas-sensitive metal oxide fine particle film disclosed in the prior application, and to provide a gas sensor suitable for use in a household propane gas leak alarm. be.

〔発明の要点〕[Key points of the invention]

前述の目的を達成するため、本発明によれば、アーク放
電法により生成された酸化すず微粒子膜に白金を添加し
てガス感応材料(ガスセンサ)とすることを特徴とする
In order to achieve the above object, the present invention is characterized in that platinum is added to a tin oxide fine particle film produced by an arc discharge method to produce a gas-sensitive material (gas sensor).

上述の酸化すず微粒子膜はアーク放電法により生成され
る。すなわち、所定の減圧状態に制御された酸素中です
すを蒸発させながら低電圧でアーク放電を発生させ、蒸
発すずと酸素を反応させて酸化すず微粒子を生成し、こ
れを電極の形成されたアルミナ基板上に付着することに
より生成される。
The tin oxide fine particle film described above is produced by an arc discharge method. That is, arc discharge is generated at low voltage while evaporating soot in oxygen controlled at a predetermined reduced pressure state, and the evaporated tin and oxygen are reacted to produce tin oxide fine particles, which are then transferred to the alumina on which the electrodes are formed. It is produced by adhering onto a substrate.

このアルミナ基板上に付着した酸化すず微粒子膜はこれ
自体でガス感応材料として用いることができるが、本発
明ではこの材料にさらに白金を添加してガス感応材料と
する。この白金の添加は塩化白金(IV)または塩化白
金(N)酸を出発原料とし、この水溶液中に前記アルミ
ナ基板上の酸化すず微粒子膜を浸漬することにより前記
出発原料と前記酸化すず微粒子膜を接触し、その後加熱
処理することにより行われ、この結果得られるガス感応
材料は可燃性ガス、特にイソブタンガスに高い感度を示
すガス感応材料となり、−a家庭用プロパンガス漏れ警
報器用のガスセンサとして最適となる。
The tin oxide fine particle film deposited on the alumina substrate can be used as a gas-sensitive material by itself, but in the present invention, platinum is further added to this material to make it a gas-sensitive material. This addition of platinum uses platinum chloride (IV) or platinum chloride (N) acid as a starting material, and by immersing the tin oxide fine particle film on the alumina substrate in this aqueous solution, the starting material and the tin oxide fine particle film are combined. The resulting gas-sensitive material is highly sensitive to flammable gases, especially isobutane gas, and is ideal as a gas sensor for household propane gas leak alarms. becomes.

塩化白金(IV)または塩化白金(IV)酸を出発原料
として白金を添加することによりイソブタンガスに高い
感度を示す理由はまだ明らかではないが、白金を添加す
ることによりガス感応材料の電気抵抗が高くなること、
ならびに組成がすべて二酸化すず(SNOx)になるこ
とが判明している。
Although it is not yet clear why adding platinum to platinum chloride (IV) or platinum chloride (IV) acid as a starting material shows higher sensitivity to isobutane gas, adding platinum increases the electrical resistance of the gas-sensitive material. to get high,
It has also been found that the composition is all tin dioxide (SNOx).

〔発明の実施例〕[Embodiments of the invention]

以下、この発明を添付図面を用いて詳述する。 Hereinafter, this invention will be explained in detail using the accompanying drawings.

第1図乃至第3図は本発明にかかるガスセンサの一具体
例を示した図面であって、第1図はその平面図、第2図
は背面図、第3図は第1図におけるA−A ’線断面図
である。
1 to 3 are drawings showing a specific example of the gas sensor according to the present invention, in which FIG. 1 is a plan view, FIG. 2 is a rear view, and FIG. It is an A' line sectional view.

1はアルミナ基板であって、この基板l上にアーク放電
法により生成された酸化すず微粒子膜5を形成し、この
膜5にさらに白金10を添加し、ガス感応材料として構
成される。2はガスセンサを加熱するためのヒーター、
3.4は白金10と酸化すず微粒子1I15からなるガ
ス感応材料の電気抵抗値を測定するための一対の白金電
極、6.7はヒーター2のリード線、8.9は白金電極
3.4のリード線である。
1 is an alumina substrate, on which a tin oxide fine particle film 5 produced by an arc discharge method is formed, and platinum 10 is further added to this film 5 to form a gas-sensitive material. 2 is a heater for heating the gas sensor;
3.4 is a pair of platinum electrodes for measuring the electrical resistance of a gas-sensitive material consisting of platinum 10 and tin oxide fine particles 1I15, 6.7 is the lead wire of heater 2, and 8.9 is the platinum electrode 3.4. This is the lead wire.

以下、本発明を酸化すず微粒子膜の生成、白金の添加お
よびガスセンサの組立に区分してそれぞれ詳細に説明す
る。
Hereinafter, the present invention will be explained in detail by dividing into the generation of a tin oxide fine particle film, the addition of platinum, and the assembly of a gas sensor.

ヒすず′ −の生 酸化すず微粒子膜5は第4図示のような酸化すず微粒子
膜生成装置を用いて、アルミナ基板1上に形成される。
A raw tin oxide fine particle film 5 of histin'- is formed on the alumina substrate 1 using a tin oxide fine particle film producing apparatus as shown in FIG.

第4図において、11はすずの蒸発源であって、抵抗加
熱型のタングステン製ボートからなり、この中にはすす
が入っている。12はモリブデン製アーク放電電極、1
3はタングステン製熱電子放射フィラメントであつて、
数十アンペアの交流電流を通して加熱することにより熱
電子が発生する。
In FIG. 4, reference numeral 11 is a tin evaporation source, which is a resistance-heated tungsten boat, and contains soot. 12 is a molybdenum arc discharge electrode, 1
3 is a thermionic emission filament made of tungsten,
Thermionic electrons are generated by heating through an alternating current of several tens of amperes.

蒸発源11、アーク放電電極12)熱電子放射フィラメ
ント13への電力供給は図示しないが、ベースプレート
15に設けられた電流導入ボートからそれぞれ行われる
Although not shown, electric power is supplied to the evaporation source 11, arc discharge electrode 12) and thermionic emission filament 13 from a current introduction boat provided on the base plate 15, respectively.

基板ホルダー14はアーク放電電極12と熱電子放射フ
ィラメント13の上方に配置され、この基板ホルダ14
には、表面に一対の白金電極と裏面にヒーターがそれぞ
れ焼付けられたアルミナ基板が表面にステンレス製のマ
スクを密着させ、かつ表面がすすの蒸発源11に向かう
ように設置される。この基板ホルダー14はさらに、ス
テンレス製真空槽16に設置されたモーター17により
回転自在である。
A substrate holder 14 is arranged above the arc discharge electrode 12 and the thermionic emission filament 13.
, an alumina substrate with a pair of platinum electrodes baked on the front surface and a heater baked on the back surface is installed with a stainless steel mask tightly attached to the front surface and with the surface facing the soot evaporation source 11. This substrate holder 14 is further rotatable by a motor 17 installed in a vacuum chamber 16 made of stainless steel.

18は真空槽16に接続した真空ポンプ、19は真空計
、20は真空ポンプ18と真空計19の間に挿入された
絞りパルプ、21は真空槽16に接続された流量計付バ
ルブである。
18 is a vacuum pump connected to the vacuum chamber 16, 19 is a vacuum gauge, 20 is a squeeze pulp inserted between the vacuum pump 18 and the vacuum gauge 19, and 21 is a valve with a flow meter connected to the vacuum chamber 16.

本発明にかかる酸化すず微粒子膜は第4図示の装置を用
いて以下のようにしてアルミナ基板上に形成される。
The tin oxide fine particle film according to the present invention is formed on an alumina substrate in the following manner using the apparatus shown in FIG.

まず、真空槽16は真空ポンプ18でl X 10− 
’Torr以下の高真空まで排気された後、この槽16
中に流量計付パルプ21を開けて酸素を4入し、所定圧
力値に保持される。次いで、すすの蒸発源11に電流を
流して加熱し、すすを蒸発させなから熱電子放射フィラ
メント13から熱電子を放射させ、アーク放電電極12
と蒸発tA11との間にアーク放電を発生させると、ア
ーク放電中でf発すずと酸素とが反応し、生成した酸化
すず微粒子は上方に配置されたアルミナ基板1には付着
して酸化すず微粒子膜が形成される。
First, the vacuum chamber 16 is powered by a vacuum pump 18.
'After being evacuated to a high vacuum of less than Torr, this tank 16
The pulp 21 with a flow meter is opened and 4 pieces of oxygen are introduced into the pulp, and the pressure is maintained at a predetermined pressure value. Next, a current is passed through the soot evaporation source 11 to heat it, and while the soot is not evaporated, thermionic electrons are emitted from the thermionic emission filament 13, and the arc discharge electrode 12 is heated.
When an arc discharge is generated between the evaporation tA11 and the evaporation tA11, the emitted tin and oxygen react with each other in the arc discharge, and the generated tin oxide fine particles adhere to the alumina substrate 1 disposed above, forming tin oxide fine particles. A film is formed.

亘倉■垂■ 酸化すず微粒子が形成されたアルミナ基板を塩化白金(
rl/)酸溶液中に浸漬した後、とり出して乾燥し、次
いで電気炉中で熱処理して酸化すず微粒子膜に白金を添
加する。
Tadori Watakura The alumina substrate on which tin oxide fine particles have been formed is treated with platinum chloride
rl/) After being immersed in an acid solution, it is taken out and dried, and then heat treated in an electric furnace to add platinum to the tin oxide fine particle film.

ガスセンサの組立 白金10の添加された酸化すず微粒子膜5を付着したア
ルミナ基板1に第5図示のようにヒーター用リード線6
および7、電極用リード線8および9をボンディングし
、さらにベース31に立てられたステム32および33
にヒーター用リード線6および7を、ステム34および
35に電極用リード線8および9をそれぞれ接続する。
Assembling the gas sensor As shown in Figure 5, heater lead wires 6 are attached to an alumina substrate 1 on which a tin oxide fine particle film 5 to which platinum 10 is added is attached.
and 7, bonding the electrode lead wires 8 and 9, and further stems 32 and 33 erected on the base 31.
The heater lead wires 6 and 7 are connected to the stems 34 and 35, and the electrode lead wires 8 and 9 are connected to the stems 34 and 35, respectively.

なお、図示しないかベース31にステンレス製金網をか
ぶせてガスセンサが組立てられる。
Note that the gas sensor is assembled by covering the base 31 with a stainless wire mesh (not shown).

上述の酸化すず微粒子fil 5は第4図の装置により
真空槽16内の酸素圧力を0.02Torr、すずの蒸
発速度を約0.04 g /分、アーク放電電流を約I
Aの条件で30分間酸化すず微粒子を生成し、アルミナ
基板に付着させることにより形成した。このときの酸化
すず微粒子の粒径は走査電子w4m鏡にらる観察では0
.1μm以下であり、膜厚は約1μmであった。X線回
折の結果、酸化すず微粒子膜の組成は二酸化すずと一酸
化すすが大部分であり、それに微量の金属すずが含まれ
ていた。
The above-mentioned tin oxide fine particles fil 5 were prepared using the apparatus shown in FIG. 4 at an oxygen pressure of 0.02 Torr in the vacuum chamber 16, a tin evaporation rate of about 0.04 g/min, and an arc discharge current of about I.
It was formed by generating tin oxide fine particles for 30 minutes under the conditions of A and adhering them to an alumina substrate. At this time, the particle size of the tin oxide fine particles was 0 when observed using a scanning electron W4M mirror.
.. It was 1 μm or less, and the film thickness was about 1 μm. As a result of X-ray diffraction, the composition of the tin oxide fine particle film was found to be mostly tin dioxide and soot monoxide, with a trace amount of metal tin included.

さらに上述の白金は酸化すず微粒子膜が形成されている
アルミナ基板を白金ン震度1重世%の塩化白金(IV)
酸水溶液に30分間浸漬した後、室温で乾燥し、さらに
600℃の温度の電気炉中で3時間熱処理することによ
り酸化すず微粒子膜に添加した。この熱処理によって酸
化すず微粒子の粒径は変わらなかったが、組成は全て二
酸化すずになっていることが認められた。
Furthermore, the above-mentioned platinum is made of platinum chloride (IV) with a seismic intensity of 1%.
After being immersed in an acid aqueous solution for 30 minutes, it was dried at room temperature and further heat-treated in an electric furnace at a temperature of 600° C. for 3 hours, and then added to the tin oxide fine particle film. This heat treatment did not change the particle size of the tin oxide fine particles, but it was confirmed that the composition was entirely tin dioxide.

第5図に示される構成のガスセンサに組立て、白金の付
着された酸化すず微粒子膜の感ガス特性を通常のガス注
入法により求めた。空気中での電気抵抗をRo、所定濃
度のイソブタンガス中での電気抵抗をRgとしてRo 
/ Rgをガス感度とした。第6図は本発明によるガス
センサと白金を添加しないガスセンサについてのイソブ
タンガス濃度とガス感度との関係を表したグラフであっ
て、曲線イは本発明のガスセンサの感ガス特性、曲線口
は白金を添加しないで酸化すず微粒子膜のみをガス感応
材料として構成したガスセンサの感ガス特性である。ガ
スセンサの温度は350℃である。
It was assembled into a gas sensor having the configuration shown in FIG. 5, and the gas sensitivity characteristics of the tin oxide fine particle film to which platinum was attached were determined by a conventional gas injection method. Ro is the electrical resistance in air, and Rg is the electrical resistance in isobutane gas at a given concentration.
/Rg was taken as gas sensitivity. FIG. 6 is a graph showing the relationship between isobutane gas concentration and gas sensitivity for the gas sensor according to the present invention and the gas sensor without platinum added. This is the gas-sensitive characteristic of a gas sensor configured only with a tin oxide fine particle film as a gas-sensitive material without any additives. The temperature of the gas sensor is 350°C.

第6図から、本発明による白金の添加された酸化すず微
粒子膜をガス感応材料としたガスセンサは白金を添加し
ない上述のガスセンサと比較すると、曲線イ、口に示さ
れるようにイソブタンガスに対して3倍以上の高い感度
を示すことがわかる。
From FIG. 6, it can be seen that the gas sensor using the platinum-doped tin oxide fine particle film according to the present invention as a gas-sensitive material has a high sensitivity to isobutane gas, as shown by curves A and B, when compared with the above-mentioned gas sensor that does not contain platinum. It can be seen that the sensitivity is three times or more higher.

同様な効果は塩化白金(IT)の塩酸酸性水溶液を用い
た場合にも認められた。
A similar effect was also observed when an acidic aqueous solution of platinum chloride (IT) in hydrochloric acid was used.

このように本発明において、イソブタンガスに高い感度
を示す理由は明らかでないが、白金がイソブタンガスの
酸化すず微粒子の表面吸着に太きく寄与するためと考え
られる。
The reason why the present invention exhibits high sensitivity to isobutane gas is not clear, but it is thought to be because platinum greatly contributes to the surface adsorption of tin oxide fine particles of isobutane gas.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明ガスセンサはアーク、放電法によ
り形成された酸化すず微粒子膜に白金、特に塩化白金(
IV)または塩化白金(IV)酸を出発原料とした白金
を付着させて感応材料としたから、イソブタンガスに高
い感度を示し、一般家庭用ブロバンガスの漏れ警報器に
最適なガスセンサである。
As described above, the gas sensor of the present invention has platinum, especially platinum chloride (
IV) or chloroplatinic (IV) acid as a starting material and made into a sensitive material by attaching platinum, it exhibits high sensitivity to isobutane gas, making it an ideal gas sensor for general household broban gas leak alarms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明にかかるガスセンサの一興体
例を表した図面であって、第1図は平面図、第2図は背
面図、第3図は第1図におけるA−A’線断面図であり
、第4図は本発明にかかる酸化すず微粒子膜を形成する
ための装置の断面図であり、第5図は本発明にかかるガ
スセンサの組立図であり、第6図はガスセンサのイソブ
タンガスに対する惑ガス特性である。 1・・・アルミナ基板、  3.4・・・白金電極、5
・・・酸化すず微粒子膜、  1o・・・白金、11・
・・すすの蒸発源、  12・・・アーク放電電極、1
3・・・熱電子放射フィラメント、 イ・・・本発明による感ガス特性曲線、口・・・酸化す
ず微粒子膜のみのガスセンサにょる感ガス特性曲線。
1 to 3 are drawings showing an example of an integrated gas sensor according to the present invention, in which FIG. 1 is a plan view, FIG. 2 is a rear view, and FIG. 3 is a line AA' in FIG. 1. 4 is a cross-sectional view of an apparatus for forming a tin oxide fine particle film according to the present invention, FIG. 5 is an assembled diagram of a gas sensor according to the present invention, and FIG. 6 is a cross-sectional view of a gas sensor according to the present invention. This is the gas characteristic of isobutane gas. 1... Alumina substrate, 3.4... Platinum electrode, 5
...Tin oxide fine particle film, 1o...Platinum, 11.
... Soot evaporation source, 12 ... Arc discharge electrode, 1
3... Thermionic emission filament, A... Gas sensitive characteristic curve according to the present invention, and... Gas sensitive characteristic curve based on a gas sensor having only a tin oxide fine particle film.

Claims (2)

【特許請求の範囲】[Claims] (1)アーク放電法により生成された酸化すず微粒子膜
に白金を添加してガス感応材料とすることを特徴とする
ガスセンサ。
(1) A gas sensor characterized by adding platinum to a tin oxide fine particle film produced by an arc discharge method to make a gas-sensitive material.
(2)特許請求の範囲第1項に記載のガスセンサにおい
て、前記白金の添加は前記酸化すず微粒子膜を塩化白金
(IV)または塩化白金(IV)酸と接触させ、加熱するこ
とにより行うことを特徴とするガスセンサ。
(2) In the gas sensor according to claim 1, the platinum is added by bringing the tin oxide fine particle film into contact with platinum (IV) chloride or platinum (IV) chloride acid and heating it. Characteristic gas sensor.
JP24838786A 1986-10-21 1986-10-21 Gas sensor Pending JPS63103959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24838786A JPS63103959A (en) 1986-10-21 1986-10-21 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24838786A JPS63103959A (en) 1986-10-21 1986-10-21 Gas sensor

Publications (1)

Publication Number Publication Date
JPS63103959A true JPS63103959A (en) 1988-05-09

Family

ID=17177348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24838786A Pending JPS63103959A (en) 1986-10-21 1986-10-21 Gas sensor

Country Status (1)

Country Link
JP (1) JPS63103959A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284747A (en) * 1988-05-10 1989-11-16 Ricoh Co Ltd Gas sensor
GB2255849A (en) * 1991-05-15 1992-11-18 Alan Smith Gas sensor alarm system
US6634210B1 (en) * 2002-04-17 2003-10-21 Delphi Technologies, Inc. Particulate sensor system
WO2006007802A1 (en) * 2004-07-20 2006-01-26 T.E.M.. Technologische Entwicklungen Und Management Gmbh Sensor for detecting airborne gases or fumes, which comprises a metal oxide, gas-sensitive active layer
CN106197871A (en) * 2016-06-28 2016-12-07 中国航天空气动力技术研究院 Water leakage measuring method during electro-arc heater water leakage fault

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950352A (en) * 1982-09-14 1984-03-23 Nippon Denso Co Ltd Detection element for nox
JPS5999244A (en) * 1982-11-30 1984-06-07 Toshiba Corp Detector for gaseous co
JPS60255973A (en) * 1984-04-12 1985-12-17 プラスコ・ドクトル・エーリツヒ・プラズマ―コーテイング・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for evaporating material in vacuum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950352A (en) * 1982-09-14 1984-03-23 Nippon Denso Co Ltd Detection element for nox
JPS5999244A (en) * 1982-11-30 1984-06-07 Toshiba Corp Detector for gaseous co
JPS60255973A (en) * 1984-04-12 1985-12-17 プラスコ・ドクトル・エーリツヒ・プラズマ―コーテイング・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method and device for evaporating material in vacuum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284747A (en) * 1988-05-10 1989-11-16 Ricoh Co Ltd Gas sensor
GB2255849A (en) * 1991-05-15 1992-11-18 Alan Smith Gas sensor alarm system
US6634210B1 (en) * 2002-04-17 2003-10-21 Delphi Technologies, Inc. Particulate sensor system
WO2006007802A1 (en) * 2004-07-20 2006-01-26 T.E.M.. Technologische Entwicklungen Und Management Gmbh Sensor for detecting airborne gases or fumes, which comprises a metal oxide, gas-sensitive active layer
CN106197871A (en) * 2016-06-28 2016-12-07 中国航天空气动力技术研究院 Water leakage measuring method during electro-arc heater water leakage fault

Similar Documents

Publication Publication Date Title
KR920008993A (en) Manufacturing method of solid oxide electrochemical cell
JP2009534175A (en) Oxygen reduction catalyst layer
US4238311A (en) Cathode for use in electrolysis and method for the production thereof
US3468781A (en) Electrochemical cell with hydrogen permeable barrier
US2183302A (en) Method for producing coatings of high ohmic resistance in the interior of vacuum tubes
JPS63103959A (en) Gas sensor
US2448518A (en) Photocell
US3390969A (en) Noble metal coated ceramic substrate for glass seals and electronic connector elements
JPH09262473A (en) Iron oxide photocatalyst and production of hydrogen using the same
Kapran et al. Characteristics of a pulsed hollow cathode discharge operated in an Ar+ O2 gas mixture and deposition of copper nickel oxide thin films
US1376604A (en) Process of producing photo-electric cells
JP2741745B2 (en) Semiconductor electrode forming method and apparatus
Tomlinson Electrolytic stibine formation
US395963A (en) Incandescent-lamp filament
US3703456A (en) Method of making resistor thin films by reactive sputtering from a composite source
JPS588743B2 (en) Gas/humidity sensor
US1123625A (en) Glower for electrical incandescent lamps.
JP6498710B2 (en) Method for producing oxidation-chromogenic electrochromic thin film
JPS63238456A (en) Gas sensor
US1966220A (en) Method of producing a photo-electric tube
JPS5848664A (en) Coating method and coated matter
JPS63275942A (en) Gas sensor
JPS6030894B2 (en) Manufacturing method of gas/humidity sensor
US1966219A (en) Photo-electric tube
RU1836487C (en) Method of metal hydride film applying in vacuum, application of metal hydride film, produced by the method of item 1, and application of substratum with metal hydride film, produced by the method of item 1