JPS63103894A - Growing of gallium nitride crystal - Google Patents

Growing of gallium nitride crystal

Info

Publication number
JPS63103894A
JPS63103894A JP24849286A JP24849286A JPS63103894A JP S63103894 A JPS63103894 A JP S63103894A JP 24849286 A JP24849286 A JP 24849286A JP 24849286 A JP24849286 A JP 24849286A JP S63103894 A JPS63103894 A JP S63103894A
Authority
JP
Japan
Prior art keywords
raw material
gallium
teg
low
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24849286A
Other languages
Japanese (ja)
Inventor
Shinji Fujieda
信次 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24849286A priority Critical patent/JPS63103894A/en
Publication of JPS63103894A publication Critical patent/JPS63103894A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to grow a gallium nitride crystal in a low ratio of V/III at low temperature, by using hydrazine as a nitrogen raw material and triethyl gallium as a gallium raw material. CONSTITUTION:N2H2 is used instead of conventional NH2 as a N2 raw material and triethyl gallium (TEG) having a low decomposition temperature is used instead of trimethyl gallium (TMG) as a Ga raw material. For example, a pre-treated substrate 7 is put on a carbon susceptor 1 so as to grow GaN on the (111)B face of the GaAs substrate 7 using a vertical type reduced pressure MOCVD apparatus. TEG 2 and N2H4 are both kept at about 20 deg.C to keep saturated steam pressure constant, bubbled with H2 and fed using H2 as a carrier gas into a reaction tube 4. TEG and N2H4 are fed in each about 0.2 and 2.0cc/min flow rate, about 8l/min total flow rates, about 100Torr pressure and about 15cm/sec average flow velocities.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は窒化ガリウム結晶の成長方法、更に詳しくは成
長の低温化に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for growing gallium nitride crystals, and more particularly to lowering the growth temperature.

[従来の技術] 従来、窒化ガリウム(GaN)結晶を有機金属気相成長
法(MOCVD法)で作成する場合、窒素原料にはアン
モニア(NH3)、ガリウム原料にはトリメチルガリウ
ム(Ga (CH3)3.以下TMGと略す)が主に用
いられて来た。しかし、NH3は低温での分解効率が低
く窒素の供給効率が悪いので、NH3に代え、分解効率
の高いヒドラジン(N2 H4)を用いてGaNの成長
を低温化する試み−がなされている(アプライド・フィ
ツクス・レターズ48.1449−1451 (198
6))。
[Prior Art] Conventionally, when creating gallium nitride (GaN) crystals by metal organic chemical vapor deposition (MOCVD), ammonia (NH3) is used as a nitrogen raw material, and trimethylgallium (Ga (CH3)3) is used as a gallium raw material. (hereinafter abbreviated as TMG) has been mainly used. However, since NH3 has low decomposition efficiency at low temperatures and poor nitrogen supply efficiency, attempts have been made to replace NH3 with hydrazine (N2H4), which has high decomposition efficiency, to lower the temperature for GaN growth (Applied).・Fix Letters 48.1449-1451 (198
6)).

[発明が解決しようとする問題点] しかし、N2 H4を用いることにより低V族元素/■
族元素(V’/III)化生、すなわち、窒素原料の供
給を少なくすることは可能であるが、低温化の面での効
果は以下に述べるように小さい。すなわち、TMG−N
H3、TMG−N2 H4系原料でのGaNの成長速度
の温度依存性はそれぞれ第2図の(a)および(b)で
示され、はぼ同じと見なすことができる。これはGaN
の成長にとっては、窒素原料の分解以上にQa原料有機
金属(この場合TMG)の分解が重要であることを示し
ていると考えられる。
[Problems to be solved by the invention] However, by using N2 H4, low group V elements/■
Although it is possible to perform group element (V'/III) metamorphosis, that is, to reduce the supply of nitrogen raw material, the effect in terms of lowering the temperature is small as described below. That is, TMG-N
The temperature dependence of the growth rate of GaN in H3, TMG-N2, and H4-based raw materials is shown in FIG. 2 (a) and (b), respectively, and can be considered to be almost the same. This is GaN
This seems to indicate that the decomposition of the organic metal Qa raw material (TMG in this case) is more important than the decomposition of the nitrogen raw material for the growth of Qa.

なお第2図において、TMG流量は0.2cc/min
、NH3流量は300cc/min 、 N2 H4流
量は2cc/min 、仝流量は3.Q/min、圧力
は100丁orr 、平均流速は15cm/minとし
た。
In Fig. 2, the TMG flow rate is 0.2cc/min.
, the NH3 flow rate is 300cc/min, the N2 H4 flow rate is 2cc/min, and the flow rate is 3. Q/min, the pressure was 100 orr, and the average flow rate was 15 cm/min.

本発明の目的は、上記の系を原料として用いた場合には
不可能であった低VZIII比で、かつ低温下でのGa
N結晶の成長方法を12供することにある。
The purpose of the present invention is to produce Ga at a low VZIII ratio and at low temperatures, which was not possible when the above system was used as a raw material.
The object of the present invention is to provide 12 methods for growing N crystals.

[問題点を解決するための手段] 本発明は、窒素原料としてヒドラジンを、ガリウム原料
としてトリエチルカリウム(Ga(C2H5)3 、以
下TEGとIIH”)を用いることを特徴とする窒化ガ
リウム結晶の成長方法である。
[Means for Solving the Problems] The present invention provides a method for growing gallium nitride crystals, characterized in that hydrazine is used as a nitrogen raw material and triethylpotassium (Ga(C2H5)3, hereinafter referred to as "TEG" and "IIH") is used as a gallium raw material. It's a method.

[作 用] 従来のNH3に代えN2 H4を用い、かつ、T M 
Gに代え分VI一温度の低いTEGを用いることにより
、低V/nl比、かつ低温でのGaN結晶成長が可能に
なる。
[Function] Using N2 H4 instead of conventional NH3, and T M
By using TEG, which has a low VI temperature, in place of G, it becomes possible to grow GaN crystals at a low V/nl ratio and at low temperatures.

[実施例] 次に本発明を実施例によって説明する。[Example] Next, the present invention will be explained by examples.

本実施例では、(111)B面ヒ化ガリウム(GaAs
)基板上に縦型減圧MOCVD装置てGaNを成長させ
た。第1図はその装置の概略図を示したものでおる。有
機洗浄および化学的エツチングを行なったGaAs基板
7を第1図のカーボンサセプタ1上に載せる。T E 
G 2およびN2 H43はともに20℃に保温して飽
和蒸気圧を一定に保持し、ト]2でバブルし、H2をキ
ャリアガスとして反応管4内に供給した。TEG流量0
.2cc/mi眠N2 H4流量は2.0CC/min
とし、全流量8.IL’min、圧力100Torr 
、平均流速15cm/secとした。なお、反応管から
排出されるガスは図示しないロータリーポンプから排カ
ス処理装置へ送られろ。また図中6は高周波発振器、F
1〜16は流量調節器、■1〜v7はバルブ、Rは減圧
弁、NVIおよびNV2は調圧弁を示す。成長に先立ち
、アルシン(ASH3)ボンベ5よりASH3を流しな
がら650℃で10分間アニールしてGaAS表面酸化
膜を除去し、続けて300 ’Cから900 ’Cの間
の幾つかの温度で成長を行なった。成長速度は、■リプ
ツメトリから求めたGaN膜厚と成長時間の比から求め
た。
In this example, (111) B-plane gallium arsenide (GaAs
) GaN was grown on the substrate using a vertical low pressure MOCVD apparatus. FIG. 1 shows a schematic diagram of the device. A GaAs substrate 7 that has been subjected to organic cleaning and chemical etching is placed on the carbon susceptor 1 shown in FIG. T E
Both G 2 and N 2 H43 were kept at 20° C. to maintain a constant saturated vapor pressure, bubbled with H 2 , and supplied into the reaction tube 4 with H 2 as a carrier gas. TEG flow rate 0
.. 2cc/mi N2 H4 flow rate is 2.0CC/min
and the total flow rate is 8. IL'min, pressure 100Torr
, and an average flow rate of 15 cm/sec. Incidentally, the gas discharged from the reaction tube is sent to the waste treatment device from a rotary pump (not shown). Also, 6 in the figure is a high frequency oscillator, F
1 to 16 are flow rate regulators, 1 to v7 are valves, R is a pressure reducing valve, and NVI and NV2 are pressure regulating valves. Prior to growth, the GaAS surface oxide film was removed by annealing at 650°C for 10 minutes while flowing ASH3 from an arsine (ASH3) cylinder 5, and then growth was performed at several temperatures between 300'C and 900'C. I did it. The growth rate was determined from the ratio of the GaN film thickness determined from lipometry and the growth time.

第3図にTEG−N2 H4系原料を用いた場合のGa
N成長速度の温度依存性を示す。比較のため第2図に示
した丁MG−N2H4系の場合を加えた。図中(a)は
TEG−N2 H4系の場合を、(b)はTMG−N2
H4系の場合を示す。同図より、明らかに100 ’C
程度成長が低温化されている。また本実施例のV1m比
は10であり、従来のNH3を用いた成長でのV1m比
(1000以上)に対し2桁低下しても十分に成長する
ことがわかる。
Figure 3 shows Ga when using TEG-N2 H4-based raw material.
The temperature dependence of N growth rate is shown. For comparison, the case of the MG-N2H4 system shown in FIG. 2 was added. In the figure, (a) shows the case of TEG-N2 H4 system, and (b) shows the case of TMG-N2.
The case of H4 system is shown. From the same figure, it is clear that 100'C
The degree of growth is lowered. Further, the V1m ratio of this example is 10, which indicates that sufficient growth can be achieved even if the V1m ratio is lowered by two digits compared to the conventional growth using NH3 (1000 or more).

[発明の効果] 本発明によればGaN成長において低V1m比化および
低温化が実現可能であり、表面弁vf4温度の低い■−
■化合物半導体上にも損傷を与えずに成長を行なうこと
ができる。
[Effects of the Invention] According to the present invention, it is possible to achieve a lower V1m ratio and lower temperature in GaN growth, and the surface valve vf4 temperature is lower.
(2) Growth can be performed on compound semiconductors without causing damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成長方法を説明するための一実施例に
用いた装置の概念図、第2図は従来のTMG−NH3系
およびTMG−N2H4系を用いた場合の成長速度の温
度依存性を表す図、第3図は本発明によるTEG−N2
 H4系のGaN成長速度の温度依存性を表す図でおる
。 1・・・カーボンサセプタ 2・・・TEG3・・・N
21」4    4・・・反応管5・・・ASH3ボン
ベ  6・・・高周波発振器7・・・GaAs基板  
 F1〜F6・・・流量調節器V1〜v7・・・バルブ
    R・・・減圧弁NVI 、 NV2 ・l[E
弁 代理人弁理士  舘  野  千恵子 退歿T(’C) 第2図
Figure 1 is a conceptual diagram of an apparatus used in an example for explaining the growth method of the present invention, and Figure 2 is a diagram showing the temperature dependence of growth rate when using the conventional TMG-NH3 system and TMG-N2H4 system. Figure 3 is a diagram showing the characteristics of TEG-N2 according to the present invention.
This is a diagram showing the temperature dependence of H4-based GaN growth rate. 1...Carbon susceptor 2...TEG3...N
21" 4 4... Reaction tube 5... ASH3 cylinder 6... High frequency oscillator 7... GaAs substrate
F1-F6...Flow rate regulator V1-v7...Valve R...Pressure reducing valve NVI, NV2 ・l[E
Patent Attorney Chieko Tateno Retires T('C) Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)窒素原料としてヒドラジンを、ガリウム原料とし
てトリエチルガリウムを用いることを特徴とする窒化ガ
リウム結晶の成長方法。
(1) A method for growing gallium nitride crystals, characterized in that hydrazine is used as a nitrogen raw material and triethylgallium is used as a gallium raw material.
JP24849286A 1986-10-21 1986-10-21 Growing of gallium nitride crystal Pending JPS63103894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24849286A JPS63103894A (en) 1986-10-21 1986-10-21 Growing of gallium nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24849286A JPS63103894A (en) 1986-10-21 1986-10-21 Growing of gallium nitride crystal

Publications (1)

Publication Number Publication Date
JPS63103894A true JPS63103894A (en) 1988-05-09

Family

ID=17178969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24849286A Pending JPS63103894A (en) 1986-10-21 1986-10-21 Growing of gallium nitride crystal

Country Status (1)

Country Link
JP (1) JPS63103894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319389B1 (en) * 1999-06-15 2002-01-09 김충섭 Organogallium compound, process for the preparation thereof and preparation of gallium nitride film using same
EP2086003A2 (en) 2008-02-01 2009-08-05 Sumitomo Electric Industries, Ltd. Method of growing group III-V compound semiconductor, and method of manufacturing light-emitting device and electronic device
CN102560633A (en) * 2007-10-05 2012-07-11 应用材料公司 Method for depositing group III/V compounds
US8236103B2 (en) 2002-02-15 2012-08-07 Showa Denko K.K. Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623957A (en) * 1979-08-01 1981-03-06 Stork Amsterdam Transporting apparatus for heat treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623957A (en) * 1979-08-01 1981-03-06 Stork Amsterdam Transporting apparatus for heat treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319389B1 (en) * 1999-06-15 2002-01-09 김충섭 Organogallium compound, process for the preparation thereof and preparation of gallium nitride film using same
US8236103B2 (en) 2002-02-15 2012-08-07 Showa Denko K.K. Group III nitride semiconductor crystal, production method thereof and group III nitride semiconductor epitaxial wafer
CN102560633A (en) * 2007-10-05 2012-07-11 应用材料公司 Method for depositing group III/V compounds
CN102560633B (en) * 2007-10-05 2015-11-25 应用材料公司 For the method for depositing group III/V compounds
EP2086003A2 (en) 2008-02-01 2009-08-05 Sumitomo Electric Industries, Ltd. Method of growing group III-V compound semiconductor, and method of manufacturing light-emitting device and electronic device

Similar Documents

Publication Publication Date Title
US6110809A (en) Method for manufacturing an epitaxial wafer with a group III metal nitride epitaxial layer
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
JPH06196757A (en) Method of growing indium gallium nitride semiconductor
US5650198A (en) Defect reduction in the growth of group III nitrides
JPH07235692A (en) Compound semiconductor device and forming method thereof
JPH1126383A (en) Crystal growth method of nitride semiconductor
US20030038302A1 (en) Nitride semiconductor growing process
JPS63103894A (en) Growing of gallium nitride crystal
JPH08316151A (en) Manufacture of semiconductor
JPH1012555A (en) Method of manufacturing nitride compd. semiconductor crystal
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JPH06209122A (en) Indium gallium nitride semiconductor and growing method thereof
JPH088185A (en) Multilayer structure and growth method of gan-based compound semiconductor thin film
JPH08264455A (en) Semiconductor device and manufacture thereof
JPH0380198A (en) Method for growing single crystal film of nitrogen compound semiconductor
KR100525725B1 (en) Method for forming low-defect GaN film
JP3984365B2 (en) Compound semiconductor manufacturing method and semiconductor light emitting device
JPH06216409A (en) Growth method of single-crystal semiconductor nitride
JP2965653B2 (en) Organic metal growth method
JPH08208385A (en) Method for growing gallium nitride semiconductor crystal
JPS60207332A (en) Growth of gallium nitride
JP3575618B2 (en) Crystal growth method of gallium nitride based compound semiconductor film
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JP3104677B2 (en) Group III nitride crystal growth equipment
KR950032727A (en) Method for manufacturing gallium nitride single crystal thin film and apparatus therefor