JPS63102348A - Waveform transmission device - Google Patents

Waveform transmission device

Info

Publication number
JPS63102348A
JPS63102348A JP24872086A JP24872086A JPS63102348A JP S63102348 A JPS63102348 A JP S63102348A JP 24872086 A JP24872086 A JP 24872086A JP 24872086 A JP24872086 A JP 24872086A JP S63102348 A JPS63102348 A JP S63102348A
Authority
JP
Japan
Prior art keywords
electrode
region
soliton
transmission device
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24872086A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24872086A priority Critical patent/JPS63102348A/en
Publication of JPS63102348A publication Critical patent/JPS63102348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To produce a waveform transmission device suitable for use with a signal transmission line in a semiconductor integrated circuit without using an inductor or non-linear capacitor by a method wherein a soliton exciter is provided at one end of a semiconductor region and a soliton detector is provided at the other end of the semiconductor. CONSTITUTION:On an insulating layer 104 provided on an n-region 102, a soliton exciting electrode (SE electrode) 105, soliton transmission control electrode (STC electrode) 106, and a soliton detecting electrode (SD electrode) 107 are built. The n-region 102 is completely depleted through contact with a p-substrate 101. A process follows wherein a positive DC bias voltage is applied to the STC electrode 106, which deepens the potential of the depletion region of the n-region 102. Then, a positive voltage is applied to the SG electrode 108, which causes electrons to travel from an n<+>-region 103 into the n-region 102. A process follows wherein the SG electrode 108 is freed of the positive voltage for the electrons to be entrapped in the n-region 102. Under the conditions, pulses are applied to the SE electrode 105, which results in the excitation of a solitary wave (soliton wave) in the electrons in the n-region 102 in the vicinity of the SE electrode 105. The soliton wave is transmitted to the opposite side with the passage of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体中に閉じこめた電子を利用して5ol
iton (ソリトン(孤立波ン)の励起、伝送。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention utilizes electrons confined in semiconductors to
iton (excitation and transmission of solitons).

検出を行なう波形伝送装置に関する。The present invention relates to a waveform transmission device that performs detection.

従来の技術 従来の波形伝送装置としては、非線形LC回路がある(
例えば文献、「ジェイ フィジックスニスオーシイ−ジ
ェイピーエヌJ(R0Hirota& K、5uzuk
i、 J 、Phys 、Soc 、Jpn、vol、
 28 。
BACKGROUND OF THE INVENTION Conventional waveform transmission devices include nonlinear LC circuits (
For example, in the literature, “J Physics
i, J, Phys, Soc, Jpn, vol.
28.

pp、1366〜1367.1970)。pp. 1366-1367.1970).

第4図は、この非線形LC回路を示すもので、インダク
タLの両端の電圧(Z)nなど)とそこを流れる電流(
inなど)の関係は、 又、非線形キャパシタを流れる電流は、それにたまる電
荷qnの時間変化を用いて (1)式でnをn−1と変換し、(1)式をそれから引
くと、 従って(2) 、 (3)式から、次の回路方程式を得
る。
Figure 4 shows this nonlinear LC circuit, where the voltage (Z)n, etc. across the inductor L and the current flowing therethrough (
In, etc.) The relationship between the current flowing through a nonlinear capacitor is as follows: Using the time change of the charge qn accumulated in the nonlinear capacitor, convert n to n-1 in equation (1), and subtract equation (1) from it. Therefore, From equations (2) and (3), the following circuit equation is obtained.

一方、可変容量ダイオードなどの非線形キャパシタC(
V)は、 で近似できる。(但し、vo:非線形キャパシタに印加
する直流バイアス電圧Q(To)、F(vo)は、バイ
アス電圧によって決まシそれぞれ電荷と電圧の次元を有
する。特にF(To)は特性電圧と呼ばれる。)(5)
式を用いると電荷qnは、vn==vo+vn(但しv
n:信号電圧ンの時 ・・・・・・・・・(6) (6)式を(4)式に代入して ・・・・・・・・・(7) これは、理論的にソリトン(孤立波)が示された指数格
子(戸田格子ともいう)の運動方程式(例えば文献 「
ジェイ フィジックス ニスオーシー    ジェイピ
ーエヌJ  (M、Toda。
On the other hand, a nonlinear capacitor C (such as a variable capacitance diode)
V) can be approximated by (However, vo: The DC bias voltages Q(To) and F(vo) applied to the nonlinear capacitor are determined by the bias voltage and have dimensions of charge and voltage, respectively. In particular, F(To) is called a characteristic voltage.) (5)
Using the formula, the charge qn is vn==vo+vn (where v
n: When the signal voltage is n... (6) Substituting equation (6) into equation (4)... (7) This theoretically The equation of motion of an exponential lattice (also called Toda lattice) in which a soliton (solitary wave) is shown (for example, the literature ``
J Physics Niss JP N J (M, Toda.

J、Phys、Soc、Jpn、vol、22 、I)
、431〜.1967 )と同じ形をしている。
J, Phys, Soc, Jpn, vol, 22, I)
, 431~. 1967).

2つの系の対応関係は次の通シである。The correspondence between the two systems is as follows.

く力学系〉      く電気系〉 バネの力 fn←−→電圧 vn 質量   m ÷−−÷インダクタンスLバネ定数 a
÷−一→特性電圧 バネ定数 b ←−−→電荷の逆数 以上の対応によって、(8)式のソリトン解を書き改め
ると、非線形LO回路のソリトン解が得られる。
Mechanical system〉 Electrical system〉 Spring force fn←−→voltage vn Mass m ÷−−÷Inductance L Spring constant a
÷-1→Characteristic voltage spring constant b ←--→If the soliton solution of equation (8) is rewritten using the correspondence greater than or equal to the reciprocal of charge, the soliton solution of the nonlinear LO circuit can be obtained.

例えば1ソリトン解は、次式で表わされる。For example, a one-soliton solution is expressed by the following equation.

V’n=F(VD)sinh2k sech2(kn−
wt)  −・−・−・(9)但し W2=inh2k
  ・・・−・・−・(10)LC(To) ム:ソリトンの振幅 以上の様に、非線形LC回路のソリトンは、指数格子と
の対応で見出された。 。
V'n=F(VD) sinh2k sech2(kn-
wt) −・−・−・(9) However, W2=inh2k
(10) LC(To) Mu: As described above, solitons in nonlinear LC circuits have been found to correspond to exponential lattice. .

発明が解決しようとする問題点 しかしながら、上記の様な構成では、インダクタL、非
線形キャバンタCMを用いているため、信号伝送手段が
多用される半導体集積回路(例えば半導体メモリ、撮像
素子など)の信号伝送線に応用するのに適さない。
Problems to be Solved by the Invention However, in the above configuration, since the inductor L and the nonlinear cavantor CM are used, the signal transmission means of the semiconductor integrated circuit (for example, semiconductor memory, image sensor, etc.) that is often used is Not suitable for transmission line applications.

本発明は、こうした点を省察し、インダクタ。The present invention takes these points into consideration and provides an inductor.

非線形キャパシタを用いない、半導体集積回路の信号伝
送線に適した波形伝送装置を提供することを目的とする
It is an object of the present invention to provide a waveform transmission device that does not use a nonlinear capacitor and is suitable for a signal transmission line of a semiconductor integrated circuit.

問題点を解決するための手段 本発明は、一方向に長い、しかも空乏化した半導体領域
中に閉じこめられた電荷に電場を印加してソリトン伝送
媒体とし、半導体領域の一端にソリトン励起部、他端に
ソリトン検出部を備えた構成となっている。
Means for Solving the Problems The present invention applies an electric field to charges confined in a depleted semiconductor region that is long in one direction to create a soliton transmission medium, and a soliton excitation part and other parts are formed at one end of the semiconductor region. The structure includes a soliton detection section at the end.

本発明の原理は、従来例が、格子とLC回路を対応させ
たのに対して、水と電荷を対応させるものである。
The principle of the present invention is to make water correspond to electric charge, whereas in the conventional example, the grid corresponds to the LC circuit.

格子も水も共にソリトンを発生するが、格子の振動にお
ける復元力は定位置からのズレで、水の振動における復
元力は重力であるという違いを有する。
Both the lattice and water generate solitons, but the difference is that the restoring force in the lattice's vibration is due to deviation from its fixed position, and the restoring force in the water's vibration is due to gravity.

水と電荷(例えば自由電子)を対応させるには、重力に
対応する復元力を見出す必要があるが、本発明では、電
場を復元力として用いる。
In order to associate water with charges (for example, free electrons), it is necessary to find a restoring force corresponding to gravity, but in the present invention, an electric field is used as the restoring force.

なお、(8)式の指数格子の運動方程式は、格子を連続
体近似することによシ (但し fn=に2f(1)) というコルテヴ工−グ・ドフリース方程式(以下に−d
V 方程式と略記)になる。このに−dV方程式は、浅
い水の波を記述する方程式として最初に導かれたもので
あシ、電荷の波にも適用される。
The equation of motion of the exponential lattice in equation (8) is obtained by approximating the lattice as a continuum (however, fn = 2f(1)), which is the Cortev-Gu de Vries equation (hereinafter -d
V (abbreviated as equation). This -dV equation was first derived as an equation to describe shallow water waves, and is also applied to charge waves.

(12)式に変数変換を施すと、次のに−dV方程式の
標準形を得る。
By performing variable transformation on equation (12), we obtain the following standard form of the -dV equation.

(但し、ηは電荷の波と波のない表面との差を表わす。(However, η represents the difference between the charge wave and the waveless surface.

) (13)式の孤立波群は次式になる。) The solitary wave group of equation (13) becomes the following equation.

作用 本発明は前記した構成により、ソリトン励起部が、静電
誘導により、空乏状態の半導体領域に閉じこめられた電
荷(例えば自由電子)にソリトン(孤立波)を励起し、
電荷中を伝送し、ソリトン検出部で再度、静電誘導でソ
リトンを検出することによシ、熱雑音で半導体領域に閉
じこめられた電荷が揺らいでいても微少信号をソリトン
波という形で劣化なく確実に伝送することができる。こ
れは、非線形系ではボルツマン分布側が不適用ゆえ雑音
の影響が避けられる典型的な例である。
Effect of the present invention With the above-described configuration, the soliton excitation unit excites solitons (solitary waves) in the charges (for example, free electrons) confined in the semiconductor region in a depleted state by electrostatic induction,
By transmitting the solitons in the electric charge and detecting the solitons again by electrostatic induction in the soliton detection section, even if the electric charge confined in the semiconductor region fluctuates due to thermal noise, the minute signal is converted into a soliton wave without deterioration. It can be transmitted reliably. This is a typical example in which the Boltzmann distribution side is not applied in a nonlinear system, so the influence of noise can be avoided.

実施例 第1図は、本発明の第1の実施例における波形伝送装置
を示すもので、同図aは平面図、同図すは同図aのB 
−B’断面図、同図Cは、同図aを一部修正した平面図
を表わす。
Embodiment FIG. 1 shows a waveform transmission device according to a first embodiment of the present invention.
-B' sectional view, and C in the same figure represents a partially modified plan view of A in the same figure.

第1図において、p基板101に、一方向に細長い低不
純物濃度(濃度1i : 10”−710” ff1−
3)のn領域1o2.高不純物濃度(H=1o’ 8〜
102 GcIll−3)のn+領域103を形成する
。n領域102上の絶縁層104の上にソリトン励起電
極(以下、SK電極と呼ぶ)105.ソリトン伝送制御
電極(以下STC電極と呼ぶ)106.検出電極(以下
SD電極と呼ぶ)107を形成する。更にn領域102
とn+領域103との間の絶縁層104上にはスイッチ
ゲート電極(以下SG電極と呼ぶ)108を形成する。
In FIG. 1, a p-substrate 101 has a low impurity concentration (concentration 1i: 10"-710" ff1-) elongated in one direction.
3) n area 1o2. High impurity concentration (H=1o' 8~
102 GcIll-3) n+ region 103 is formed. A soliton excitation electrode (hereinafter referred to as SK electrode) 105 is placed on the insulating layer 104 on the n region 102. Soliton transmission control electrode (hereinafter referred to as STC electrode) 106. A detection electrode (hereinafter referred to as an SD electrode) 107 is formed. Furthermore, n area 102
A switch gate electrode (hereinafter referred to as an SG electrode) 108 is formed on the insulating layer 104 between the n+ region 103 and the n+ region 103 .

又、n+領域103の電位は、これと接触する金属電極
109によって外部電源から与えられる。
Further, the potential of the n+ region 103 is applied from an external power source through a metal electrode 109 in contact with the n+ region 103.

以上の様に構成された本実施例の波形伝送装置について
、以下その動作を説明する。
The operation of the waveform transmission device of this embodiment configured as described above will be described below.

n領域102はp基板101との接触によシ完全空乏化
する。(p基板1o1だけで不十分ならば、n領域10
2周辺にチャネルストップ用のp+領領域形成してもよ
い。) 次にSTC電極に正の直流バイアス電圧を印加すること
により、n領域102の空乏領域の電位は深くなる。こ
の時SG電極108に正電圧を印加してn+領域103
から電子をn領域102に注入する。その後、SG電極
108に印加した正電圧を取り除くと、電子はn領域1
02に閉じこめられる。この状態で、SE電極105に
第2図へのφsgに示されるパルスを印加すれば、SE
電極105近傍のn領域102内の電子に第2図すの様
な孤立波(ソリトン波)が励起され、時間と共に第2図
c、dの様に反対側に伝送されていく。
N region 102 is completely depleted by contact with p substrate 101. (If 1o1 p substrate is insufficient, 1o1 n region
A p+ region for channel stop may be formed around 2. ) Next, by applying a positive DC bias voltage to the STC electrode, the potential of the depletion region of the n region 102 becomes deeper. At this time, a positive voltage is applied to the SG electrode 108 to
Electrons are injected into the n-region 102 from then on. After that, when the positive voltage applied to the SG electrode 108 is removed, the electrons are transferred to the n region 1.
02 is trapped. In this state, if a pulse indicated by φsg in FIG. 2 is applied to the SE electrode 105, the SE
A solitary wave (soliton wave) as shown in FIG. 2 is excited in the electrons in the n region 102 near the electrode 105, and is transmitted to the opposite side as shown in FIG. 2 c and d over time.

この孤立波がn領域102の他端に到達するとSD電極
107には、第2図eのφSDが検出される。
When this solitary wave reaches the other end of the n-region 102, φSD as shown in FIG. 2e is detected at the SD electrode 107.

なお、第1図Cの様に、SIC電極105.SD電極1
07の近傍のn領域102の幅を小さくすれば、第2図
1.θのφsE 、φS、の振幅が大きくなる。
Note that, as shown in FIG. 1C, the SIC electrode 105. SD electrode 1
If the width of the n-region 102 near 07 is made smaller, the width of the n-region 102 in the vicinity of 1.07 in FIG. The amplitudes of φsE and φS of θ become large.

以上の様に、本実施例によれば、空乏状態の半導体領域
に電子を閉じこめてソリトンの伝送部とし、静電誘導を
用いて閉じこめられた電子にソリトン波の励起、検出を
行なうことで、波形の伝送が実現する。これは非線形効
果により、ソリトンの波形をほとんど劣化せずに、伝送
できるので、熱雑音で閉じこめられた電子が揺らいでい
てもその影響を受けない。従って微少信号の伝送に適し
ている。
As described above, according to this embodiment, electrons are confined in a semiconductor region in a depleted state and used as a soliton transmission section, and a soliton wave is excited and detected in the confined electrons using electrostatic induction. Waveform transmission is realized. This is because the soliton waveform can be transmitted with almost no deterioration due to nonlinear effects, so it is not affected by fluctuations in the trapped electrons due to thermal noise. Therefore, it is suitable for transmitting minute signals.

第3図は、本発明の第2の実施例に於ける波形伝送装置
を示すもので、同図aは平面図、同図すは同図aの8−
 B’断面図、同図Cは同図aのC−C′断面図を表わ
す。
FIG. 3 shows a waveform transmission device according to a second embodiment of the present invention, where a is a plan view and 8-8 in FIG.
B' is a cross-sectional view, and C is a cross-sectional view taken along line C-C' in figure a.

M3図が第1図と異なるのは、n領域301の平面図で
の形と、さらに、ソリトン励起部とソリトン検出部にp
+領域302とp+領域303 を一対設けて、夫々の
領域を、金属電極3o4.金属電極305と接触したこ
とであシ、逆バイアス状態で使用する点である。基本的
な動作は第1図と同様である。
Diagram M3 differs from FIG. 1 in the shape of the n-region 301 in plan view and in the p
A pair of + regions 302 and p+ regions 303 are provided, and each region is connected to a metal electrode 3o4. This is due to contact with the metal electrode 305, and is used in a reverse bias state. The basic operation is the same as that shown in FIG.

発明の効果 以上、説明した様に、本発明によれば、熱雑音の影響を
受けずに半導体中に閉じこめられた電荷のソリトン波を
励起、伝送、検出できるので、半導体集積回路の信号伝
送線として利用でき、その実用的効果は大きい。
Effects of the Invention As explained above, according to the present invention, soliton waves of charges confined in a semiconductor can be excited, transmitted, and detected without being affected by thermal noise, so that signal transmission lines of semiconductor integrated circuits can be used. It can be used as a material, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図へは本発明の第1の実施例の波形伝送装置を示す
平面図、同図すは同図1のB −B’断面図、同図Cは
一部のn領域の幅を小さくした状態を示す平面図、第2
図は同実施例の動作波形図、第3図aは本発明の第2の
実施例の波形伝送装置を示す平面図、同図すは同図&の
B−B’断面図、同図Cは同図へのG −C’断面図、
第4図は従来の波形伝送装置を示す回路図である。 101・・・・・・p基板、102・・・・・・n領域
、103・・・・・・n+領領域104・・・・・絶縁
層、105・・・・・・ンリトン励起電極、106・・
・・・・ソリトン伝送制呻電極、107・・・・・・検
出電極、108・・・・・・スイッチゲート電柵、10
9・・・・・・金属電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名(久
) 第1図 第2図 時 間
FIG. 1 is a plan view showing a waveform transmission device according to a first embodiment of the present invention, the same figure is a sectional view taken along line B-B' in FIG. 1, and FIG. A plan view showing the state in which the
3A is a plan view showing a waveform transmission device according to a second embodiment of the present invention; FIG. is a G-C' cross-sectional view of the same figure,
FIG. 4 is a circuit diagram showing a conventional waveform transmission device. 101...P substrate, 102...N region, 103...N+ region 104...Insulating layer, 105...Niton excitation electrode, 106...
... Soliton transmission suppressing electrode, 107 ... Detection electrode, 108 ... Switch gate electric fence, 10
9...Metal electrode. Name of agent Patent attorney Toshio Nakao and 1 other person (Hisashi) Figure 1 Figure 2 Time

Claims (3)

【特許請求の範囲】[Claims] (1)一方向に細長く形成された低不純物濃度の半導体
領域に電荷を閉じこめ、絶縁層を隔てて前記半導体領域
に電場を印加して、孤立波伝送媒体とし、前記半導体領
域の一端に孤立波励起部、他端に孤立波検出部を設けた
ことを特徴とする波形伝送装置。
(1) Charges are confined in a semiconductor region with a low impurity concentration that is elongated in one direction, and an electric field is applied to the semiconductor region across an insulating layer to create a solitary wave transmission medium, and a solitary wave is transmitted to one end of the semiconductor region. A waveform transmission device comprising an excitation section and a solitary wave detection section at the other end.
(2)前記孤立波励起部及び孤立波検出部が、前記半導
体領域と静電結合した電極で形成されることを特徴とす
る特許請求の範囲第1項記載の波形伝送装置。
(2) The waveform transmission device according to claim 1, wherein the solitary wave excitation section and the solitary wave detection section are formed of electrodes that are electrostatically coupled to the semiconductor region.
(3)前記孤立波励起部及び孤立波検出部近傍の前記半
導体領域の断面積が、他の部分に比べて小さいことを特
徴とする特許請求の範囲第1項記載の波形伝送装置。
(3) The waveform transmission device according to claim 1, wherein a cross-sectional area of the semiconductor region near the solitary wave excitation section and the solitary wave detection section is smaller than other portions.
JP24872086A 1986-10-20 1986-10-20 Waveform transmission device Pending JPS63102348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24872086A JPS63102348A (en) 1986-10-20 1986-10-20 Waveform transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24872086A JPS63102348A (en) 1986-10-20 1986-10-20 Waveform transmission device

Publications (1)

Publication Number Publication Date
JPS63102348A true JPS63102348A (en) 1988-05-07

Family

ID=17182339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24872086A Pending JPS63102348A (en) 1986-10-20 1986-10-20 Waveform transmission device

Country Status (1)

Country Link
JP (1) JPS63102348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014410A (en) * 1997-02-03 2000-01-11 Mitsubishi Denki Kabushiki Kaisha Transmission-reception system which transmits and receives data via signal transmission line
JP2010226764A (en) * 2007-02-13 2010-10-07 Cotron Corp Microspeaker and assembly method of the microspeaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014410A (en) * 1997-02-03 2000-01-11 Mitsubishi Denki Kabushiki Kaisha Transmission-reception system which transmits and receives data via signal transmission line
JP2010226764A (en) * 2007-02-13 2010-10-07 Cotron Corp Microspeaker and assembly method of the microspeaker

Similar Documents

Publication Publication Date Title
Drougard et al. Domain clamping effect in barium titanate single crystals
US8307022B2 (en) Random number generating device
Campi et al. Study of interface state density and effective oxide charge in post-metallization annealed SiO/sub 2/-SiC structures
Fritzsche et al. Drift-mobility measurements in amorphous semiconductors using traveling-wave method
JPS63102348A (en) Waveform transmission device
Altmeyer et al. 77 K single electron transistors fabricated with 0.1� m technology
Kahn et al. Spatial measurements of moving space-charge domains in p-type ultrapure germanium
Greve et al. Interpretation of capacitance‐voltage characteristics of polycrystalline silicon thin‐film transistors
Gaalema et al. Acoustic surface wave interaction charge‐coupled device
Mihaly et al. The onset of current carrying charge density wave state in tas3: Switching, hysteresis, and oscillation phenomena
US4389590A (en) System for recording waveforms using spatial dispersion
JPS5630779A (en) Piezoelectric monocrystal and elastic surface wave element using the same
Hoeneisen et al. Current-voltage characteristics of small size MOS transistors
Cobden et al. Dissipative tunneling in two-state systems at the Si/SiO 2 interface
JP2005142304A (en) Transistor evaluation method
Fatuzzo Increase in dielectric constant during switching in lithium selenite and triglycine sulfate
Yoshikawa et al. Properties of a movable‐gate–field‐effect structure as an electromechanical sensor
EP2744108B1 (en) Pulse generator and ferroelectric memory circuit
Fischler et al. AMPLIFICATION OF ACOUSTIC WAVES IN A COUPLED SEMICONDUCTOR‐PIEZOELECTRIC CERAMIC SYSTEM
Haendler et al. On the 1/f noise in fully depleted SOI transistors
JPS6312144A (en) Evaluating method for semiconductor element
Yamada et al. Chaotic conductivity oscillation in n-Type Si in high magnetic fields
Hochli Field-induced space-charge layer in strontium titanate
Jankowska et al. Frequency dependent electrostrictive effect in the antiferroelectric PbZrO3 crystals
Wen et al. Ion controlled diodes (ICD)