JPS6297438A - Optical transmission and reception equipment - Google Patents

Optical transmission and reception equipment

Info

Publication number
JPS6297438A
JPS6297438A JP60237953A JP23795385A JPS6297438A JP S6297438 A JPS6297438 A JP S6297438A JP 60237953 A JP60237953 A JP 60237953A JP 23795385 A JP23795385 A JP 23795385A JP S6297438 A JPS6297438 A JP S6297438A
Authority
JP
Japan
Prior art keywords
light
infrared
optical
infrared light
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60237953A
Other languages
Japanese (ja)
Inventor
Kazumasa Tsukada
和正 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60237953A priority Critical patent/JPS6297438A/en
Publication of JPS6297438A publication Critical patent/JPS6297438A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To facilitate the adjustment of the light direction of infrared rays by sending the beam of visual light together with the infrared rays in an optical transmission and reception equipment transmitting a signal through the space propagation of the infrared rays. CONSTITUTION:A lens L at the sending side converts generated light from infrared light emitting element D1 and a visual light emitting element D2 into collimated light and the result is sent to the reception side. Since the color of the visual light from the light emitting element D2 and the location of the optical transmitter 1 being the source of the light are known in advance, it is noticed, the location where the color light is strongest is decided as the visual light beam center from the optical transmitter 1, that is the beam center of the infrared rays sent from the optical transmitter 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、赤外光の空間伝搬により信号伝送を行う光送
受信器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical transceiver that transmits signals by spatial propagation of infrared light.

〔従来の技術〕[Conventional technology]

光の空間伝搬による通信は主として数百m以下の短距離
に使用されて2つ、光波長領域として主として赤外の波
長が使われている。一般に光の空間伝搬では空間を伝搬
する光ビームが狭く、光ビームの少しの角度ずれによっ
ても受信所となることがあり、安定な受信を行なうため
には光送受信器の方向」N整時には受信ビームの中心に
光受信器が置かれるように調整することが望ましい。し
かしながら赤外光を使用する光送信器に5いては、人の
眼で直接受信光を見て光ビーム位置と確認することは不
可能である。このため従来は赤外光を可視光に変換する
暗視鏡を用いて光ビーム位置の確認を行なっていた。
Communication by spatial propagation of light is mainly used for short distances of several hundred meters or less, and infrared wavelengths are mainly used as the optical wavelength region. In general, in the spatial propagation of light, the light beam propagating through the space is narrow, and even a slight angular deviation of the light beam can cause a reception point.In order to perform stable reception, the direction of the optical transceiver must be adjusted when the receiver is aligned. It is desirable to adjust the optical receiver so that it is placed in the center of the beam. However, with an optical transmitter 5 that uses infrared light, it is impossible for the human eye to directly see the received light and confirm the position of the light beam. For this reason, conventionally, the position of the light beam has been confirmed using a night vision mirror that converts infrared light into visible light.

〔問題点を解決するための手段〕[Means for solving problems]

しかし、暗視鏡では光ビーム以外の赤外光も見えるため
その区別がつきに<<、光ビーム位置の調整に時間を要
するとともに、暗視鏡という特殊な装置が必要であると
いう欠点があった。
However, since night vision mirrors can also see infrared light in addition to light beams, it is difficult to distinguish between them.There are disadvantages in that it takes time to adjust the light beam position and requires a special device called a night vision mirror. Ta.

本発明の光送受信器は5通信用に使用される赤外光の他
に可視光をその赤外光と同じ光軸上又は平行光軸上を伝
書させ、その可視光を送信する光送受信器の相手の光送
受信器側にいる人の眼で直接可視光を確認することによ
り、赤外光の方向を判別し、赤外光の方向の調整を容易
に行なうことを可能とすることを目的とする。
The optical transmitter/receiver of the present invention is an optical transmitter/receiver that transmits visible light in addition to infrared light used for communication by transmitting visible light on the same optical axis or parallel optical axis as the infrared light. The purpose of this system is to make it possible to determine the direction of infrared light and easily adjust the direction of infrared light by directly checking visible light with the eyes of the person on the other end's optical transmitter/receiver side. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光送受信器は、赤外光の空間伝搬により信号伝
送を行なう光送受信器にSいて、可視光のビームを信号
伝送に使用する前記赤外光の光軸と同−又は平行させて
送出する可視光送出手段を含んで構成される。
The optical transmitter/receiver of the present invention is an optical transmitter/receiver that performs signal transmission by spatial propagation of infrared light, and has a visible light beam aligned with or parallel to the optical axis of the infrared light used for signal transmission. It is configured to include visible light sending means for sending out visible light.

〔実施例〕〔Example〕

次に本発明について図面を1照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の模式図で、赤外光と可
視光の光軸を一致させた実施例である。
FIG. 1 is a schematic diagram of a first embodiment of the present invention, which is an embodiment in which the optical axes of infrared light and visible light are aligned.

1は光送信器(又は光受信器)、Sは伝送信号人力(又
は出力)、Dlは赤外光を発生するレーザダイオード又
は発光ダイオード等の赤外光発光素子、(又は赤外光を
受信するフォト・ダイオード等の赤外線受光素子)、D
2は可視光を発生するレーザダイオードダイオード又は
発光ダイオード等の可視光発光素子、Mは赤外光を通過
させ、可視光を反射させる鏡、Lはレンズで赤りI線発
光素子1) 1、可視光発光素子n 2の発生光を平行
光に変換、受信側に送出する(又は送信側からの赤外光
を赤外線受光素子D1に集束させ、可視光発光素子D2
の発生光を送信側に送出する)。実fIMは赤外光のビ
ーム、点線は可視光のビームを示す。
1 is an optical transmitter (or optical receiver), S is a transmission signal power (or output), Dl is an infrared light emitting element such as a laser diode or light emitting diode that generates infrared light (or receives infrared light) (infrared receiving elements such as photo diodes), D
2 is a visible light emitting element such as a laser diode or light emitting diode that generates visible light, M is a mirror that passes infrared light and reflects visible light, and L is a lens, which is a red I-ray light emitting element 1) 1. Converts the light generated by the visible light emitting element n2 into parallel light and sends it to the receiving side (or focuses the infrared light from the transmitting side on the infrared receiving element D1, and converts the light generated by the visible light emitting element D2 into parallel light.
(the generated light is sent to the transmitting side). The actual fIM indicates an infrared light beam, and the dotted line indicates a visible light beam.

第1図では赤外光、可視光共に同−光路上を進むためO
T視光を人の眼で確認できた位置に赤外光があることに
なる。すなわち、発光素子1)2からの可視光の色及び
その発生箇所である光送信器(又は光受信器)1の位置
があらかじめわかって20、その部分を注視して、かつ
その色の光が最も強くなった位置を光送信器(又は光受
信器)lからの可視光のビームの中心すなわち光送信器
(又は光受信器)1から送出される(又は、へ送られる
)赤外光のビームの中心と定めればよい。
In Figure 1, both infrared light and visible light travel on the same optical path, so O
Infrared light is present at the position where the T-visual light can be seen by the human eye. That is, the color of the visible light from the light-emitting element 1) 2 and the position of the optical transmitter (or optical receiver) 1 where it is generated are known in advance 20, and by gazing at that part and emitting light of that color. The most intense position is the center of the visible light beam from the optical transmitter (or optical receiver) 1, that is, the infrared light transmitted from (or sent to) the optical transmitter (or optical receiver) 1. Just set it as the center of the beam.

従って光送信器(又は光受信器)1を注視して光送信器
(又は光受信器)1からの可視光がj&も強くなる位置
に相手側の光受信器(又は先送イδ器)が位置するよう
に光送受信器の赤外線の向@等を調整すればよい。
Therefore, keep an eye on the optical transmitter (or optical receiver) 1 and place the other party's optical receiver (or advance I δ device) at a position where the visible light from the optical transmitter (or optical receiver) 1 is also strong. The direction of the infrared rays of the optical transmitter/receiver may be adjusted so that the

なJ可視光と赤外光とは視野角は必ずしも一致している
必要がなく、ビーム方向が一致さえしていれば、mT視
光の見える範囲より赤外光のビームの位置も判別可能で
ある。
The viewing angles of J visible light and infrared light do not necessarily have to match; as long as the beam directions match, the position of the infrared light beam can be determined from the visible range of mT visible light. be.

さらに光送信器(又は光受信器)lと、光ビームを観察
する目との距離が離れてgT視光が弱くなり肉眼では見
えない場合は、双眼鏡等を使用して光送信器(又は光受
信器)1からの可視光のビームを確認することが可能で
ある。
Furthermore, if the distance between the optical transmitter (or optical receiver) l and the eye observing the light beam is large and the gT viewing light becomes weak and cannot be seen with the naked eye, use binoculars etc. to transmit the optical transmitter (or optical receiver). It is possible to confirm the beam of visible light from the receiver) 1.

ま友、可視光が赤外の信号光に雑音として入る場合は可
視光を遮断・rる光フィルタを挿入するか、又は信号伝
送時は可視光源を切断すればよい。
Well, if visible light enters the infrared signal light as noise, you can either insert an optical filter that blocks or blocks the visible light, or cut off the visible light source during signal transmission.

な葛ロエ祝光を送出したままで赤外線による信号伝送を
行なう場合は、使用時に光送受信器の中間に入った人が
先送(if器(又は送信器)1からの可視光を見たなら
ば、赤外ビームをその人が遮断したことを意味し、その
時は光送受信器の間から速かに退去するように・rれば
、赤外光による信号伝送を防止することができる。
If you transmit a signal by infrared light while transmitting the light, if someone who is between the optical transceiver and sees the visible light from IF device (or transmitter) 1. For example, this means that the person has blocked the infrared beam, and in that case, if the person quickly moves away from between the optical transmitter and receiver, signal transmission using infrared light can be prevented.

rg2図は本発明の第2の実−例の模式図で、赤外光と
可視光の光軸を平行にした場合の実施例である。1は光
送信器(又は光受信器)、Sは伝送信号入力(又は出力
)、Dlは赤外光を発生するレーザダイオード又は発光
ダイオード等の赤外光発光素子(又はフォトダイオード
等の赤外光受光素子)、D2.D3は可視光を発生する
レーザダイオード又は発光ダイオード等の可視発光素子
、L lは赤外光発光素子D1の赤外光を平行光に変換
送出するレンズ、(又は受信赤外光を赤外光受光素子D
Iに集束させるレンズ、L2 、L3は可視光発光素子
D2 、D3の可視光を赤外光と平行軸で一定の視野角
に送出するレンズである。実線は赤外光のビームを示し
、点線は可視光のビームを示す。
Figure rg2 is a schematic diagram of a second practical example of the present invention, and is an example in which the optical axes of infrared light and visible light are made parallel. 1 is an optical transmitter (or optical receiver), S is a transmission signal input (or output), and Dl is an infrared light emitting element such as a laser diode or light emitting diode that generates infrared light (or an infrared light emitting element such as a photodiode). light receiving element), D2. D3 is a visible light emitting element such as a laser diode or light emitting diode that generates visible light, and L is a lens that converts and sends out the infrared light of the infrared light emitting element D1 (or converts the received infrared light into infrared light). Light receiving element D
Lenses L2 and L3 that focus the light on I are lenses that send out the visible light of the visible light emitting elements D2 and D3 at a constant viewing angle with axes parallel to the infrared light. Solid lines indicate beams of infrared light and dotted lines indicate beams of visible light.

第2図では2ケの可視光ビームが赤外光ビームの両側を
平行に進む場合を示し、人の眼の光送信器(又は光受信
器)1からの距離によって可視光ビームが2つに見える
場合と、1つに見える場合があるが、2つの場合はその
中間、1つの場合はその中心が赤外ビームの位置となる
Figure 2 shows the case where two visible light beams travel in parallel on both sides of an infrared light beam, and the visible light beams are divided into two depending on the distance from the optical transmitter (or optical receiver) 1 of the human eye. In some cases, the infrared beam can be seen as one, but in the case of two, the infrared beam is in the middle, and in the case of one, the center is the position of the infrared beam.

第3図は本発明の第3の実施例の模式図で5光送信と光
受信が1体化された光送受信器の実施例である。2は光
送受信器、8Tは伝送信号入力、SRは伝送信号出力、
D4は赤外光を発生すぜるレーザダイオード又は発光ダ
イオード等の赤外光発光素子、D5は赤外光を受信する
フォトダイオード等の可視光受光素子、D2.i)3は
可視光を発生するレーザダイオード又は発光ダイオード
等の可視発光素子、L4は赤外光発光素子D4からの赤
外光を平行光に変換出力するレンズ、L5は相手側から
の赤外光を赤外光受光素子D5に集束するレンズ L2
.L3iiii]”視発光木子D2 、D3の可視光を
赤外光と平行ビームとするレンズでおり。
FIG. 3 is a schematic diagram of a third embodiment of the present invention, which is an embodiment of an optical transceiver in which five optical transmitters and optical receivers are integrated. 2 is an optical transceiver, 8T is a transmission signal input, SR is a transmission signal output,
D4 is an infrared light emitting element such as a laser diode or light emitting diode that generates infrared light, D5 is a visible light receiving element such as a photodiode that receives infrared light, and D2. i) 3 is a visible light emitting element such as a laser diode or light emitting diode that generates visible light, L4 is a lens that converts the infrared light from the infrared light emitting element D4 into parallel light, and L5 is the infrared light from the other side. Lens L2 that focuses light on the infrared light receiving element D5
.. L3iii] "Visual luminescence tree D2, D3 is a lens that converts visible light into infrared light and parallel beams.

点線が可視光ビーム、実線が赤外光ビームを示す。The dotted line shows the visible light beam, and the solid line shows the infrared light beam.

この場合も第2図と同じく、可視光の視野角及び人の眼
で見る距離により、可視ビームが2つに見える場合と1
つに見える場合があるが2つの場合はその中間、1つの
場合はその中心が赤外光ビームの中心ともなる。
In this case as well, as in Figure 2, depending on the viewing angle of visible light and the distance seen by the human eye, the visible beam can be seen in two cases or in one case.
In some cases, the center of the infrared beam may appear to be two, but in the case of two, the center is the center of the infrared light beam.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、信号伝送に使用する赤外
光と光軸が同一または平行な可視光のビームを送出する
ことによって、光送受信器の方向すなわち赤外光ビーム
の方向が可視光を人の眼で確認することで判別でき、容
易に光送受信器の方向等を調整でさる効果がある。
As explained above, the present invention transmits a visible light beam whose optical axis is the same as or parallel to the infrared light used for signal transmission, so that the direction of the optical transceiver, that is, the direction of the infrared light beam, is the same as that of the visible light beam. It can be determined by checking with the human eye, and it is effective to easily adjust the direction of the optical transmitter/receiver.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ本発明の第1〜第3の実施例
の模式図である。 1・・・・・・光送信器(又は受信器)、2・・・・−
・光送受レンズ(又は受信レイズ)、L2.L3・・・
・・・可視光送信レンズ、D4・・・・・・赤外発光素
子、D5・・・・・・赤外受光素子、L4・・・・・・
赤外光送信レンズ、L5・・・・・・赤外光受信レンズ
。 代理人 弁理士  内 原   晋、
1 to 3 are schematic diagrams of first to third embodiments of the present invention, respectively. 1... optical transmitter (or receiver), 2...-
・Optical transmitting/receiving lens (or receiving raise), L2. L3...
...Visible light transmitting lens, D4...Infrared light emitting element, D5...Infrared light receiving element, L4...
Infrared light transmitting lens, L5... Infrared light receiving lens. Agent: Susumu Uchihara, patent attorney

Claims (1)

【特許請求の範囲】[Claims] 赤外光の空間伝搬により信号伝送を行なう光送受信器に
おいて、可視光のビームを信号伝送に使用する前記赤外
光の光軸と同一又は平行させて送出する可視光送出手段
を含むことを特徴とする光送受信器。
An optical transceiver that performs signal transmission by spatial propagation of infrared light, characterized by including visible light sending means for sending out a visible light beam in the same direction or parallel to the optical axis of the infrared light used for signal transmission. Optical transmitter/receiver.
JP60237953A 1985-10-23 1985-10-23 Optical transmission and reception equipment Pending JPS6297438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237953A JPS6297438A (en) 1985-10-23 1985-10-23 Optical transmission and reception equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237953A JPS6297438A (en) 1985-10-23 1985-10-23 Optical transmission and reception equipment

Publications (1)

Publication Number Publication Date
JPS6297438A true JPS6297438A (en) 1987-05-06

Family

ID=17022911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237953A Pending JPS6297438A (en) 1985-10-23 1985-10-23 Optical transmission and reception equipment

Country Status (1)

Country Link
JP (1) JPS6297438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238837U (en) * 1988-09-08 1990-03-15
JPH03121777A (en) * 1989-10-03 1991-05-23 Nagase Iron Works Co Ltd Rotary dresser
JPH0435109U (en) * 1990-07-18 1992-03-24
JPH0730488A (en) * 1993-07-09 1995-01-31 Nec Corp Optical communication equipment
US20130101285A1 (en) * 2011-10-24 2013-04-25 Alex Shar Method and system for indoor wireless optical links

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238837U (en) * 1988-09-08 1990-03-15
JPH03121777A (en) * 1989-10-03 1991-05-23 Nagase Iron Works Co Ltd Rotary dresser
JPH0435109U (en) * 1990-07-18 1992-03-24
JPH0730488A (en) * 1993-07-09 1995-01-31 Nec Corp Optical communication equipment
US20130101285A1 (en) * 2011-10-24 2013-04-25 Alex Shar Method and system for indoor wireless optical links
US8948601B2 (en) * 2011-10-24 2015-02-03 Rit Technologies Ltd. Method and system for indoor wireless optical links

Similar Documents

Publication Publication Date Title
US4289373A (en) Bidirectional optical fiber transmission system
US4516828A (en) Duplex communication on a single optical fiber
EP0347120A2 (en) Optical data link dual wavelength coupler
US8550726B2 (en) Optical transceiver using single-wavelength communication
US20040042798A1 (en) Optical transceiver with a dual-axis tilt mirror for pointing and tracking free space communication signals
CN110095879A (en) Multichannel light emitting devices and production and preparation method thereof
GB2175766A (en) Fibre optic communication systems
EP0959325A2 (en) Photoelectric switch, fiber-type photoelectric switch, and color discrimination sensor
JPS6297438A (en) Optical transmission and reception equipment
JPH0311310A (en) Optical coupler of electro-optic converter module and optical guide
US4561116A (en) Optical remote-control device for a residence door
JPS62110339A (en) Optical transmission and reception equipment
EP1416307A1 (en) Bidirectional telescope
CN210427857U (en) Multichannel optical multiplexer, optical transmitter and optical module
JPS6318901B2 (en)
KR20180116548A (en) Monostatic bidrectional focusing and collecting optics system
JPH1039181A (en) Light transmitter/receiver
KR100272544B1 (en) Photo-wireless communication system
JPS6253032A (en) Optical fiber two-way transmission system
GB1600741A (en) Optical apparatus
JPH0119481Y2 (en)
GB2301249A (en) Optical transceiver
JPS6322750Y2 (en)
US7715670B2 (en) Lensed bidirectional, co-located laser/detector
AU2644299A (en) Sensor system