JPS6295869A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6295869A
JPS6295869A JP23661285A JP23661285A JPS6295869A JP S6295869 A JPS6295869 A JP S6295869A JP 23661285 A JP23661285 A JP 23661285A JP 23661285 A JP23661285 A JP 23661285A JP S6295869 A JPS6295869 A JP S6295869A
Authority
JP
Japan
Prior art keywords
diffusion layer
layer
metal
metal electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23661285A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nakada
中田 英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23661285A priority Critical patent/JPS6295869A/en
Publication of JPS6295869A publication Critical patent/JPS6295869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent generation of alloy spike and attain junction with high resistance voltage by internally forming a second diffusion layer having high impurity concentration at the connecting part with the metal electrode of the diffusion layer provided on the substrate and then inserting a high melting point metal layer between the metal electrode and diffusion layer. CONSTITUTION:A second diffusion layer 5 having high impurity concentration is internally formed at the connecting part with metal electrode 8 of the diffusion layer 2 provided on a semiconductor substrate 1. The coexisting layer 6 of impurity atom and inactive atom is also internally formed within such second diffusion layer 5. This structure does not require the need to increase junction concentration and depth of the diffusion layer 2 more than that required and prevents alloy spike. On the other hand, voltage resistance of junction can also be improved. Moreover, contact resistance may be equalized by improving the contact characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体基板の拡散層と
金属電極とのコンタクト部における接合耐圧の向上を図
った半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which the junction breakdown voltage at a contact portion between a diffusion layer of a semiconductor substrate and a metal electrode is improved.

〔従来の技術〕[Conventional technology]

一般に、半導体装置では半導体基板に形成した不純物拡
散層と、アルミニウム等の金属電極との電気的接続が必
要とされる。例えば、第2図のように、−の導電型半導
体基板11に逆の導電型不純物拡散層12を形成した場
合、半導体基板11上に形成した絶縁膜13にコンタク
トホール14を開口し、この間口14を通してアルミニ
ウム電極15を接続させている。
Generally, a semiconductor device requires electrical connection between an impurity diffusion layer formed on a semiconductor substrate and a metal electrode such as aluminum. For example, as shown in FIG. 2, when an opposite conductivity type impurity diffusion layer 12 is formed on a negative conductivity type semiconductor substrate 11, a contact hole 14 is opened in an insulating film 13 formed on the semiconductor substrate 11, and this frontage is An aluminum electrode 15 is connected through 14.

しかしながら、この構成では、拡散層12と電気的接続
をとるアルミニウム電極15が拡散層12のシリコンと
反応して所謂アロイスパイク16が発生し、拡散層12
を突き抜けて半導体基板11と短絡することがある。
However, in this configuration, the aluminum electrode 15 that makes an electrical connection with the diffusion layer 12 reacts with the silicon of the diffusion layer 12 to generate so-called alloy spikes 16, and the diffusion layer 12
It may penetrate through the semiconductor substrate 11 and cause a short circuit.

このため、第3図のように、この拡散層12よりも更に
深い第2の拡散層17を形成し、アロイスパイク16が
生じても、これが第2の拡散層17を突き抜けないよう
に構成して前記短絡事故を防止する試みがなされている
Therefore, as shown in FIG. 3, a second diffusion layer 17 deeper than this diffusion layer 12 is formed so that even if an alloy spike 16 occurs, it will not penetrate through the second diffusion layer 17. Attempts have been made to prevent the short circuit accident.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の接合構造は、あくまでもアロイスパイク
の発生自体を防止するものではなく、アロイスパイクが
発生してもこれが半導体基板11にまで達しないように
構成したものである。このため、第2の拡散層17は本
来の拡散層12に比較して深く形成する必要があり、か
つ必然的にその不純物濃度は拡散層12に比較して高く
なる。
The conventional bonding structure described above is not intended to prevent alloy spikes from occurring per se, but is designed to prevent alloy spikes from reaching the semiconductor substrate 11 even if they occur. Therefore, the second diffusion layer 17 needs to be formed deeper than the original diffusion layer 12, and its impurity concentration is necessarily higher than that of the diffusion layer 12.

したがって、この第2の拡散層17における接合は拡散
層12の場合に比較して耐圧が低くなり、高耐圧の半導
体装置にはそのまま適用することは困難である。
Therefore, the breakdown voltage of the junction in the second diffusion layer 17 is lower than that in the diffusion layer 12, and it is difficult to apply it as is to a high breakdown voltage semiconductor device.

〔問題点を解決するための手段〕 本発明の半導体装置は、アロイスパイクの発生を防止し
て高耐圧の接合を得るために、半導体基板に設けた拡散
層の金属電極との接続部に不純物濃度の高い第2の拡散
層を内包するように形成し、かつこの第2の拡散層内に
は不純物原子と不活性原子との共存層を内包するように
形成し、更に前記金属電極とこれら各層との間には高融
点金属からなる第2の金属層を介挿した構成としている
[Means for Solving the Problems] In the semiconductor device of the present invention, in order to prevent the occurrence of alloy spikes and obtain a high breakdown voltage junction, impurities are added to the connection portion of the diffusion layer provided on the semiconductor substrate with the metal electrode. The second diffusion layer is formed to include a highly concentrated second diffusion layer, and the second diffusion layer is formed to include a coexistence layer of impurity atoms and inert atoms. A second metal layer made of a high melting point metal is interposed between each layer.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(d)は本発明の半導体装置を製造工程
順に説明するための図である。
FIGS. 1(a) to 1(d) are diagrams for explaining the semiconductor device of the present invention in the order of manufacturing steps.

即ち、先ず同図(a)のように、−の導電型半導体基板
1には逆の導電型の不純物拡散層2を所要の不純物濃度
でかつ所要の深さに形成する。そして、同図(b)のよ
うに半導体基板1の表面には酸化膜等の絶縁膜3を形成
し、かつ前記拡散層2との電気的接続を行う部分の絶縁
膜3にコンタクトホール4を開設する。
That is, first, as shown in FIG. 2A, an impurity diffusion layer 2 of the opposite conductivity type is formed in a negative conductivity type semiconductor substrate 1 at a required impurity concentration and a required depth. Then, as shown in FIG. 2B, an insulating film 3 such as an oxide film is formed on the surface of the semiconductor substrate 1, and a contact hole 4 is formed in the insulating film 3 in a portion where electrical connection with the diffusion layer 2 is made. Open.

次いで、同図(c)のように、前記コンタクトホール4
を通して半導体基板1に高濃度に逆導電型不純物をイオ
ン注入して第2の拡散層5を形成し、更に、同様にコン
タクトホール4を通して不活性原子をイオン注入し、前
記逆導電型不純物の゛ 原子と不活性原子との共存する
層6を形成する。
Next, as shown in FIG. 4(c), the contact hole 4 is
A second diffusion layer 5 is formed by ion-implanting impurities of the opposite conductivity type into the semiconductor substrate 1 at a high concentration through the contact hole 4, and inert atoms are ion-implanted through the contact hole 4 to form the impurity of the opposite conductivity type. A layer 6 in which atoms and inert atoms coexist is formed.

この不活性原子には、Ne、Ar、Kr、Xe等を使用
する。また、前記第2拡散層5は拡散N2よりも浅く、
つまり拡散層2に内包されるように形成し、更に前記共
存層6は第2拡散層5に内包されるように形成する。こ
の場合、不純物原子や不活性原子の拡散係数や熱処理条
件によっては第2拡散層5と共存層6とが同−深さに形
成されることもある。
Ne, Ar, Kr, Xe, etc. are used as the inert atoms. Further, the second diffusion layer 5 is shallower than the diffusion N2,
That is, it is formed so as to be included in the diffusion layer 2, and furthermore, the coexistence layer 6 is formed so as to be included in the second diffusion layer 5. In this case, the second diffusion layer 5 and the coexistence layer 6 may be formed at the same depth depending on the diffusion coefficient of impurity atoms and inert atoms and the heat treatment conditions.

しかる後、同図(d)のように、前記コンタクトホール
4内にはタングステン等の高融点金属からなる第1の金
属層7を形成し、その上にアルミニウム等の第2の金属
層8を形成して前記拡散層2との電気的接続を行ってい
る。前記第1の金属層7は選択CVD法或いは全面に金
属膜を被着後にこれをエフチバソクする方法を利用して
コンタクトホール4内にのみ形成させる。また、第2の
金属層8は真空蒸着法やスパッタ法等を利用し、その後
バターニングして所要の配線パターンに形成している。
Thereafter, as shown in FIG. 4(d), a first metal layer 7 made of a high melting point metal such as tungsten is formed in the contact hole 4, and a second metal layer 8 made of aluminum or the like is formed thereon. It forms an electrical connection with the diffusion layer 2. The first metal layer 7 is formed only in the contact hole 4 using a selective CVD method or a method of depositing a metal film on the entire surface and then etching the same. Further, the second metal layer 8 is formed using a vacuum evaporation method, a sputtering method, or the like, and then patterned to form a desired wiring pattern.

この構成によれば、アルミニウムからなる第2の金属層
8と拡散層2との間には高融点金属からなる第2の金属
層7が介挿されているため、熱処理によってもアロイス
パイクが発生することはない。このため、拡散層2を深
く形成する必要はなく、接合耐圧は拡散層2の不純物濃
度や接合深さによって決定され、高い接合耐圧を得るこ
とができる。また、第2の拡散層5によって第2の金属
According to this configuration, since the second metal layer 7 made of a high melting point metal is interposed between the second metal layer 8 made of aluminum and the diffusion layer 2, alloy spikes are also generated by heat treatment. There's nothing to do. Therefore, it is not necessary to form the diffusion layer 2 deeply, and the junction breakdown voltage is determined by the impurity concentration of the diffusion layer 2 and the junction depth, and a high junction breakdown voltage can be obtained. Further, the second metal is formed by the second diffusion layer 5.

層7と基板1との接触電位が低くなっていること、及び
不純物原子と不活性原子との共存層6を設けてこれを再
結合中心として作用させていること等により、コンタク
ト性が極めて高いものにされ、コンタクト抵抗のバラツ
キを低減できる。したがって、半導体装置の集積密度の
向上に伴ってコンタクトホール径が縮小されても、コン
タクト抵抗の増加やバラツキを防止できる。
The contact potential between the layer 7 and the substrate 1 is low, and the coexistence layer 6 of impurity atoms and inert atoms is provided, which acts as a recombination center, resulting in extremely high contact properties. This makes it possible to reduce variations in contact resistance. Therefore, even if the diameter of the contact hole is reduced as the integration density of semiconductor devices increases, an increase or variation in contact resistance can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板に設けた拡散
層の金属電極との接続部に不純物濃度の高い第2の拡散
層を内包するように形成し、かつこの第2の拡散層内に
は不純物原子と不活性原子との共存層を内包するように
形成し、更に前記金属電極とこれら各層との間には高融
点金属等の第2の金属層を介挿した構成としているので
、拡散層の接合濃度や深さを所要以上に増加させる必要
はなく、アロイスパイクを防止する一方でその接合耐圧
を向上できる。また、第2の拡散層や不活性原子との共
存層を内包するように形成することにより、コンタクト
性を向上してコンタクト抵抗等の均一化を図り、高集積
度の半導体装置における金属電極との電気的接続の改善
を達成できる。
As explained above, the present invention includes forming a second diffusion layer with a high impurity concentration in the connection portion of a diffusion layer provided on a semiconductor substrate with a metal electrode, and is formed so as to include a coexistence layer of impurity atoms and inert atoms, and a second metal layer such as a high melting point metal is interposed between the metal electrode and each of these layers. There is no need to increase the junction concentration or depth of the diffusion layer more than necessary, and the junction breakdown voltage can be improved while preventing alloy spikes. In addition, by forming a second diffusion layer and a layer coexisting with inert atoms, it is possible to improve contact properties and make contact resistance uniform, etc. Improved electrical connections can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の半導体装置を製造工程
順に説明するための断面図、第2図及び第3図は夫々異
なる従来構造の不具合を説明するだめの断面図である。 1・・・半導体基板、2・・・拡散層、3・・・絶縁膜
、4・・・コンタクトホール、5・・・第2の拡散層、
6・・・不活性原子との共存層、7・・・第1の金属層
(高融点金属層)、8・・・第2の金属層(アルミニウ
ム層)、11・・・半導体基板、12・・・拡散層、1
3・・・絶縁膜、14・・・コンタクトホール、15・
・・金属電極、16・・・アロイスパイク、17・・・
第2拡散層。 第1図
FIGS. 1(a) to (d) are cross-sectional views for explaining the semiconductor device of the present invention in the order of manufacturing steps, and FIGS. 2 and 3 are cross-sectional views for explaining different problems of the conventional structure. . DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Diffusion layer, 3... Insulating film, 4... Contact hole, 5... Second diffusion layer,
6... Coexistence layer with inert atoms, 7... First metal layer (high melting point metal layer), 8... Second metal layer (aluminum layer), 11... Semiconductor substrate, 12 ...diffusion layer, 1
3... Insulating film, 14... Contact hole, 15.
...Metal electrode, 16...Alloy spike, 17...
Second diffusion layer. Figure 1

Claims (1)

【特許請求の範囲】 1、半導体基板に設けた拡散層に金属電極を電気的に接
続するようにした半導体装置において、前記拡散層には
金属電極との接続部に不純物濃度の高い第2の拡散層を
内包するように形成し、かつこの第2の拡散層内には不
純物原子と不活性原子との共存層を内包するように形成
し、更に前記金属電極とこれら各層との間には第2の金
属層を介挿した構成としたことを特徴とする半導体装置
。 2、前記金属電極をアルミニウムで構成し、第2の金属
層を高融点金属で構成してなる特許請求の範囲第1項記
載の半導体装置。 3、第2の拡散層は前記拡散層と同一導電型不純物を拡
散してなる特許請求の範囲第2項記載の半導体装置。 4、不活性原子はNe、Ar、Kr、Xeのいずれかで
ある特許請求の範囲第3項記載の半導体装置。
[Claims] 1. In a semiconductor device in which a metal electrode is electrically connected to a diffusion layer provided on a semiconductor substrate, the diffusion layer has a second layer having a high impurity concentration at the connection portion with the metal electrode. The second diffusion layer is formed to contain a coexistence layer of impurity atoms and inert atoms, and further between the metal electrode and each of these layers. A semiconductor device characterized by having a structure in which a second metal layer is interposed. 2. The semiconductor device according to claim 1, wherein the metal electrode is made of aluminum and the second metal layer is made of a high melting point metal. 3. The semiconductor device according to claim 2, wherein the second diffusion layer is formed by diffusing impurities of the same conductivity type as the diffusion layer. 4. The semiconductor device according to claim 3, wherein the inert atom is any one of Ne, Ar, Kr, and Xe.
JP23661285A 1985-10-22 1985-10-22 Semiconductor device Pending JPS6295869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23661285A JPS6295869A (en) 1985-10-22 1985-10-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23661285A JPS6295869A (en) 1985-10-22 1985-10-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6295869A true JPS6295869A (en) 1987-05-02

Family

ID=17003220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23661285A Pending JPS6295869A (en) 1985-10-22 1985-10-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6295869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302855A (en) * 1990-09-10 1994-04-12 Canon Kabushiki Kaisha Contact electrode structure for semiconductor device
US6888245B2 (en) * 2001-09-27 2005-05-03 Renesas Technology Corp. Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919631A (en) * 1972-06-14 1974-02-21
JPS535965A (en) * 1976-07-02 1978-01-19 Ibm Semiconductor device
JPS56146232A (en) * 1980-02-27 1981-11-13 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919631A (en) * 1972-06-14 1974-02-21
JPS535965A (en) * 1976-07-02 1978-01-19 Ibm Semiconductor device
JPS56146232A (en) * 1980-02-27 1981-11-13 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302855A (en) * 1990-09-10 1994-04-12 Canon Kabushiki Kaisha Contact electrode structure for semiconductor device
US6888245B2 (en) * 2001-09-27 2005-05-03 Renesas Technology Corp. Semiconductor device

Similar Documents

Publication Publication Date Title
EP0249780B1 (en) Semiconductor device with a wiring layer having a good step coverage at contact holes
US4538344A (en) Method of forming electrode/wiring layer
JP2978748B2 (en) Method for manufacturing semiconductor device
US5003375A (en) MIS type semiconductor integrated circuit device having a refractory metal gate electrode and refractory metal silicide film covering the gate electrode
JPH05343404A (en) Semiconductor device
JPS62113421A (en) Manufacture of semiconductor device
JP2828438B2 (en) Method for forming polycide layer in semiconductor device
JPS6295869A (en) Semiconductor device
US6100186A (en) Method of selectively forming a contact in a contact hole
JPS6381948A (en) Multilayer interconnection semiconductor device
JP3337758B2 (en) Method for manufacturing semiconductor device
JPS60123061A (en) Semiconductor device
JPS61140133A (en) Manufacture of semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH11330090A (en) Vertical double diffusion mosfet and its manufacture
JP3801773B2 (en) Bipolar transistor manufacturing method
JPS63164315A (en) Manufacture of semiconductor device
JPH0441510B2 (en)
JPH0410412A (en) Semiconductor device and its manufacture
JP2935732B2 (en) Method for manufacturing semiconductor device
KR19980057094A (en) Metal contact method of semiconductor device
JPH01230269A (en) Semiconductor integrated circuit device
JPS625657A (en) Semiconductor integrated circuit device
JPS59229866A (en) Semiconductor device
JPH01278046A (en) Semiconductor device