JPS6289936A - Lightguide element - Google Patents

Lightguide element

Info

Publication number
JPS6289936A
JPS6289936A JP60230290A JP23029085A JPS6289936A JP S6289936 A JPS6289936 A JP S6289936A JP 60230290 A JP60230290 A JP 60230290A JP 23029085 A JP23029085 A JP 23029085A JP S6289936 A JPS6289936 A JP S6289936A
Authority
JP
Japan
Prior art keywords
optical
layer
refractive index
optical waveguide
adjacent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60230290A
Other languages
Japanese (ja)
Inventor
Koji Kamiyama
神山 宏二
Yoji Okazaki
洋二 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60230290A priority Critical patent/JPS6289936A/en
Priority to EP86104707A priority patent/EP0198380B1/en
Priority to DE8686104707T priority patent/DE3686079T2/en
Priority to US06/849,450 priority patent/US4758062A/en
Priority to US06/917,058 priority patent/US4830448A/en
Priority to DE8686114032T priority patent/DE3686541T2/en
Priority to EP86114032A priority patent/EP0219069B1/en
Publication of JPS6289936A publication Critical patent/JPS6289936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To improve the use efficiency of heating energy for changing the refractive index by forming a lightguide layer and its adjacent layer of a laminated body with thermooptical materials having specific temperature coefficients of refractive index respectively and providing a heating means on the surface of the adjacent layer and providing diffraction gratings at the position to be heated on the surface of the adjacent layer. CONSTITUTION:A laminated body 13 consisting of a lightguide layer 11 and an adjacent layer 12 brought into intimate contact with this layer 11 is provided on a substrate 10. The lightguide layer 11 consists of thermooptical materials whose temperature coefficient of refractive index is zero or negative, on the other hand the adjacent layer 12 consists of thermooptical materials whose temperature coefficient of refractive index is positive. The lightguide layer 11, the adjacent layer 12, and the substrate 10 consist of materials satisfying n2>n1, n3, when n3 is the refractive index of the substrate 10 and n1 and n2 are refractive indexes of the adjacent layer 12 and the optical waveguide layer 11 in non-heating state respectively, so as to the light advances in the lightguide layer 11. Diffraction gratings G1-Gn formed with transparent electrothermal materials are provided in a row on the surface of the adjacent layer 12. When the current from a heating power source is flowed to these gratings through a driver 15, the adjacent layer 12 and the lightguide layer 11 are heated, and the refractive index of the adjacent layer 12 is made higher and that of the optical waveguide layer 11 is made lower.

Description

【発明の詳細な説明】 (発明の分野) 本発明は光導波路素子、特に詳細には温度変化により光
屈折率を変える温度光学材料からなる光導波層(路)を
有し、該光導波層内の導波光を層外に出射させて光走査
や光変調等に利用されうるようにした光導波路素子に関
するものでおる。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to an optical waveguide element, and more particularly, an optical waveguide element comprising an optical waveguide layer (path) made of a thermo-optical material that changes the optical refractive index according to temperature changes. This invention relates to an optical waveguide element that allows guided light inside the layer to be emitted to the outside of the layer so that it can be used for optical scanning, optical modulation, etc.

(従来の技術) 周知の通り従来より、光走査式の記録装置や、読取装置
が種々提供されている。このような装置において記録光
あるいは読取光を1次元的に走査する光走査装置として
従来より、 ■例えばガルバノメータミラーヤギ1ノゴンミラーく回
転多面鏡)等の機械式光鴻向器により光ビームを偏向走
査させるもの、 ■EOD (電気光学光偏向器)やAOD (音官光学
光儂向器)なと固体光偏向素子を用いた光偏向器により
光ビームを偏向走査させるもの、■液晶素子アレイやP
LZTアレイ等のシャッタアレイと線光源とを組み合わ
せ、シャツタアレイの各シャッタ素子に個別的に駆動回
路を接続し、画像信号に応じて、0N10FFを選択し
て同時に聞くことにより線順次走査をさせるもの、ざら
には ■L E D等の発光素子を多数−列に並設し、各発光
素子に個別的に駆動回路を接続し、画像信号に応じて0
N10FFを選択して同時に発光させることにより線順
次走査させるもの等が知られている。
(Prior Art) As is well known, various types of optical scanning recording devices and reading devices have been provided. Conventionally, as an optical scanning device that scans recording light or reading light one-dimensionally in such an apparatus, the light beam is deflected and scanned using a mechanical optical deflector, such as a galvanometer mirror, one-gon mirror, or a rotating polygon mirror. - Devices that deflect and scan light beams using optical deflectors using solid-state optical deflection elements such as EOD (electro-optical deflector) and AOD (acoustic optical deflector); ■ Liquid crystal element arrays and P
A shutter array such as an LZT array and a line light source are combined, a drive circuit is individually connected to each shutter element of the shutter array, and 0N10FF is selected and listened to simultaneously according to the image signal to perform line sequential scanning. In general, a large number of light emitting elements such as LEDs are arranged in rows, and a drive circuit is individually connected to each light emitting element, and the 0
It is known to perform line-sequential scanning by selecting N10FF and emitting light at the same time.

ところが上記■の機械式光偏向器は撮動に対して弱く、
またFjM械的耐久性も低く、その上調整が面倒でおる
という欠点を有している。ざらに光ビームを振って偏向
させるために光学系が大きくなり、記録装置や読取装置
の大型化を招くという問題もめる。
However, the mechanical optical deflector described in ■ above is weak against photography.
Further, FjM has the disadvantage that mechanical durability is low and adjustment is troublesome. The optical system becomes large because the light beam is roughly swung and deflected, which leads to the problem of increasing the size of the recording device and reading device.

また■のEODやAODを用いる光走査装置に必っても
、上記と同様に光ビームを振って偏向させるために、装
置が大型になりやすいという問題かめる。持に上記EO
DヤAODは光偏向角が大きくとれないので、■の機械
式光偏向器を用いる場合よりもざらに光学系が大きくな
りがちでめる。
In addition, even in optical scanning devices using EODs and AODs (2), the problem arises that the device tends to be large because the light beam is deflected by swinging it in the same way as described above. The above EO
Since the Dya AOD cannot have a large optical deflection angle, the optical system tends to be much larger than when using a mechanical optical deflector (2).

一方■のシャッタアレイを用いる光走査装置におっては
、偏光板を2枚使用する必要がおることから、光源の光
利用効率か非常に低いという問題がおる。
On the other hand, in the optical scanning device using the shutter array (2), since it is necessary to use two polarizing plates, there is a problem that the light utilization efficiency of the light source is extremely low.

また■の発光素子を多数並設して用いる光走査装置にお
っては、各発光素子の発光強度にバラツキが生じるため
、精密走査には不向きであるという問題がある。
In addition, in the optical scanning device (2) using a large number of light emitting elements arranged in parallel, there is a problem that the light emitting intensity of each light emitting element varies, making it unsuitable for precision scanning.

上記のような事情に鑑み本出願人は、耐久性、耐1辰動
性に優れ、調整が容易で、光利用効率が高く、精密走査
が可能で、しかも小型に形成されうる光走査装置を提案
した(特願昭60−74061号)。この光走査装置は
、光導波路素子を利用するものであり、 少なくとも一方がエネルギー付加により光、回折率を変
える材料からなり、互いに密着された光導波層と通常は
該光導波層よりも小さい光回折率を示す隣接層との積層
体と、 上記光導波層および/または隣接層に、光導波裔内を進
む導波光の光路に沿って設けられた複数のエネルギー付
加手段と、 上記隣接層の上部の、少なくとも上記エネルギー付加手
段によるエネルギー付加箇所に対応する部分にそれぞれ
設けられた回折格子と、上記複数のエネルギー付加手段
を順次択一的に所定のエネルギー付加状態に設定し、そ
のエネルギー付加箇所において導波光か前記回折格子と
のΔ目豆作用により前記積層体の外に出射するように光
導波層および/または隣接層の光屈折率を変化させる駆
動回路とから構成され、 光導波層の光、回折率(nz)a5よび/または隣接、
苦の光屈折率(nl、通常状態すなわちエネルキーが付
加されていない状態ではnz >nlの関係を持つ)を
、その差(nz  n+)が小さくなるように、あるい
はn2≦n1となるように変化させて、光導波層中に閉
じ込められた導波光の界分イ5を変化させ、回折格子と
の相互作用によって導波光を光導波層と隣接層との積層
体から外部へ取り出し、これを走査光として利用するよ
うにしたものでおる。
In view of the above circumstances, the present applicant has developed an optical scanning device that has excellent durability and dynamic resistance, is easy to adjust, has high light utilization efficiency, is capable of precision scanning, and can be made compact. (Patent Application No. 74061/1982). This optical scanning device uses an optical waveguide element, at least one of which is made of a material that changes the diffraction index of light by adding energy, and an optical waveguide layer that is closely attached to each other and a light beam that is usually smaller than the optical waveguide layer. a laminate of adjacent layers exhibiting a diffraction index; a plurality of energy adding means provided on the optical waveguide layer and/or the adjacent layer along the optical path of the guided light traveling within the optical waveguide; A diffraction grating provided in the upper portion corresponding to at least the energy adding point by the energy adding means and the plurality of energy adding means are sequentially and selectively set to a predetermined energy adding state, and the energy adding point is set to a predetermined energy adding state. and a drive circuit that changes the optical refractive index of the optical waveguide layer and/or the adjacent layer so that the guided light is emitted outside the laminated body by the delta effect of the optical waveguide layer with the diffraction grating. light, diffraction index (nz) a5 and/or adjacent,
Change the optical refractive index (nl, which has the relationship nz > nl in the normal state, that is, the state where no energy key is added) so that the difference (nz n+) becomes small, or so that n2 ≦ n1. The field A5 of the guided light confined in the optical waveguide layer is changed, the guided light is taken out from the stack of the optical waveguide layer and the adjacent layer by interaction with the diffraction grating, and is scanned. It is designed to be used as light.

より詳細に説明するならば、例えば第1図に示すように
この光走査装置が、基板10上に光導波1苦11、表面
に回折格子Gが設けられた隣接層12(温度光学材料か
ら形成されているものとする)を有し、基板10の光屈
折率n3、非加熱時の光導波層11の光屈折率n2、同
じく非加熱の隣接層12の光屈折率n、の間にnz >
nl 、n3の関係か成り立っているものとする。
To explain in more detail, for example, as shown in FIG. 1, this optical scanning device includes an optical waveguide 11 on a substrate 10 and an adjacent layer 12 (formed from a temperature optical material) having a diffraction grating G on its surface. ), and between the optical refractive index n3 of the substrate 10, the optical refractive index n2 of the optical waveguide layer 11 when unheated, and the optical refractive index n of the adjacent layer 12, which is also unheated, nz >
It is assumed that the relationship between nl and n3 holds true.

第1図で示した構成の場合、隣接、@12がh0熱され
ない時の分散曲線は第2図(a)のように表わされる。
In the case of the configuration shown in FIG. 1, the dispersion curve when the adjacent @12 is not heated by h0 is expressed as shown in FIG. 2(a).

第2図(a>において縦軸は光の実効屈折率を、また横
軸は光導波層11の厚みを表わし、°光導波層11の厚
みをTとすると、光導波層11の実効屈折率はn。ff
である。この時導波光14の界分布(電界分布〉は、例
えばTEoモードを仮定すると、第3図(a)のように
表わされる。第3図(a)は導波光が隣接層12や基板
10にわずかに浸み出しているものの、回折格子Gと相
互作用をするにはいたらず、導波光14がほとんど外部
へ漏れずに光導波層11中を進行している状態を示して
いる。
In FIG. 2 (a), the vertical axis represents the effective refractive index of light, and the horizontal axis represents the thickness of the optical waveguide layer 11. If the thickness of the optical waveguide layer 11 is T, then the effective refractive index of the optical waveguide layer 11 is n.ff
It is. At this time, assuming the TEo mode, the field distribution (electric field distribution) of the guided light 14 is expressed as shown in FIG. 3(a). FIG. Although it seeps out slightly, it does not interact with the diffraction grating G, and the guided light 14 is shown to be traveling through the optical waveguide layer 11 without leaking to the outside.

次に、隣接層12の表面に設けた回折格子Gに対向する
部分P1.:おいて隣接層12を所定温度に加熱してそ
の光屈折率をnlからnl +△nへ増大ざぜる。この
時、分散曲線は第2図(b)の1点鎖線で表わせられ、
光導波層11の実効屈折率neffはn′  に増大す
る。この時の導波光の電界力ff 布は第3図(b)のように変化し、隣接層12への導波
光の浸み出し光が、回折格子Gと十分相互作用するよう
に増加する。その結果、図の斜線部の浸み出し光が図の
上方(回折格子Gの種類によっては下方又は上下双方)
へ放射されながら進行し、遂には、はとんどの導波光が
外部へ取り出される。
Next, a portion P1. which faces the diffraction grating G provided on the surface of the adjacent layer 12. : The adjacent layer 12 is heated to a predetermined temperature to increase its optical refractive index from nl to nl +Δn. At this time, the dispersion curve is represented by the dashed line in Fig. 2(b),
The effective refractive index neff of the optical waveguide layer 11 increases to n'. At this time, the electric field force ff distribution of the guided light changes as shown in FIG. 3(b), and the amount of light leaking out of the guided light into the adjacent layer 12 increases so as to sufficiently interact with the diffraction grating G. As a result, the leaked light in the shaded area in the figure is directed upwards in the figure (downward or both above and below depending on the type of diffraction grating G).
The guided light propagates while being radiated to the outside, and eventually most of the guided light is taken out to the outside.

また、第1図で示した構成において、隣接層12の光屈
折率をnlからn1+△n”に変化させたとき、このn
l+△n11の値が、隣接層12の光屈折率の変化に伴
って変化する光導波層11の実効屈折率n”   と等
しくなるほどに大きくなると、ff その分散曲線は第2図(C)の1点鎖線のようになり、
導波光は導波モードから放射モートへ変換し、光は隣接
層12へ移行する。このときの導波光の電界分布は第3
図(C)のように変化し、導波光は隣接層12へ多量に
漏れ出し、回折格子Gと相互作用して図の上方(および
/または下方)へ放射されながら進行し、速やかに外部
に取り出される。また、隣接、@12の光屈折率n1を
光導波層11の光屈折率n2と略等しいか又はnlより
も大きくなるように変化させることによって、光導波層
11内の導波光の全反射条件を変化させて導波光を隣接
層12中に移動させ、更に回折格子Gとの相互作用によ
り、外部へ取り出すことができる。このようにして、加
熱した箇所で導波光を外部に取り出すことができるから
、上述の回折格子Gを複数、1列に延びるように設けて
おき、各回折格子Gに対向する部分Pを順次択一的に加
熱すれば、隣接層12からは出射位置を変えながら光が
出射するようになり、光走査がなされる。
Furthermore, in the configuration shown in FIG. 1, when the optical refractive index of the adjacent layer 12 is changed from nl to n1+Δn'', this n
When the value of l+Δn11 becomes large enough to be equal to the effective refractive index n'' of the optical waveguide layer 11, which changes with the change in the optical refractive index of the adjacent layer 12, the dispersion curve ff becomes as shown in FIG. 2(C). It will look like a dashed line,
The guided light converts from the guided mode to the radiating mode, and the light migrates to the adjacent layer 12. The electric field distribution of the guided light at this time is the third
The waveguide light changes as shown in Figure (C), and a large amount of guided light leaks into the adjacent layer 12, interacts with the diffraction grating G, travels upward (and/or downward) in the figure, and is quickly released to the outside. taken out. Further, by changing the optical refractive index n1 of the adjacent @12 so that it is approximately equal to the optical refractive index n2 of the optical waveguide layer 11 or larger than nl, the total reflection condition of the guided light in the optical waveguide layer 11 is changed. The guided light can be moved into the adjacent layer 12 by changing the wavelength, and can be extracted to the outside through interaction with the diffraction grating G. In this way, the guided light can be extracted to the outside at the heated location, so a plurality of the above-mentioned diffraction gratings G are provided extending in one row, and the portions P facing each diffraction grating G are sequentially selected. When heated all at once, light is emitted from the adjacent layer 12 while changing its emitting position, and optical scanning is performed.

上記構成の光走査装置は、単一の光源を使用するもので
あるから、前記LEDアレイ等にみられる光源の発光強
度バラツキの問題が無く、精密走査が可能となり、光源
の光利用効率も高められる。
Since the optical scanning device with the above configuration uses a single light source, there is no problem of variations in the light emission intensity of the light source seen in the above-mentioned LED arrays, etc., and precision scanning is possible, and the light utilization efficiency of the light source is also increased. It will be done.

またこの光走査装置は、機械的作動部分を備えないから
耐久性、耐振動性に優れて調整も容易であり、ざらに光
ビームを大きく振らずに走査可能であるから、この装置
によれば、光走査系の大型化を回避し、光走査記録装置
あるいは読取袋@?小型に形成することができる。
This optical scanning device also has excellent durability and vibration resistance because it does not have any mechanically operating parts, and is easy to adjust, and it is possible to scan without shaking the light beam roughly. , to avoid increasing the size of the optical scanning system and to use an optical scanning recording device or reading bag@? It can be formed into a small size.

前述のエネルギー付加により光屈折率を変える材料とし
ては、電界により光屈折率を変える電気光学材料、温度
により光屈折率を変える温度光学材料、超音波により光
屈折率を変える音響光学材料、磁界により光屈折率を変
える磁気光学材料等が利用可能でおる。そのうちの温度
光学材料を利用する場合には、少ない加熱エネルギー消
費量で光導波層および隣接層の光屈折率を効率良く変化
させること、すなわち光面折率変化のための加熱エネル
ギー利用効率が高いことが実用上望ましい。
The aforementioned materials that change the optical refractive index by adding energy include electro-optic materials that change the optical refractive index by an electric field, thermo-optic materials that change the optical refractive index by temperature, acousto-optic materials that change the optical refractive index by ultrasonic waves, and materials that change the optical refractive index by a magnetic field. Magneto-optical materials that change the optical refractive index are available. When using thermo-optical materials, it is necessary to efficiently change the optical refractive index of the optical waveguide layer and the adjacent layer with low heating energy consumption, that is, the efficiency of heating energy use for changing the optical surface refractive index is high. This is practically desirable.

(発明の目的) そこで本発明は、温度光学材料によって光導波層と隣接
層とが形成されて、前述のような光走査装置を構成する
ことができる光導波路素子において、光面折率変化のた
めの加熱エネルギー利用効率が高い光導波路素子を提供
することを目的とするものでおる。
(Objective of the Invention) Therefore, the present invention provides an optical waveguide element in which an optical waveguide layer and an adjacent layer are formed of a thermo-optic material, and which can constitute an optical scanning device as described above. The purpose of the present invention is to provide an optical waveguide element with high heating energy utilization efficiency.

(発明の構成) 本発明の光導波路素子は、前)ホの積層体の光導波層お
よび隣接層をそれぞれ、光屈折率の温度係数が零又は負
(つまり加熱により光屈折率が変化しない又は低下する
)の温度光学材料、および上記温度係数が正で(つまり
加熱により光屈折率が増大する)非加熱時は該光導波層
よりも小さい光屈折率を示す湿度光学材料から形成し、
そして上記光導波層内を進む導波光の光路に沿った所定
の箇所を加熱するように隣接層表面に加熱手段を設ける
とともに、 上記加熱箇所において隣接層の表面に回折格子を設けて
なるものである。
(Structure of the Invention) The optical waveguide element of the present invention is characterized in that the optical waveguide layer and the adjacent layer of the laminate described in (a) above are formed so that the temperature coefficient of the optical refractive index is zero or negative (that is, the optical refractive index does not change upon heating, or and a humidity optical material having a positive temperature coefficient (that is, the optical refractive index increases with heating) and exhibiting a smaller optical refractive index than the optical waveguide layer when not heated,
A heating means is provided on the surface of the adjacent layer so as to heat a predetermined location along the optical path of the guided light traveling within the optical waveguide layer, and a diffraction grating is provided on the surface of the adjacent layer at the heating location. be.

上記構成の光導波路素子において、1列に配された複数
の力0熟箇所をそれぞれカロ熱するように加熱手段を複
数設け、そしてこれらの加熱手段を順次択一的に所定の
加熱状態に設定する駆動回路を組み合わせれば、光走査
装置が形成される。
In the optical waveguide device having the above configuration, a plurality of heating means are provided so as to heat each of the plurality of zero force points arranged in one row, and these heating means are sequentially and selectively set to a predetermined heating state. By combining these drive circuits, an optical scanning device is formed.

また上記構成の光導波路素子において、加熱手段を1つ
だけ設け、この加熱手段を画像信号等に基づいて所定の
加熱状態に設定する駆動回路を組み合わせれば、光変調
器を形成することができる。
Furthermore, in the optical waveguide element having the above configuration, an optical modulator can be formed by providing only one heating means and combining this heating means with a drive circuit that sets the heating means to a predetermined heating state based on an image signal or the like. .

(作  用) 前述の加熱手段により隣接層を加熱すると光導波層も昇
温し光導波層の光屈折率n2と隣接層の光屈折率n1の
関係を、前述のように通常B¥f(この場合は非加熱時
)のnz >nlの関係から、差(nz  nx)が小
さくなるように、あるいはn2≦n1となるように変化
させることができ、導波光を積層体外へ取り出すことが
できる。そして本発明の光導波路素子においては、光導
波層を構成する温度光学材料として光屈折率の温度係数
が零又は角のもの、一方隣接層を構成する温度光学材料
として光屈折率の温度係数が正のものを用いているから
、隣接層、光導波層をさほど加熱しなくても、上述のよ
うに差(n2  nx)が十分小さくなるように、市る
いはn2≦n1とすることができる。
(Function) When the adjacent layer is heated by the above-mentioned heating means, the temperature of the optical waveguide layer also rises, and the relationship between the optical refractive index n2 of the optical waveguide layer and the optical refractive index n1 of the adjacent layer is normally changed to B\f( In this case, from the relationship nz > nl (when not heated), it is possible to change the difference (nz nx) so that it becomes smaller, or so that n2≦n1, and the guided light can be taken out of the laminate. . In the optical waveguide device of the present invention, the temperature-optical material constituting the optical waveguide layer has a temperature coefficient of optical refraction of zero or an angle, while the temperature-optical material constituting the adjacent layer has a temperature coefficient of optical refraction index of zero or an angle. Since a positive value is used, the difference (n2 nx) can be made sufficiently small as described above, or n2≦n1, without heating the adjacent layer or optical waveguide layer very much. .

(実施態様) 以下、図面に示す実施態様に基づいて本発明の詳細な説
明する。
(Embodiments) Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第4図は本発明の一実W!態様による光導波路素子を用
いて形成された光走査装置20を示すものである。基板
10の上には、光導波@11と該光導波層11に密着し
た隣接層12とからなる積層体13が設けられている。
Figure 4 is one of the fruits of this invention W! 2 shows an optical scanning device 20 formed using an optical waveguide element according to an embodiment. On the substrate 10, there is provided a laminate 13 consisting of an optical waveguide @11 and an adjacent layer 12 in close contact with the optical waveguide layer 11.

なお光導波層11は光屈折率の温度係数が零又は負の湿
度光学材料、一方隣接層12は光屈折率の温度係数が正
の温度光学材料から形成されている。そして前述のよう
に光導波層11内を光が進行しうるように光導波@11
、隣接層12、基板10はそれぞれ、前記関係 n、、>nl・nl を満たす材料から形成されている。なお前述の通り、n
lは基板10の光屈折率、nl 、n2はそれぞれ隣接
、@12、光導波層11の非加熱時の光屈折率である。
The optical waveguide layer 11 is formed of a humidity optical material having a zero or negative temperature coefficient of optical refractive index, while the adjacent layer 12 is formed of a temperature optical material having a positive temperature coefficient of optical refractive index. Then, as described above, the optical waveguide @11
, the adjacent layer 12, and the substrate 10 are each made of a material that satisfies the relationship n, >nl·nl. As mentioned above, n
l is the optical refractive index of the substrate 10, and nl and n2 are the optical refractive indexes of the adjacent optical waveguide layer 11, @12, and when not heated, respectively.

このような隣接層12、光導波層11、基板10の材料
の粗合せとしては例えば、波長632゜6nmのHe−
Neレーザに対する光屈折率n1、n2、nlがそれぞ
れ1.52.1.54.1゜46である、ショット社(
西独)の光学ガラスKF9 (+20〜+40’Cにお
ける絶対温度係数Δn/Δ丁が+2 、9 X 10’
 /°C: iX下同様)、同BAK2 (−〇、1x
10’/’C) 、同FK3(−2,0X10”6/°
C);必るいは光学ガラスPK2 (+1.4x10″
6/°C)、同KF1 (−0,4x10°6゜7℃)
、同FK3 :さらには光学カラスBK7 (+1.2
X10−6/°C)、同BAK2 (−0,1x10’
/’C) 、同FK3 :光学ガラスKF9 (+2.
9x10°”/’C)、同BAK2 (0,0x10’
/’C) 、同FK3等が挙げられる。温度光学材料と
しては上記のような光学ガラスの他に結晶、プラスチッ
ク等も屈折率およびm折率の温度変化の条件が満されれ
ば用いることができる。なお光導波路については、例え
ばティー タミール(T、Tam1 r)編[インチグ
レイテッド オプティクス(1ntegrated  
0ptics)」 (トピックス イン アプライド 
フィジックス(Topics  in  Applie
d  Physics)第7巻)スプリンガー フエア
レーザ(Spr i nger −Ver l aQ)
刊(1975):西原、春名、栖原共著「光集積回路」
オーム社刊(1985)等の成著に詳細な記述がある。
As a rough combination of materials for the adjacent layer 12, the optical waveguide layer 11, and the substrate 10, for example, He-
Schott Co., Ltd., whose optical refractive indexes n1, n2, and nl for the Ne laser are 1.52.1.54.1°46, respectively.
(West Germany) optical glass KF9 (absolute temperature coefficient Δn/Δd at +20 to +40'C is +2, 9 x 10'
/°C: Same as below iX), same BAK2 (-〇, 1x
10'/'C), same FK3 (-2,0X10"6/°
C); Or optical glass PK2 (+1.4x10″
6/°C), same KF1 (-0,4x10°6°7°C)
, same FK3: Furthermore, optical crow BK7 (+1.2
X10-6/°C), same BAK2 (-0,1x10'
/'C), FK3: Optical glass KF9 (+2.
9x10°"/'C), same BAK2 (0,0x10'
/'C), FK3, etc. In addition to the above-mentioned optical glasses, crystals, plastics, etc. can also be used as temperature optical materials as long as the conditions for temperature change in refractive index and m-refractive index are satisfied. Regarding optical waveguides, for example, see the book edited by T. Tamir [Integrated Optics (1ntegrated
0ptics)” (Topics in Applied
Physics (Topics in Applie)
d Physics) Volume 7) Springer Fair Laser (Springer-VerlaQ)
Published (1975): Nishihara, Haruna, Suhara co-author "Optical integrated circuit"
There are detailed descriptions in published works such as Ohmsha (1985).

また光導波層11、隣接層12、基板10はそれぞれ一
例として厚さ0.5〜]Oμm、1〜50μm、1μm
以上に形成されるが、これに限られるものではない。
In addition, the optical waveguide layer 11, the adjacent layer 12, and the substrate 10 each have a thickness of 0.5 to]0 μm, 1 to 50 μm, and 1 μm, respectively, as examples.
Although formed as described above, it is not limited to this.

隣接層12の表面には、透明電熱材料から形成された回
折格子G1、G2、G3・・・Gnが1列に並設されて
いる。上述の透明電熱材料としては例えば、In2O3
と5nOzとからなるもの等が挙げられる。なお回折格
子G1〜Qnの大きさは、例えば10X10μm〜0.
2X5M程度とされ、各回折格子01〜Gn間の間隔は
100〜200μm程度に設定される。各回折格子01
〜Qnを構成する複数の格子要素は、両端部においてそ
れぞれ互いに電気的に導通するようにされ、そして各回
折格子G1〜Qnは基板10上に形成されたドライバ1
5に接続されている。なおこのドライバ15は、基板1
0とは独立して設けられてもよい。
On the surface of the adjacent layer 12, diffraction gratings G1, G2, G3, . . . , Gn made of a transparent electrothermal material are arranged in a row. Examples of the above-mentioned transparent electrothermal materials include In2O3
and 5 nOz. The size of the diffraction gratings G1 to Qn is, for example, 10×10 μm to 0.0 μm.
The size is about 2×5M, and the interval between each diffraction grating 01 to Gn is set to about 100 to 200 μm. Each diffraction grating 01
A plurality of grating elements constituting ~Qn are electrically connected to each other at both ends, and each diffraction grating G1~Qn is connected to a driver 1 formed on a substrate 10.
5. Note that this driver 15
It may be provided independently from 0.

−力光導波層11には、回折格子G1〜Qnの並び方向
の延長上において、導波路レンズ16が形成されており
、また基板10には光導波層11内の上記導波路レンズ
16に向けてレーザビーム(放射ビーム)14′を射出
する半導体レーザ17が取り付けられている。
- A waveguide lens 16 is formed on the optical waveguide layer 11 in an extension of the direction in which the diffraction gratings G1 to Qn are arranged, and a waveguide lens 16 is formed on the substrate 10 toward the waveguide lens 16 in the optical waveguide layer 11. A semiconductor laser 17 is attached which emits a laser beam (radiation beam) 14'.

第5図は上記光走査装置20の駆動回路21を示すもの
である。以下この第5図も参照して、光走査装置20の
作動について説明する。まず前述の半導体レーザ17が
駆動され、レーザビーム14′が光導波層11内に射出
される。このレーザビーム14′は導波路レンズ16に
よって平行光14とされ、この光14は光導波層11内
を導波モードで回折格子G1〜(3nの並び方向に進行
する(第4図参照)。そして回折格子01〜Gnには、
加熱用電源22からの電流■か、前記ドライバ15を介
して流される。このドライバ15は、タロツク信QCL
Kに同期して作動するシフトレジスタ23の出力を受け
て作動し、電流■を供給する回折格子G1〜i3nを1
つずつjl1次選択して、電流供給を行なう。つまり最
初はnflMlの回折格子01〜Gnのうち1番目の回
折格子G1のみに、次は2番目の回折格子G2のみに、
・・・・・・と電流Iが供給される。こうして回折格子
G1〜Qnに順次電流Iが流されると各回折格子G1〜
Gnが順次発熱し、発熱した回折格子に対向している部
分の隣接層12および光導波層11が加熱され、隣接層
12の光屈折率は高くなり、反対に光導波層11の光屈
折率は低くなる。すると前述したように前記光(導波光
)14は上記光屈折率か変化した部分において、光導波
層11から隣接層12側に出射し、回折格子G1〜Gn
の回折作用により隣接層12外に出射する。つまり最初
は回折格子G1から、次は回折格子G2から、回折格子
Gnの次は元に戻って回折格子G1から、と光14の出
射位置が順次変化するので、被走査体18はこの出射し
た光14により、第4図の矢印X方向に走査されるよう
になる(なお光出射位置が、回折格子G1→G2→・−
・・−・Gn−+G (n −1) →G (n−2)
 −と変化するように、回折格子G1〜Gnへの電流供
給を制御してもよい)。そして上記のようにして主走査
を行なうとともに、クロック信号CLKによって該主走
査と同期をとって被走査体18を第4図の矢印Y方向に
移動させて副走査を行なえば、この被走査体18は2次
元的に走査されることになる。
FIG. 5 shows the drive circuit 21 of the optical scanning device 20. The operation of the optical scanning device 20 will be described below with reference also to FIG. First, the aforementioned semiconductor laser 17 is driven, and a laser beam 14' is emitted into the optical waveguide layer 11. This laser beam 14' is converted into parallel light 14 by a waveguide lens 16, and this light 14 travels in the optical waveguide layer 11 in a waveguide mode in the direction in which the diffraction gratings G1 to G3n are arranged (see FIG. 4). And for the diffraction gratings 01 to Gn,
The current (2) from the heating power source 22 is passed through the driver 15. This driver 15 is a tarokku signal QCL.
Diffraction gratings G1 to i3n that operate in response to the output of the shift register 23 that operates in synchronization with K and supply current
The current is supplied by selecting the jl primary one by one. In other words, initially only the first diffraction grating G1 among the diffraction gratings 01 to Gn of nflMl, then only the second diffraction grating G2,
. . . and the current I is supplied. In this way, when the current I is sequentially passed through the diffraction gratings G1 to Qn, each of the diffraction gratings G1 to
Gn sequentially generates heat, and the adjacent layer 12 and the optical waveguide layer 11 in the portion facing the heated diffraction grating are heated, and the optical refractive index of the adjacent layer 12 increases, and conversely, the optical refractive index of the optical waveguide layer 11 increases. becomes lower. Then, as described above, the light (waveguide light) 14 is emitted from the optical waveguide layer 11 to the adjacent layer 12 side in the portion where the optical refractive index has changed, and is reflected in the diffraction gratings G1 to Gn.
The light is emitted to the outside of the adjacent layer 12 due to the diffraction effect. In other words, the emission position of the light 14 changes sequentially, first from the diffraction grating G1, then from the diffraction grating G2, then after the diffraction grating Gn, and then back from the diffraction grating G1. The light 14 causes scanning in the direction of the arrow X in FIG.
・・・-・Gn-+G (n-1) →G (n-2)
- The current supply to the diffraction gratings G1 to Gn may be controlled so as to change as follows. When main scanning is performed as described above and sub-scanning is performed by moving the scanned object 18 in the direction of arrow Y in FIG. 4 in synchronization with the main scanning using the clock signal CLK, the scanned object 18 will be scanned two-dimensionally.

なお隣接層12、光導波層11はそれぞれ、光屈折率の
温度係数が正の温度光学材料、零又は負の温度光学材料
から形成されているから、前述の通りこれら両層11.
12をざほど加熱しなくても、光14が隣接層12から
出射しうる。
Note that since the adjacent layer 12 and the optical waveguide layer 11 are respectively formed of a temperature optical material with a positive temperature coefficient of optical refractive index, and a temperature optical material with a zero or negative temperature coefficient, both layers 11.
Light 14 may exit from adjacent layer 12 without significantly heating 12.

なお本実施態様において隣接層12の表面に設けられる
回折格子G1〜Gnは、集光回折格子として形成されて
あり、該回折格子01〜Onから出射した光14は、被
走査体18上の一点に集束されるようになっている。こ
の集光回折格子は、光導波層11内の導波光14の進行
方向に2次曲線状の格子パターン(グリッドパターン)
を呟♂2し、そして各パターンの曲率とパターン間ピッ
チを変化させてなるものでおり、それにより上述のよう
な集束作用を有するものとなっている。なおこのような
集光回折格子については、例えば電子通信学会技術研究
報告0QC83−84の47〜54ページ等に詳しく記
載されている。
In this embodiment, the diffraction gratings G1 to Gn provided on the surface of the adjacent layer 12 are formed as condensing diffraction gratings, and the light 14 emitted from the diffraction gratings 01 to On is focused at one point on the object to be scanned 18. It is now focused on This condensing diffraction grating has a quadratic curved grating pattern (grid pattern) in the traveling direction of the guided light 14 in the optical waveguide layer 11.
The curvature of each pattern and the pitch between the patterns are varied, thereby providing the above-mentioned focusing effect. Note that such a condensing diffraction grating is described in detail, for example, on pages 47 to 54 of Technical Research Report 0QC83-84 of the Institute of Electronics and Communication Engineers.

また、半導体レーザ17を光導波、層11に直接結合せ
ずに、レンズやカプラープリズム、グレーティングカプ
ラ等を介して光導波層11に光を入射ざぜるようにして
もよい。また半導体レーザ17は光導波層の形成時に、
これと一体に作られてもよい。
Alternatively, the semiconductor laser 17 may not be directly coupled to the optical waveguide layer 11, but the light may be incident on the optical waveguide layer 11 through a lens, a coupler prism, a grating coupler, or the like. Furthermore, when forming the optical waveguide layer, the semiconductor laser 17
It may be made integrally with this.

走査光を発生する光源は上)ホの半導体レーザ17に限
らず、その他例えばガスレーザや固体レーザ等が用いら
れてもよい。
The light source that generates the scanning light is not limited to the semiconductor laser 17 in (a) above, but other sources such as a gas laser or a solid-state laser may also be used.

また隣接層12から出射した光14を1点に集束させる
には、前述のように回折格子01〜Gnを集光回折格子
とする伯、第6図に示すように、光走査装置20と被走
査体18との間に例えばセルフォックレンズアレイ等か
らなるレンズアレイ30を八2けるようにしてもよい。
Further, in order to focus the light 14 emitted from the adjacent layer 12 to one point, as described above, it is necessary to use the diffraction gratings 01 to Gn as a focusing diffraction grating, and as shown in FIG. A lens array 30 made of, for example, a SELFOC lens array may be interposed between the scanning body 18 and the scanning body 18.

また第7図に示すように隣接層12の上に、各回折格子
G1、G2、G3〜Gnに対向する位置にレンズL1、
L2、L3〜Lnか設けられたレンズアレイ層31を設
けるようにしてもよい。この場合上記レンズL1〜In
は、第7図に示されるように通常の凸レンズ状としても
よいし、またアレイ1@材料の屈折率に分布を与えてな
る屈折率分布型レンズとしてもよい。ざらには上記のよ
うなレンズアレイ30やレンズアレイ―31と、前記集
光回折格子の双方によって光14を集束させるようにし
てもよい。しかし上記集光回折格子のみを用いれば、レ
ンズアレイ30やレンズアレイ層31が不要となり、光
走査装置の構造が簡単になって好ましい。また隣接層1
2から出射する光14を以上説明のようにして集束させ
ることは必ずしも必要ではなく、場合によっては平行光
、おるいは拡散光によって被走査体18を走査するよう
にしても構わない。
Further, as shown in FIG. 7, a lens L1 is placed on the adjacent layer 12 at a position facing each of the diffraction gratings G1, G2, G3 to Gn.
A lens array layer 31 having lenses L2, L3 to Ln may be provided. In this case, the lens L1~In
may be in the shape of a normal convex lens as shown in FIG. 7, or may be a gradient index lens in which the refractive index of the array 1@ material is distributed. In general, the light 14 may be focused by both the lens array 30 or lens array 31 as described above and the focusing diffraction grating. However, if only the above-mentioned condensing diffraction grating is used, the lens array 30 and the lens array layer 31 are unnecessary, and the structure of the optical scanning device becomes simple, which is preferable. Also, the adjacent layer 1
It is not always necessary to focus the light 14 emitted from the light source 2 as described above, and depending on the case, the object 18 to be scanned may be scanned with parallel light, or diffused light.

以上説明した実施態様においては、光導波層11と隣接
図12との積層体13は基板10上に設けられているが
、特にこのような基板10を用いず、光導波層11か直
接空気に接するようにしても溝わないし、ざらには光導
波層11の両表面に隣接層12を積層iノで、光導波層
11の上下両側に走査光を出射させ、2つの被走査面を
同時に走査することも可能である。
In the embodiment described above, the laminate 13 of the optical waveguide layer 11 and the adjacent figure 12 is provided on the substrate 10, but such a substrate 10 is not used, and the optical waveguide layer 11 is directly exposed to the air. Even if they are in contact with each other, there is no groove, and in general, by laminating the adjacent layers 12 on both surfaces of the optical waveguide layer 11, scanning light is emitted to both the upper and lower sides of the optical waveguide layer 11, and the two surfaces to be scanned are simultaneously scanned. It is also possible to scan.

ざらに上記実施態様においては、電熱材料からなる回折
格子01〜Qnによって光導波層11、隣接@12を加
熱するようにしているが、所定の加熱箇所を左右から挟
むように、あるいは四方から囲むように加熱手段を配置
して所定箇所を加熱することも可能でおる。
Roughly speaking, in the above embodiment, the optical waveguide layer 11 and the adjacent @12 are heated by the diffraction gratings 01 to Qn made of electrothermal material, but the predetermined heating point is sandwiched from the left and right or surrounded from all sides. It is also possible to heat a predetermined location by arranging a heating means in this way.

また本発明の光導波路素子を用いる光走査装置は、走査
光取出し部分で必る回折格子G1〜Gnの列が複数列並
ぶように形成して、複数の走査光を同時に取出し可能と
することもできる。
Further, the optical scanning device using the optical waveguide element of the present invention may be formed so that a plurality of rows of diffraction gratings G1 to Gn are lined up in the scanning light extraction portion, so that a plurality of scanning lights can be extracted simultaneously. can.

以上、光走査装置を構成するように形成された実施態様
について説明したが、本発明の光導波路素子は、光変調
器を構成するように形成することもできる。以下、その
ように形成された実施態様について第8図を参照して説
明する。なおこの第8図において、前記第4図中の要素
と同等の要素には同番号を付してあり、それらについて
は特に必要の無い限り説明を省く。この光変調器50を
構成する積層体13において、隣接層12上には比較的
大型の回折格子Gが1つだけ設けられている。この構成
においても、上記回折格子Gを加熱すれば、導波光14
が積層体13外に出射する。したがって回折格子Gの加
熱、つまり該回折格子Gへの加熱用電流供給を画像信号
等に基づいて制御すれば、積層体13外に出射する光1
4は、上記画像信号等に対応して変調されるようになる
。なおこの場合、上述のようにして積層体13外に出射
する光を被変調光として利用してもよいし、あるいは回
折格子Gを通り過ぎて光導波@11内を進行する光を例
えばカプラープリズム等によって該光導波層11外に取
り出し、この取り出された光を被変調光として利用して
もよい。つまり後者の場合、上記のようにして取り出さ
れる光は、回折格子Gから導波光14が出射するときに
はその分だけ光量低下するので、画像信号等に応じて変
調されたものとなる。
Although the embodiments formed so as to constitute an optical scanning device have been described above, the optical waveguide element of the present invention can also be formed so as to constitute an optical modulator. Hereinafter, an embodiment formed in this way will be described with reference to FIG. Note that in FIG. 8, elements equivalent to those in FIG. 4 are given the same numbers, and explanations thereof will be omitted unless particularly necessary. In the stacked body 13 constituting this optical modulator 50, only one relatively large diffraction grating G is provided on the adjacent layer 12. Even in this configuration, if the diffraction grating G is heated, the guided light 14
is emitted to the outside of the stacked body 13. Therefore, if the heating of the diffraction grating G, that is, the supply of heating current to the diffraction grating G, is controlled based on the image signal etc., the light 1
4 is modulated in accordance with the image signal and the like. In this case, the light emitted outside the laminate 13 as described above may be used as modulated light, or the light passing through the diffraction grating G and proceeding within the optical waveguide @ 11 may be used, for example, through a coupler prism or the like. The light may be taken out of the optical waveguide layer 11 by using the above method, and the taken out light may be used as modulated light. In other words, in the latter case, the light extracted as described above is modulated in accordance with the image signal etc. since the amount of light is reduced by that amount when the guided light 14 is emitted from the diffraction grating G.

(発明の効果〉 以上詳細に説明した通り本発明の光導波路素子は光走査
装置に適用されたとき、単一の光源を使用するように光
走査装置を構成可能であるから、前記LEDアレイ等に
みられる光源の発光強度バラツキの問題が無く、精密走
査が可能となり、光源の光利用効率も高められる。また
本発明の光導波路素子は勿論機械的作動部分を備えない
から耐久性、耐撮動性に優れて調整も容易であり、ざら
に光ビームを大きく振らずに走査可能でおるから、この
光導波路素子によれば、光走査系の大型化を回避し、光
走査記録装置おるいは読取装置を小型に形成することが
できる。
(Effects of the Invention) As described above in detail, when the optical waveguide element of the present invention is applied to an optical scanning device, the optical scanning device can be configured to use a single light source, so the LED array, etc. There is no problem of variations in the light emission intensity of the light source, which is seen in the above, and precision scanning is possible, and the light utilization efficiency of the light source is improved.Also, since the optical waveguide element of the present invention does not have any mechanically operating parts, it is durable and photo-resistant. This optical waveguide element has excellent mobility, is easy to adjust, and can scan without shaking the light beam roughly. Accordingly, this optical waveguide element avoids increasing the size of the optical scanning system and is suitable for optical scanning and recording devices. The reading device can be made compact.

また本発明の光導波路素子は、導波光を回折格子によっ
て効率良く光導波層外に取出し可能であるから、光変調
器に適用された場合には、その消光比を十分に高める効
果を奏する。
Furthermore, since the optical waveguide element of the present invention can efficiently extract guided light to the outside of the optical waveguide layer using the diffraction grating, when applied to an optical modulator, it has the effect of sufficiently increasing its extinction ratio.

しかも本発明の光導波路素子は、隣接層、光導波層をそ
れぞれ光屈折率の温度係数が正の温度光学材料、零又は
負の温度光学材料から形成したので、これら両層に比較
的小ざな温度変化を与えれば隣接図外に光が出射される
ようになり、7JD熱用エネルギーの消費が低く抑えら
れる。
Furthermore, in the optical waveguide element of the present invention, since the adjacent layer and the optical waveguide layer are formed of a temperature optical material with a positive temperature coefficient of optical refractive index and a temperature optical material with a zero or negative temperature coefficient, there is a relatively small difference between these layers. If a temperature change is given, light will be emitted outside the adjacent diagram, and the consumption of 7JD heat energy can be kept low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の導波光取出しの仕組みを説明する
説明図、 第2図は第1図の構成の分散曲線を示すグラフ、第3図
は第1図の構成における導波光の電界弁イbを示す概念
図、 第4図は本発明の第1実施態様による光導波路素子を用
いて構成された光走査装置を示す斜視図、第5図は上記
光走査装置の電気回路を示すブロック図、 第6図、第7図はそれぞれ、本発明の光導波路素子を用
いて形成される光走査装置の別の例を示す側面図、 第8図は本発明の第2実!態様による光導波路素子を用
いて構成された光変調器を示す斜視図である。 10・・・基(反      11・・・光導波図12
・・・隣接層     13・・・積層体14・・・光
       15・・・ドライバ16・・・導波路レ
ンズ  17・・・半導体レーザ20・・・光走査装置
   21・・・駆動回路22・・・加熱用電源   
23・・・シフトレジスタ50・・・光変調器
Fig. 1 is an explanatory diagram explaining the mechanism of guided light extraction of the device of the present invention, Fig. 2 is a graph showing the dispersion curve of the configuration of Fig. 1, and Fig. 3 is an electric field valve of the guided light in the configuration of Fig. 1. FIG. 4 is a perspective view showing an optical scanning device configured using an optical waveguide element according to the first embodiment of the present invention, and FIG. 5 is a block diagram showing an electric circuit of the optical scanning device. 6 and 7 are side views showing another example of an optical scanning device formed using the optical waveguide element of the present invention, and FIG. 8 is a second embodiment of the present invention! FIG. 2 is a perspective view showing an optical modulator configured using an optical waveguide element according to an embodiment. 10... group (anti-11... optical waveguide diagram 12
... Adjacent layer 13 ... Laminated body 14 ... Light 15 ... Driver 16 ... Waveguide lens 17 ... Semiconductor laser 20 ... Optical scanning device 21 ... Drive circuit 22 ...・Heating power supply
23...Shift register 50...Optical modulator

Claims (1)

【特許請求の範囲】[Claims] (1)光屈折率の温度係数が零又は負の温度光学材料か
らなる光導波層、および光屈折率の温度係数が正で非加
熱時は該光導波層よりも小さい光屈折率を示す温度光学
材料からなる隣接層の積層体と、 前記光導波層内を進む導波光の光路に沿った所定の箇所
を加熱するように前記隣接層表面に設けられた加熱手段
と、 前記加熱箇所において前記隣接層の表面に設けられた回
折格子とからなる光導波路素子。(2)前記加熱手段が
、1列に並んだ複数の加熱箇所をそれぞれ加熱するよう
に複数設けられていることを特徴とする特許請求の範囲
第1項記載の光導波路素子。
(1) An optical waveguide layer made of a temperature optical material with a temperature coefficient of optical refractive index of zero or negative, and a temperature at which the temperature coefficient of optical refractive index is positive and exhibits an optical refractive index smaller than that of the optical waveguide layer when not heated. a laminate of adjacent layers made of an optical material; a heating means provided on the surface of the adjacent layer so as to heat a predetermined location along the optical path of the guided light traveling within the optical waveguide layer; An optical waveguide element consisting of a diffraction grating provided on the surface of an adjacent layer. (2) The optical waveguide element according to claim 1, wherein a plurality of the heating means are provided so as to respectively heat a plurality of heating points arranged in a row.
JP60230290A 1985-04-08 1985-10-16 Lightguide element Pending JPS6289936A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60230290A JPS6289936A (en) 1985-10-16 1985-10-16 Lightguide element
EP86104707A EP0198380B1 (en) 1985-04-08 1986-04-07 Light beam scanning apparatus and read-out or recording apparatus using the same
DE8686104707T DE3686079T2 (en) 1985-04-08 1986-04-07 READING OR RECORDING DEVICE USING A LIGHT BEAM SENSOR.
US06/849,450 US4758062A (en) 1985-04-08 1986-04-08 Light beam scanning apparatus, and read-out apparatus and recording apparatus using same
US06/917,058 US4830448A (en) 1985-10-11 1986-10-09 Light modulator and wave guide device
DE8686114032T DE3686541T2 (en) 1985-10-11 1986-10-10 LIGHT MODULATOR AND WAVE GUIDE DEVICE.
EP86114032A EP0219069B1 (en) 1985-10-11 1986-10-10 Light modulator and wave guide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60230290A JPS6289936A (en) 1985-10-16 1985-10-16 Lightguide element

Publications (1)

Publication Number Publication Date
JPS6289936A true JPS6289936A (en) 1987-04-24

Family

ID=16905496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60230290A Pending JPS6289936A (en) 1985-04-08 1985-10-16 Lightguide element

Country Status (1)

Country Link
JP (1) JPS6289936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099963A2 (en) * 1999-11-11 2001-05-16 Nippon Sheet Glass Co., Ltd. Optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548542A (en) * 1977-06-22 1979-01-22 Nippon Telegr & Teleph Corp <Ntt> Optical controller wave guide
JPS5893035A (en) * 1981-11-28 1983-06-02 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPS58187912A (en) * 1982-04-28 1983-11-02 Matsushita Electric Ind Co Ltd Series-parallel converting device of optical signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548542A (en) * 1977-06-22 1979-01-22 Nippon Telegr & Teleph Corp <Ntt> Optical controller wave guide
JPS5893035A (en) * 1981-11-28 1983-06-02 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPS58187912A (en) * 1982-04-28 1983-11-02 Matsushita Electric Ind Co Ltd Series-parallel converting device of optical signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099963A2 (en) * 1999-11-11 2001-05-16 Nippon Sheet Glass Co., Ltd. Optical element
EP1099963A3 (en) * 1999-11-11 2002-08-21 Nippon Sheet Glass Co., Ltd. Optical element

Similar Documents

Publication Publication Date Title
US4758062A (en) Light beam scanning apparatus, and read-out apparatus and recording apparatus using same
US5835458A (en) Solid state optical data reader using an electric field for routing control
JP3522117B2 (en) Self-guided optical circuit
US7756376B2 (en) Optical functional waveguide, optical modulator, arrayed waveguide grating, and dispersion compensation circuit
US4848879A (en) Light modulating device
EP0571564A1 (en) Optical phased arrays
US5289454A (en) Optical disc addressing devices a method of use thereof
JP2009048021A (en) Light deflection element and light deflection module
EP0219069B1 (en) Light modulator and wave guide device
JP3160289B2 (en) Scanning device
JPS6289936A (en) Lightguide element
US5375138A (en) Optical cavities for lasers
JPH0616143B2 (en) Optical scanning device
JPS6287945A (en) Optical scanner
JPS61232424A (en) Optical scanning device
JPH01107213A (en) Optical waveguide element
JPS62244022A (en) Optical scanning and recording device
JPH04181231A (en) Waveguide type electrooptical device
JP3555888B2 (en) Self-guided optical circuit
JPH0616144B2 (en) Optical scanning device
JPS62244023A (en) Optical scanning reader
JPH065347B2 (en) Optical scanning device
JPS61232426A (en) Optical scanning and recording device
JPS62244021A (en) Optical scanner
JP2774346B2 (en) Spatial light matrix switch device