JPS628100A - Method and device for forming element - Google Patents

Method and device for forming element

Info

Publication number
JPS628100A
JPS628100A JP14736185A JP14736185A JPS628100A JP S628100 A JPS628100 A JP S628100A JP 14736185 A JP14736185 A JP 14736185A JP 14736185 A JP14736185 A JP 14736185A JP S628100 A JPS628100 A JP S628100A
Authority
JP
Japan
Prior art keywords
reactively
generate
bonding
combined
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14736185A
Other languages
Japanese (ja)
Inventor
今野 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14736185A priority Critical patent/JPS628100A/en
Publication of JPS628100A publication Critical patent/JPS628100A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は元素の生成理論に関するものである。必要な
元素を必要な時に必要な量を入手できるようにすること
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to the theory of formation of elements. The purpose is to make it possible to obtain the necessary elements at the required time and in the required amount.

この発明の理論的基盤は万物一元素生成理論による。そ
の一元素とは水素Hである。
The theoretical foundation of this invention is based on the theory of the creation of all elements. One such element is hydrogen H.

Hは中性子を伴なっておらずHeになってはじめて中性
子を伴ない、そして原子量はHの4倍となっている。こ
のことからHは陽子にも中性子にもなると考えられる。
H is not accompanied by neutrons, and does not become accompanied by neutrons until it becomes He, and its atomic weight is four times that of H. From this, it is thought that H can be both a proton and a neutron.

Hが4つ反応結合した時に2つは陽子的になり2つが中
性子的になったと考えられるのである。
It is thought that when four H atoms react and bond, two become protons and two become neutrons.

それは原子量の計算が合うこと、そしてHは中性子を伴
なっていなことからである。Hが中性子を伴なっていな
いということはHは1つで3つの役割を果していると考
えられるのである。Hは時間的経過とともに陽子的であ
ったり中性子的であったり電子的であったりしていると
考えられるのである。それでHは中性子を伴なっていな
いと考えるのである。不確定性原理がここで働くと考え
る。計測の段階では1つの元素が陽子的になったり中性
子的になったり電子的になるので確定できず、ただ陽子
は計測しやすいもので陽子としての反応が出たので陽子
と決めたものと考える。ここに水素の三変態性理論が成
り立つのである。Hは陽子となり中性子となり電子にな
るということである。化学的に見ると酸性となり中性と
なり塩基性となることであり、形態的に見ると金属とな
り半導体となり非金属となるということである。
This is because the atomic weight calculations are correct and H does not involve neutrons. The fact that H is not accompanied by neutrons means that H is thought to play three roles. It is thought that H becomes proton-like, neutron-like, or electronic-like over time. Therefore, we think that H is not accompanied by neutrons. I think the uncertainty principle is at work here. At the measurement stage, one element can become proton-like, neutron-like, or electronic-like, so it cannot be determined, but protons are easy to measure, and since a reaction occurred as a proton, it was decided that it was a proton. . This is where the three-transformation theory of hydrogen comes into existence. This means that H becomes a proton, a neutron, and an electron. Chemically, it becomes acidic, neutral, and basic, and morphologically, it becomes a metal, a semiconductor, and a nonmetal.

不確定性原理もこのHの三変態性をずばりと当ていると
見ることが出来る。H4個でHeが生成され、He5個
でNeが生成され、Ne1個とHe4個でArが生成さ
れ、Ar2個でKrが生成され、Kr1個とAr1個か
らXeが生成され、Xe1個とAr1個とNe1個とH
e2個からRnが生成されて、H、He、Ne、Ar、
Kr、Xe、Rnが基本元素となって万物を作り出して
いると考える。
The Uncertainty Principle can also be seen to be a direct application of the three metamorphoses of H. He is generated from 4 H, Ne is generated from 5 He, Ar is generated from 1 Ne and 4 He, Kr is generated from 2 Ar, Xe is generated from 1 Kr and 1 Ar, and 1 Xe and Ar1. piece, Ne1 piece and H
Rn is generated from two e pieces, H, He, Ne, Ar,
I believe that Kr, Xe, and Rn are the basic elements that create all things.

この理論は次の2つの事実から導きだしたものである。This theory is derived from the following two facts.

その1つはラザフォードの行なった からであ る。もう1つはオットー・ハーンとフリッツ・ストラス
マンの行なったUからBaが生成された事実である。こ
れらと自論のo族中性元素理論が基盤となっている。N
は3つのHeと1つのHから出来ており、そこへHeが
投入されたので軽いHが飛び出し4つのHeの結合とな
ったと考えられ、4つのHeの結合はOであり計算は合
うのである。また、UはXe1個とKr1個とHe1個
から出来ており、そこへ放射線の照射により、まずHe
が飛び出し、次に軽いKrが飛び出さされてXeが1つ
残ったと考えられ、そこへ放射線の中の1つであるHe
がXeと結合しBaが生成されたと考えたのである。こ
こでも計算は合うのである。
One of them is because Rutherford did it. Another is the fact that Otto Hahn and Fritz Strassmann created Ba from U. These and my own theory of O-group neutral elements form the basis. N
is made up of three He and one H, and since He was injected into it, the light H jumped out and became a bond of four He, and the bond of the four He is O, so the calculation is correct. . In addition, U is made up of one Xe, one Kr, and one He, and by irradiating it with radiation, it is first converted into He.
It is thought that the light Kr was ejected, leaving one Xe, and one of the radiations, He, was ejected.
He thought that Ba was produced by combining with Xe. The calculations are correct here as well.

なお、Nの原子量の13は、HeX3は原子量で見ると
Heは4となるので4×3=12であり、それにHの1
を足すと13になるという計算方法である。また、反応
結合とは核同士の結合を言う。計測原子量とこの規定原
子量ともいえるものとの差は付加原子量と考えている。
Note that the atomic weight of N, 13, is 4 x 3 = 12, since HeX3 has an atomic weight of 4, and 1 of H.
The calculation method is to add up to 13. In addition, reactive bonding refers to bonding between nuclei. The difference between the measured atomic weight and this standard atomic weight is considered to be the additional atomic weight.

原子番号が大きくなる程、付加原子量は多くなるのであ
る。また、自然放射線が強いのはPuどまりであるが、
それはPuがXe1個とKr1個及びHe2個から出来
ており、Xeは54とKrは36と大きい元素を含んで
いるためと考える、UはXe1個とKr1個とHe1個
で出来ており、ThはXe1個とKr1個から出来てお
り、それぞれ大きな元素を2つ持っている。Pa,Np
、AmはHを含んでいるので、Hの三変態性のため弱く
なっていると考える。
The larger the atomic number, the larger the amount of additional atoms. Also, only Pu has strong natural radiation,
I think this is because Pu is made up of 1 Xe, 1 Kr, and 2 He, and contains large elements such as 54 for Xe and 36 for Kr. U is made of 1 Xe, 1 Kr, and 1 He, and Th is made up of one Xe and one Kr, each having two large elements. Pa,Np
, Am contains H, so it is thought that it is weakened due to the trimorphism of H.

また安定も悪い。ThからAmはXeとRn系との2つ
の計算方法があるが元素数の少ない方を自然に選択して
いるようである。原子番号はHとHeの1と2の二進法
をとっているようである。そのため原子量は1増と3増
のくりかえしとなっている。反応炉は融合炉と違いあら
ゆる条件を作りだし、その元素の生成に適した状態を作
る必要がある。元素の生成表は本論による反応元素の種
類と数をまとめたものであり、想定される元素表は未に
発見されていないのか、あるいは自然界には存在しない
のか、あるいは地球上には無くて宇宙にはあるのか、あ
るいは人工元素となるかの反応元素の種類と数をまとめ
たものである。この方法により必要な元素は作ることが
出来ると考える。
It also has poor stability. There are two calculation methods for Am from Th: Xe and Rn systems, but it seems that the one with the smaller number of elements is naturally selected. The atomic number seems to be in the binary system of 1 and 2 for H and He. Therefore, the atomic weight increases by 1 and 3 repeatedly. Unlike a fusion reactor, a reactor requires creating all kinds of conditions to create conditions suitable for the production of the element. The elemental production table is a summary of the types and numbers of reaction elements according to this theory, and the assumed elemental table has not been discovered yet, does not exist in nature, or does not exist on earth and is in the universe. This is a summary of the types and numbers of reactive elements that exist in the world or are artificial elements. We believe that the necessary elements can be created using this method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応炉の側面透視図である。第2図は平面図で
ある。左側より反応元素を投入し各段階で回収していく
ことになる。 第2図はコイルの巻き方を説明している。 1・・・放射線発射装置 2・・・耐食容器 3・・・コイル 4・・・磁界調節器 5・・・電位コントローラー 6・・・コンプレッサー 7・・・分離膜又は板 8・・・電気放電器 9・・・冷却器 10・・・加熱器 11・・・耐圧容器 12・・・磁気の流れ 13・・・電流の流れる方向
FIG. 1 is a side perspective view of the reactor. FIG. 2 is a plan view. Reactive elements are introduced from the left side and collected at each stage. Figure 2 explains how to wind the coil. 1... Radiation emitting device 2... Corrosion resistant container 3... Coil 4... Magnetic field regulator 5... Potential controller 6... Compressor 7... Separation membrane or plate 8... Electric discharge Electric appliance 9...Cooler 10...Heater 11...Pressure container 12...Magnetic flow 13...Direction of current flow

Claims (1)

【特許請求の範囲】 1 Hを4個反応結合させ、Heを生成する方法。 2 He1個とH1個を反応結合させLiを生成する方
法。 3 He2個を反応結合させBeを生成する方法。 4 He2個とH1個を反応結合させBを生成する方法
。 5 He3個を反応結合させCを生成する方法。 6 He3個とH1個を反応結合させNを生成する方法
。 7 He4個を反応結合させてOを生成する方法。 8 He4個とH1個を反応結合させFを生成する方法
。 9 He5個を反応結合させNeを生成する方法。 10 Ne1個とH1個とを反応結合させNaを生成す
る方法。 11 Ne1個とHe1個を反応結合させMgを生成す
る方法。 12 Ne1個とHe1個及びH1個をAlを生成する
方法。 13 Ne1個とHe2個を反応結合させSiを生成す
る方法。 14 Ne1個とHe2個及びH1個を反応結合させP
を生成する方法。 15 Ne1個とHe3個を反応結合させSを生成する
方法。 16 Ne1個とHe3個及びH1個を反応結合させC
lを生成する方法。 17 Ne1個とHe4個を反応結合させArを生成す
る方法。 18 Ar1個とH1個を反応結合させKを生成する方
法。 19 ArとHeを1個ずつ反応結合させCaを生成す
る方法。 20 ArとHeとHをそれぞれ1個ずつ反応結合させ
Scを生成する方法。 21 Ar1個とHe2個を反応結合させTiを生成す
る方法。 22 Ar1個とHe2個及びH1個を反応結合させV
を生成する方法。 23 Ar1個とHe3個を反応結合させCrを生成す
る方法。 24 Ar1個とHe3個及びH1個を反応結合させM
nを生成する方法。 25 Ar1個とHe4個を反応結合させFeを生成す
る方法。 26 Ar1個とHe4個及びH1個を反応結合させC
oを生成する方法。 27 Ar1個とNe1個を反応結合させNiを生成す
る方法。 28 ArとNeとHを各1個ずつ反応結合してCuを
生成する方法。 29 ArとNeとHeを各1個ずつ反応結合させZn
を生成する方法。 30 ArとNeとHeとHを各1個ずつ計4個を反応
結合させGaを生成する方法。 31 ArとNeを1個ずつHeを2個で反応結合させ
Gaを生成する方法。 32 ArとNeを1個ずつHeを2個そしてHを1個
を反応結合してAsを生成する方法。 33 ArとNeを各1個とHe3個を反応結合してS
eを生成する方法。 34 ArとNeを各1個とHeを3個そしてHを1個
を反応結合してBrを生成する方法。 35 Ar2個を反応結合してKrを生成する方法。 36 KrとHの各1個を反応結合してRbを生成する
方法。 37 KrとHeの各1個を反応結合してSrを生成す
る方法。 38 KrとHeとHを各1個ずつを反応結合させYを
生成する方法。 39 Kr1個とHe2個を反応結合させZrを生成す
る方法。 40 Kr1個とHe2個とH1個を反応結合してNb
を生成する方法。 41 Kr1個とHe3個を反応結合させMoを生成さ
せる方法。 42 Kr1個とHe3個とH1個を反応結合させTc
を生成させる方法。 43 Kr1個とHe4個を反応結合させRuを生成さ
せる方法。 44 Kr1個とHe4個とH1個を反応結合させRh
を生成させる方法。 45 Kr1個とNe1個を反応結合させPdを生成す
る方法。 46 KrとNeとHの各1個を反応結合してAgを生
成させる方法。 47 KrとNeとHeの各1個を反応結合してCdを
生成させる方法。 48 KrとNeとHeとHを各1個にて反応結合させ
てInを生成する方法。 49 KrとNeを各1個Heを2個を反応結合させて
Snを生成する方法。 50 KrとNeを各1個とHe2個とH1個とを反応
結合してSbを生成させる方法。 51 KrとNeを各1個とHeを3個で反応結合させ
てTeを生成させる方法。 52 KrとNeを各1個とHe3個とH1個を反応結
合させてIを生成させる方法。 53 KrとArを各1個で反応結合させXeを生成さ
せる方法。 54 XeとHを各1個で反応結合させCsを生成させ
る方法。 55 XeとHe各1個を反応結合させBaを生成する
方法。 56 XeとHeとH各1個を反応結合させLaを生成
する方法。 57 Xe1個He2個で反応結合させCeを生成させ
る方法。 58 Xe1個とHe2個とH1個で反応結合させPr
を生成させる方法。 59 Xe1個とHe3個で反応結合させNdを生成さ
せる方法。 60 Xe1個とHe3個とH1個で反応結合させPm
を生成させる方法。 61 Xe1個とHe4個で反応結合させSmを生成さ
せる方法。 62 Xe1個とHe4個とH1個で反応結合させてE
uを生成させる方法。 63 Xe1個とNe1個で反応結合させGdを生成さ
せる方法。 64 Xe1個とNe1個とH1個で反応結合させTb
を生成させる方法。 65 Xe1個とNe1個He1個で反応結合させDy
を生成させる方法。 66 Xe1個とNe1個とHe1個とH1個で反応結
合させHoを生成させる方法。 67 Xe1個とNe1個とHe2個の割り合いて反応
結合させErを生成させる方法。 68 Xe1個とNe1個とHe2個とH1個で反応結
合させTmを生成させる方法。 69 Xe1個とNe1個とHe3個で反応結合させY
bを生成させる方法。 70 XeとNeを各1個とHe3個とH1個で反応結
合させてLuを生成させる方法。 71 Xe1個とAr1個で反応結合させHfを生成さ
せる方法。 72 Xe1個とAr1個とH1個で反応結合させTa
を生成させる方法。 73 Xe1個とAr1個とHe1個で反応結合させW
を生成させる方法。 74 Xe1個とAr1個とHe1個とH1個で反応結
合させReを生成させる方法。 75 Xe1個とAr1個とHe2個との割合で反応結
合させOsを生成させる方法。 76 Xe1個とAr1個とHe2個とH1個で反応結
合させIrを生成させる方法。 77 Xe1個とAr1個とHe3個で反応結合させP
tを生成させる方法。 78 Xe1個とAr1個とHe3個とH1個で反応結
合させAuを生成させる方法。 79 Xe1個とAr1個とHe4個で反応結合させH
gを生成させる方法。 80 Xe1個とAr1個とHe4個とH1個で反応結
合させTlを生成させる方法。 81 Xe1個とAr1個とNe1個で反応結合させP
bを生成させる方法。 82 Xe1個とAr1個とNe1個とH1個で反応結
合させてBiを生成させる方法。 83 Xe1個とAr1個とNe1個とHe1個で反応
結合させてPoを生成させる方法。 84 Xe1個とAr1個とNe1個とHe1個とH1
個で反応結合させAtを生成させる方法。 85 Xe1個とAr1個とNe1個とHe2個で反応
結合させRnを生成させる方法。 86 Rn1個とH1個で反応結合させFrを生成させ
る方法。 87 Rn1個とHe1個で反応結合させRaを生成さ
せる方法。 88 Rn1個とHe1個とH1個で反応結合させAc
を生成させる方法。 89 Xe1個とKr1個で反応結合させThを生成さ
せる方法。 90 Xe1個とKr1個とH1個で反応結合させPa
を生成させる方法。 91 Xe1個とKr1個とHe1個で反応結合させU
を生成させる方法。 92 Xe1個とKr1個とHe1個とH1個で反応結
合させNpを生成させる方法。 93 Xe1個とKr1個とHe2個で反応結合させP
uを生成させる方法。 94 Xe1個とKr1個とHe2個とH1個で反応結
合させAmを生成させる方法。 95 Rn1個とNe1個で反応結合させCmを生成さ
せる方法。 96 Rn1個とNe1個とH1個で反応結合させBk
を生成させる方法。 97 Rn1個とNe1個とHe1個で反応結合させC
fを生成させる方法。 98 Rn1個とNe1個とHe1個とH1個で反応結
合させEsを生成させる方法。 99 Rn1個とNe1個とHe2個で反応結合させF
mを生成させる方法。 100 Rn1個とNe1個とHe2個とH1個で反応
結合させMdを生成させる方法。 101 Rn1個とNe1個とHe3で反応結合させN
oを生成させる方法。 102 Rn1個とNe1個とHe3個とH1個で反応
結合させLrを生成させる方法。 103 H、He、Ne、Ar、Kr、Xe、Rnの基
本7元素のいろいろな反応結合あるいは反応分離 によって、それなりの元素を生成させる方 法。 104 反応結合あるいは反応分離の装置において磁気
拘束、磁気泳動、電位、磁界、放射 線、電気放電、高圧、負圧、高温、低温、 等の創出機能とその調節装置からなる反応 炉の方法。 105 特許請求の範囲104の方法による反応炉にお
いて磁気拘束、磁気泳動、電位、磁 界、放射線、電気放電、高圧、負圧、高温、低温、等の
創出機能とその調節装置から なる反応炉の装置。
[Claims] A method for producing He by reactively bonding four 1 H atoms. 2. A method of generating Li by reacting and bonding one He and one H. 3 A method to generate Be by reactively combining two He. 4 A method of producing B by reacting and bonding two He and one H. 5 A method to generate C by reacting and combining three He. 6 A method of generating N by reacting and bonding 3 He and 1 H. 7 A method to generate O by reactively combining four He. 8 A method of producing F by reacting and bonding 4 He and 1 H. 9 A method to generate Ne by reactively combining 5 He. 10 A method of generating Na by reacting and bonding one Ne and one H. 11 A method of producing Mg by reactively combining one Ne and one He. 12 A method of generating Al from 1 Ne, 1 He, and 1 H. 13 A method of producing Si by reacting and bonding one Ne and two He. 14 Reactively combine 1 Ne, 2 He, and 1 H to P
How to generate. 15 A method of generating S by reacting and bonding one Ne and three He. 16 Reactively combine 1 Ne with 3 He and 1 H to form C
How to generate l. 17 A method of generating Ar by reacting and bonding 1 Ne and 4 He. 18 A method of producing K by reactively bonding one Ar and one H. 19 A method of generating Ca by reacting and bonding Ar and He one by one. 20 A method of generating Sc by reactively bonding one each of Ar, He, and H. 21 A method of producing Ti by reactively bonding one Ar and two He. 22 By reacting and bonding 1 Ar, 2 He and 1 H, V
How to generate. 23 A method of producing Cr by reacting and bonding one Ar and three He. 24 By reacting and bonding 1 Ar, 3 He and 1 H, M
How to generate n. 25 A method of producing Fe by reactively combining one Ar and four He. 26 By reacting and bonding 1 Ar, 4 He and 1 H, C
How to generate o. 27 A method of producing Ni by reactively bonding one Ar and one Ne. 28 A method of producing Cu by reactively bonding one each of Ar, Ne, and H. 29 Reactively bond one each of Ar, Ne, and He to Zn
How to generate. 30 A method to generate Ga by reacting and bonding a total of four elements, one each of Ar, Ne, He, and H. 31 A method of generating Ga by reacting and bonding Ar and Ne with one He and two He. 32 A method of producing As by reactively combining Ar and Ne, two He, and one H. 33 Reactively combine one each of Ar and Ne with three He to form S
How to generate e. 34 A method of producing Br by reactively bonding one each of Ar and Ne, three He and one H. 35 A method of producing Kr by reactively bonding two Ar. 36 A method of producing Rb by reactively combining one each of Kr and H. 37 A method of producing Sr by reactively combining one each of Kr and He. 38 A method of producing Y by reacting and bonding one each of Kr, He, and H. 39 A method of producing Zr by reactively combining one Kr and two He. 40 Reactively combine 1 Kr, 2 He, and 1 H to form Nb
How to generate. 41 A method of generating Mo by reacting and bonding one Kr and three He. 42 1 Kr, 3 He and 1 H are combined by reaction to form Tc
How to generate. 43 A method of producing Ru by reactively combining one Kr and four He. 44 Rh by reacting and bonding 1 Kr, 4 He, and 1 H
How to generate. 45 A method of generating Pd by reacting and bonding one Kr and one Ne. 46 A method in which one each of Kr, Ne, and H are reactively combined to produce Ag. 47 A method of generating Cd by reactively combining Kr, Ne, and He. 48 A method of producing In by reacting and combining Kr, Ne, He, and H. 49 A method of producing Sn by reactively combining one each of Kr and Ne and two He. 50 A method of producing Sb by reactively combining one each of Kr and Ne, two He and one H. 51 A method of producing Te by reacting and combining one each of Kr and Ne with three He. 52 A method in which I is produced by reactively combining one each of Kr and Ne, three He, and one H. 53 A method of producing Xe by reactively combining one Kr and one Ar. 54 A method in which one each of Xe and H are reactively combined to produce Cs. 55 A method of producing Ba by reactively combining one each of Xe and He. 56 A method of generating La by reacting and bonding one each of Xe, He, and H. 57 A method in which one Xe and two He are reactively combined to produce Ce. 58 1 Xe, 2 He and 1 H are combined to form a Pr
How to generate. 59 A method in which one Xe and three He are reactively combined to generate Nd. 60 Reactively combine 1 Xe, 3 He, and 1 H to create Pm
How to generate. 61 A method in which one Xe and four He are reactively combined to generate Sm. 62 Reactively combine 1 Xe, 4 He, and 1 H to form E
How to generate u. 63 A method in which one Xe and one Ne are reactively combined to generate Gd. 64 Reactively combine 1 Xe, 1 Ne, and 1 H to form Tb
How to generate. 65 Reactively combine 1 Xe, 1 Ne, and 1 He to form Dy
How to generate. 66 A method in which 1 Xe, 1 Ne, 1 He, and 1 H are combined in a reaction to generate Ho. 67 A method of reacting and combining 1 Xe, 1 Ne, and 2 He to generate Er. 68 A method in which one Xe, one Ne, two He, and one H are combined in a reaction to generate Tm. 69 Reactively combine 1 Xe, 1 Ne, and 3 He to form Y
How to generate b. 70 A method in which Lu is produced by reactively combining one each of Xe and Ne, three He, and one H. 71 A method in which one Xe and one Ar are combined in a reaction to generate Hf. 72 Reactively combine 1 Xe, 1 Ar, and 1 H to form Ta
How to generate. 73 Reactively combine 1 Xe, 1 Ar, and 1 He with W
How to generate. 74 A method in which one Xe, one Ar, one He, and one H are combined in a reaction to generate Re. 75 A method in which Os is generated by reactively combining 1 Xe, 1 Ar, and 2 He. 76 A method in which one Xe, one Ar, two He, and one H are combined in a reaction to generate Ir. 77 Reactively combine 1 Xe, 1 Ar, and 3 He to P
How to generate t. 78 A method in which one Xe, one Ar, three He, and one H are combined in a reaction to generate Au. 79 Reactively combine 1 Xe, 1 Ar, and 4 He to form H
How to generate g. 80 A method in which one Xe, one Ar, four He, and one H are combined in a reaction to generate Tl. 81 Reactively combine 1 Xe, 1 Ar, and 1 Ne to P
How to generate b. 82 A method in which 1 Xe, 1 Ar, 1 Ne, and 1 H are combined in a reaction to generate Bi. 83 A method in which one Xe, one Ar, one Ne, and one He are combined in a reaction to generate Po. 84 1 Xe, 1 Ar, 1 Ne, 1 He, and H1
A method of reacting and bonding two to produce At. 85 A method in which one Xe, one Ar, one Ne, and two He are combined to form Rn. 86 A method in which one Rn and one H are reactively combined to produce Fr. 87 A method in which one Rn and one He are reactively combined to generate Ra. 88 Reactively combine 1 Rn, 1 He, and 1 H to Ac
How to generate. 89 A method in which one Xe and one Kr are reactively combined to generate Th. 90 Reactively combine 1 Xe, 1 Kr, and 1 H to form Pa
How to generate. 91 Reactively combine 1 Xe, 1 Kr, and 1 He to form U
How to generate. 92 A method in which one Xe, one Kr, one He, and one H are combined in a reaction to generate Np. 93 Reactively combine 1 Xe, 1 Kr, and 2 He to P
How to generate u. 94 A method in which one Xe, one Kr, two He, and one H are combined to form Am. 95 A method in which one Rn and one Ne are reactively combined to generate Cm. 96 Reactively combine 1 Rn, 1 Ne, and 1 H to form Bk
How to generate. 97 Reactively combine one Rn, one Ne, and one He with C
How to generate f. 98 A method in which one Rn, one Ne, one He, and one H are combined to form Es. 99 Reactively combine one Rn, one Ne, and two He to F
How to generate m. 100 A method in which one Rn, one Ne, two He, and one H are combined to form Md. 101 Reactively combine one Rn, one Ne, and He3 to form N
How to generate o. 102 A method in which one Rn, one Ne, three He, and one H are combined in a reaction to generate Lr. 103 A method of producing certain elements through various reactive combinations or reactive separations of the seven basic elements: H, He, Ne, Ar, Kr, Xe, and Rn. 104 A reaction reactor method consisting of functions for creating magnetic confinement, magnetophoresis, potential, magnetic field, radiation, electric discharge, high pressure, negative pressure, high temperature, low temperature, etc. and adjustment devices for such functions in a reaction coupling or reaction separation device. 105 A reactor device comprising functions for creating magnetic restraint, magnetophoresis, electric potential, magnetic field, radiation, electric discharge, high pressure, negative pressure, high temperature, low temperature, etc., and a regulating device thereof in a reactor according to the method of claim 104. .
JP14736185A 1985-07-04 1985-07-04 Method and device for forming element Pending JPS628100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736185A JPS628100A (en) 1985-07-04 1985-07-04 Method and device for forming element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736185A JPS628100A (en) 1985-07-04 1985-07-04 Method and device for forming element

Publications (1)

Publication Number Publication Date
JPS628100A true JPS628100A (en) 1987-01-16

Family

ID=15428462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736185A Pending JPS628100A (en) 1985-07-04 1985-07-04 Method and device for forming element

Country Status (1)

Country Link
JP (1) JPS628100A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342433B1 (en) 1998-02-18 2002-01-29 Canon Kabushiki Kaisha Composite member its separation method and preparation method of semiconductor substrate by utilization thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342433B1 (en) 1998-02-18 2002-01-29 Canon Kabushiki Kaisha Composite member its separation method and preparation method of semiconductor substrate by utilization thereof
US6597039B2 (en) 1998-02-18 2003-07-22 Canon Kabushiki Kaisha Composite member, its separation method, and preparation method of semiconductor substrate by utilization thereof

Similar Documents

Publication Publication Date Title
Energy Technology
Roberts et al. Integrated nucleosynthesis in neutrino-driven winds
Barnett et al. Ultra-heavy particle production from heavy partons at hadron colliders
Lynch Practical handbook of materials science
Korhonen et al. Vacancy-formation energies for fcc and bcc transition metals
Willey et al. Decays K±→ π±l+ l− and limits on the mass of the neutral Higgs boson
CN115667799A (en) Magnetohydrodynamic hydrogen electric power generator
Adamian et al. Possibilities of synthesis of new superheavy nuclei in actinide-based fusion reactions
Kleinknecht et al. Experimental determination of weak mixing angles in the six quark scheme
Adams et al. The structure of dehydrated Na zeolite A (SiAl= 1.09) by neutron profile refinement
Coey Intrinsic magnetic properties of compounds with the Nd2Fe14B structure
Oesterreicher et al. Magnetic studies on RCo 3 B 2 (R= Sm, Gd, Er)
Nowik et al. Magnetism and hyperfine interactions in rare earth-transition metal alloys
Cheng Tabulation of astrophysical constraints on axions and Nambu-Goldstone bosons
JPS628100A (en) Method and device for forming element
Cabezas et al. Atomic Beam Study of the Hyperfine Structure of Thulium-170
Alexander et al. Measurement of the f0 (1270) polarization in the J/ψ→ f0 γ decay
Clynes A Pinch of Fusion: Zap Energy's new Z-pinch reactor will demonstrate a simpler approach to an elusive goal
Seaborg The transuranium elements
Fritzsch et al. Isoscalar spin-zero partners of the weak bosons and their radiative decays
Dragon et al. Radiative scale fixing and the mass spectrum in models based on SU (N, 1)-minimal supergravity
Gschneidner Rare earths: the fraternal fifteen
Chen et al. Lifetime of the 1s2p3d F 9/2 4 metastable state of Li-like ions
Cacciamani Summary report of CALPHAD XLIV–Loano, Italy, 2015
Vila New dynamic aspects of intertropical F2 ionization