JPS6281008A - Amorphous high saturable magnetic flux density material - Google Patents

Amorphous high saturable magnetic flux density material

Info

Publication number
JPS6281008A
JPS6281008A JP60220112A JP22011285A JPS6281008A JP S6281008 A JPS6281008 A JP S6281008A JP 60220112 A JP60220112 A JP 60220112A JP 22011285 A JP22011285 A JP 22011285A JP S6281008 A JPS6281008 A JP S6281008A
Authority
JP
Japan
Prior art keywords
magnetic
amorphous
alloy
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60220112A
Other languages
Japanese (ja)
Inventor
Takao Imagawa
尊雄 今川
Masaaki Sano
雅章 佐野
Katsuya Mitsuoka
光岡 勝也
Mitsuo Sato
佐藤 満雄
Shinji Narushige
成重 真治
Masanobu Hanazono
雅信 華園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60220112A priority Critical patent/JPS6281008A/en
Publication of JPS6281008A publication Critical patent/JPS6281008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide an amorphous magnetic material having high saturated magnetic flux density and low coercive force by using high Co density rare earth metals-Co alloy having specific composition. CONSTITUTION:An amorphous cobalt alloy having a composition formula of Co1-a-bMaXb and satisfying 0<=a, b<=0.1, 0.04<=a+b<=0.1 (where M is at least one of Y and La, and X is at least one of Ta, W, Nb, Mo, V and Cr) is useful as a magnetic core magnetic material having a larger saturated magnetic flux density (15,000-16,000 gausses) than conventional NiFe, Co-Zr, thereby performing a thin-film magnetic head which can record in high density.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高飽和磁束密度と低い保磁力を有する非晶質磁
性材料に係り、特に薄膜磁気ヘッド用コアに用いるのに
好適なコバルト合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an amorphous magnetic material having a high saturation magnetic flux density and a low coercive force, and particularly to a cobalt alloy suitable for use in a core for a thin film magnetic head.

〔発明の背景〕[Background of the invention]

従来、薄膜磁気ヘッド用コア材に適用される保磁力He
の小さい軟磁性材料には、N i −F e合金に代表
される結晶質磁性材料と、Co−Nb−Zr合金等の非
晶質材料が使われている。Ni−Fe合金は化学的、熱
的に安定であり、一方C0−Nb−Zr合金は作製し易
く、透磁率が高い。
Conventionally, coercive force He applied to core materials for thin film magnetic heads
As soft magnetic materials with a small value, crystalline magnetic materials such as Ni-Fe alloys and amorphous materials such as Co-Nb-Zr alloys are used. Ni-Fe alloys are chemically and thermally stable, while CO-Nb-Zr alloys are easy to fabricate and have high magnetic permeability.

これら材料の飽和磁化は、いずれもtooooガウス程
度である。
The saturation magnetization of these materials is about too Gauss.

しかし、近年磁気記録装置は大容量化し、一方で装置自
体の省スペース、低コスト化が求められている。このた
め磁気記録密度の増大が重要な課題となってきた。記録
密度の増大は、第1図にTwで示すトラック幅の減少に
よるトラック密度の増大及び記録ビット長の縮小による
線密度の増大により実現される。ここで媒体への記録波
長の減少には、薄膜磁気ヘッドのコア厚の減少が必要で
あることが特公昭58−40245号公報に示されてい
る。すなわち、第2図の薄膜磁気ヘッド断面において、
上部コア厚tu、下部コア厚1m、ギャップ長tg、記
録波長λとの間に、λ)1.+t、@+tmなる関係が
成立する。このため記録波長λを減少させるには、コア
厚tu及びta、ギャップ長tgの減少が必要である。
However, in recent years, the capacity of magnetic recording devices has increased, and at the same time, there is a demand for space saving and cost reduction of the devices themselves. For this reason, increasing magnetic recording density has become an important issue. The increase in recording density is achieved by increasing the track density by decreasing the track width and increasing the linear density by decreasing the recording bit length, as indicated by Tw in FIG. Here, it is shown in Japanese Patent Publication No. 40245/1983 that in order to reduce the recording wavelength on the medium, it is necessary to reduce the core thickness of the thin film magnetic head. That is, in the cross section of the thin film magnetic head in FIG.
Between the upper core thickness tu, the lower core thickness 1 m, the gap length tg, and the recording wavelength λ, λ)1. +t, @+tm relationships are established. Therefore, in order to decrease the recording wavelength λ, it is necessary to decrease the core thicknesses tu and ta and the gap length tg.

しかしコア厚を減少させると、書込時ヘッド先端より媒
体に放出される書込磁界が減少する。このためコイル3
に流す書込電流を増加させると磁気コア1内で磁束が飽
和し、充分な書込磁界が得られないこととなる。符号2
はコイル端子、4は基板を示している。磁気コア内での
磁束の飽和限度は、コア形状が同じならコア材料の飽和
密度が大きいほど高い。
However, when the core thickness is reduced, the write magnetic field emitted from the tip of the head to the medium during writing is reduced. Therefore, coil 3
If the write current applied to the magnetic core 1 is increased, the magnetic flux in the magnetic core 1 will be saturated, and a sufficient write magnetic field will not be obtained. code 2
4 indicates a coil terminal, and 4 indicates a board. The saturation limit of the magnetic flux within the magnetic core increases as the saturation density of the core material increases, provided the core shape is the same.

薄膜磁気ヘッド用80%NiFe合金(パーマロイ)の
飽和磁束密度は10000ガウスであり、高記録密度化
に伴うコア厚減少を補うためにはパーマロイ以上の飽和
磁束密度を有する、高飽和磁束密度材料を磁気コアに採
用する必要がある。また同時に読出しに充分な透磁率を
確保するため、コア材料の保磁力Heは30e以下とす
る必要がある。
The saturation magnetic flux density of 80% NiFe alloy (permalloy) for thin-film magnetic heads is 10,000 Gauss, and in order to compensate for the decrease in core thickness due to higher recording densities, it is necessary to use high saturation magnetic flux density materials that have a saturation magnetic flux density higher than permalloy. It is necessary to adopt it in the magnetic core. At the same time, in order to ensure sufficient magnetic permeability for reading, the coercive force He of the core material must be 30e or less.

結晶質材料で飽和磁束密度(以下Bsと略す)がtoo
oo以上となるのは、Feを中心とした合金系であるF
e−8i、Fe−Ti等であるが、これらは本質的にさ
び易い欠点がある。これに対しCOを主成分とし添加元
素を10原子%以下加えて非晶質化したCO系非晶質磁
性合金がある。
The saturation magnetic flux density (hereinafter abbreviated as Bs) of crystalline materials is too
oo or more is F, which is an alloy system centered on Fe.
e-8i, Fe-Ti, etc., but these inherently have the disadvantage of being easily rusted. On the other hand, there is a CO-based amorphous magnetic alloy in which CO is the main component and 10 atomic % or less of additional elements are added to make it amorphous.

Go−Zr系が代表的であり、C0−5%Zrにおいて
B s 15000ガウスを得ている。非晶質材料は結
晶質材料に比べ、以下の特徴がある。すなわち1)非晶
質であり結晶磁気異方性がない。2)非晶質金属は結晶
質に比べ3〜5倍電気抵抗が高い。3)硬度が高い等で
ある。このため非晶質磁性材料には1)より結晶粒径、
配向制御の煩しさがなく、2)により渦電流損失に伴う
高周波透磁率低下が少なく、3)により耐久性に優れる
利点が生ずる。
The Go-Zr system is typical, and a B s of 15,000 Gauss has been obtained in C0-5% Zr. Amorphous materials have the following characteristics compared to crystalline materials. Namely: 1) It is amorphous and has no crystal magnetic anisotropy. 2) Amorphous metals have 3 to 5 times higher electrical resistance than crystalline metals. 3) High hardness, etc. For this reason, amorphous magnetic materials have 1) crystal grain size,
There is no troublesome orientation control, 2) there is little reduction in high frequency magnetic permeability due to eddy current loss, and 3) there are advantages of excellent durability.

非晶質磁性合金には作製法により、溶湯急冷法を用い作
製された金属−メタロイド系非晶質合金とスパッタリン
グ法または真空蒸着法により作製された金属−金属系非
晶質合金がある。前者は主にトランス及びバルク型磁気
ヘッドの積層コアに用いられているが、この方法では薄
膜磁気ヘッドは作製できない、後者はFe、Co及びN
iにそれらより原子半径の大きい金属を合金化させ、非
晶質化するものである。スパッタリング法では、Fe、
Go及びNiでターゲットを作製しターゲット表面に添
加元素のチップを置きスパッタリングすることにより合
金膜を作製し、真空蒸着法では、Fe、Co及びNiと
合金成分を同時に蒸発させ、基板上で合金化させる。単
純金属の飽和磁化はF e  (22000ガウス) 
、 Co  (17000ガウス)、及びNi  (6
000ガウス)であり、高BS材料の開発にはFe及び
coが選択される。しかし、Feを基体とした合金は耐
食性に問題があり、高Bs材料として検討されているの
はほとんどc。
Depending on the manufacturing method, the amorphous magnetic alloy includes a metal-metalloid amorphous alloy manufactured by a molten metal quenching method and a metal-metallic amorphous alloy manufactured by a sputtering method or a vacuum evaporation method. The former is mainly used for laminated cores of transformers and bulk-type magnetic heads, but thin-film magnetic heads cannot be manufactured using this method.
This is done by alloying i with a metal having a larger atomic radius than those metals and making it amorphous. In the sputtering method, Fe,
An alloy film is created by creating a target with Go and Ni, placing chips of additive elements on the target surface, and sputtering.In the vacuum evaporation method, Fe, Co, and Ni and the alloy components are simultaneously evaporated and alloyed on the substrate. let The saturation magnetization of a simple metal is F e (22000 Gauss)
, Co (17000 Gauss), and Ni (6
000 Gauss), and Fe and Co are selected for the development of high BS materials. However, alloys based on Fe have problems with corrosion resistance, and most of the alloys being studied as high Bs materials are c.

系非晶質合金である。It is an amorphous alloy.

CO系非晶質合金はスパッタリング法により作製された
Go−Zr、Co−Zr−Ta等が検討されている。Z
rに加え、Taを合金化させるのはCo−Zrの磁歪2
X10−8が大きく、膜応力との磁気弾性効果により磁
気ヘッドの磁気特性を低下させる場合があるため、磁歪
を負にする働きのあるTaを合金化させ磁歪を低減する
目的がある。J、Appl、Phys、55 (198
4) 、 1769に示されるようにCo−Nb+ C
o−Ta、Co−W非晶質合金の磁歪は負であり、同じ
5A、6A族であるV、C:r、’Moも非晶質Go合
金の磁歪を負にする働きがある。これら5A、6A族元
素をCo−Zrに添加することにより磁歪を低減できる
が、添加した元素量に応じBsは低下する。
As CO-based amorphous alloys, Go-Zr, Co-Zr-Ta, and the like produced by sputtering are being considered. Z
In addition to r, it is Co-Zr magnetostriction 2 that alloys Ta.
Since X10-8 is large and may deteriorate the magnetic properties of the magnetic head due to the magnetoelastic effect with film stress, the purpose is to alloy Ta, which has the function of making magnetostriction negative, to reduce magnetostriction. J, Appl, Phys, 55 (198
4) Co-Nb+C as shown in 1769
The magnetostriction of the o-Ta and Co-W amorphous alloys is negative, and V, C:r, and 'Mo, which belong to the same 5A and 6A groups, also have the function of making the magnetostriction of the amorphous Go alloy negative. Although magnetostriction can be reduced by adding these 5A and 6A group elements to Co-Zr, Bs decreases depending on the amount of added elements.

ところで、同じ非晶質CO系磁性合金でありながら全く
性質の異なる合金系がある。希土類−〇〇系非晶質合金
は光磁気記録媒体として研究されており、垂直磁気異方
性を持ち、保磁力は数百エルステッドと大きい。Gd−
Co、Dy−Co。
By the way, there are alloy systems that are the same amorphous CO-based magnetic alloy but have completely different properties. Rare earth-XX series amorphous alloys are being studied as magneto-optical recording media, have perpendicular magnetic anisotropy, and have a large coercive force of several hundred oersteds. Gd-
Co, Dy-Co.

Ho −G O等が代表的なものである。この系の合金
としてPhys、Rev、Bよ7  (1978) 、
 2215にG o −Y、Co−La、及びCo −
S c系非晶質磁性合金の磁気モーメントを調べた例が
あるが、高CO側の磁気特性については不明であった。
Typical examples include Ho-G O. As an alloy of this system, Phys, Rev. B7 (1978),
2215 with Go-Y, Co-La, and Co-
Although there are examples of investigating the magnetic moment of S c -based amorphous magnetic alloys, the magnetic properties on the high CO side were unknown.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高い飽和磁束密度を有する磁気コア用軟
磁性材料を提供することにある。
An object of the present invention is to provide a soft magnetic material for a magnetic core having a high saturation magnetic flux density.

〔発明の概要〕[Summary of the invention]

本発明者らは高CO濃度の希土類−〇〇系合金の光磁気
効果を調査するため、Co −Y系合金をスパッタリン
グ法により作製しその磁気特性を調べGo−Y系非晶質
合金の困難軸方向の保磁力が20e以下になることを見
出した。YはGd。
In order to investigate the magneto-optical effect of rare earth-XX alloys with high CO concentrations, the present inventors fabricated Co-Y alloys by sputtering and investigated their magnetic properties, which are difficult to achieve with Go-Y amorphous alloys. It has been found that the coercive force in the axial direction is 20e or less. Y is Gd.

Dy及びHaと同じ希土類に属し、G d Co sと
同じ< Y Co s等の金属間化合物を形成すること
から、Go−Y系非晶質合金が軟磁性を示すことは推測
され難い。そこでGo−Y系合金が軟磁性を示す原因を
考察する。
Since it belongs to the same rare earth group as Dy and Ha and forms intermetallic compounds such as < Y Cos, which is the same as G d Cos, it is difficult to imagine that the Go-Y based amorphous alloy exhibits soft magnetism. Therefore, the reason why the Go-Y alloy exhibits soft magnetism will be considered.

希土類元素は表1に示すようにイオン半径がCO8+の
0.53(人)に比べ大きい。一般に非晶質を形成する
合金系は、互いのイオン半径が大きいことが必要でその
差が大きいほど非晶質を形成する濃度差が広い。すなわ
Coとのイオン半径差が大きい元素はど少量の添加量で
COを非晶質化する。従って希土類元素は、COを非晶
質化し易いと考えられる。ところで表1より、Y、La
As shown in Table 1, the ionic radius of rare earth elements is larger than that of CO8+, which is 0.53 (human). In general, alloy systems that form an amorphous state need to have large ionic radii, and the larger the difference, the wider the concentration difference that forms the amorphous state. In other words, an element having a large difference in ionic radius from Co can make CO amorphous by adding a small amount. Therefore, it is considered that rare earth elements tend to make CO amorphous. By the way, from Table 1, Y, La
.

Eu及びLuは磁気モーメントを持たない。一方。Eu and Lu have no magnetic moment. on the other hand.

光磁気記録媒体に用いられるGd、Tb、Ha等はすべ
て磁気モーメントを持つ。希土類とGoの磁気モーメン
トは互いに逆方向を向き、磁化を相殺し合うので1合金
金体は自発磁化の低いフェリ磁性体となることが知られ
ている。すなわち。
Gd, Tb, Ha, etc. used in magneto-optical recording media all have magnetic moments. It is known that the magnetic moments of the rare earth and Go point in opposite directions and cancel each other out, so that the 1-alloy gold body becomes a ferrimagnetic material with low spontaneous magnetization. Namely.

Gd等希土類イオンの持つ磁気モーメントは、周囲のC
Oイオンの持つ磁気モーメントと干渉し合い(交換相互
作用)互いの磁化を逆に向けようとする。従っである希
土類イオンの磁気モーメントを反転させるためには、そ
の囲りの多数のCOイオンの磁気モーメントも同時に反
転させることが必要となり、従って保磁力は増大すると
考えられる。一方、Y、La、Eu及びLuでは希土類
−Co間の相互作用はなく、磁化反転は容易と考えられ
その結果磁力が低下する。このことを確認するため、磁
気モーメントを有するSmと磁気モーメントのないLa
をCOに合金化させた非晶質材料につき、それらの磁気
特性を調査した(実施例2及び3)。その結果、G o
 −S m系では軟磁性は得られず、Co −L a系
では保磁力30e以下、B s 16000ガウスを得
た。この値はGo−Zr系のB s 15000ガウス
を上回る。以上により、Eu及びLuでも同様にCoを
非晶質化し、軟磁気特性を得られると推定される。
The magnetic moment of rare earth ions such as Gd is
They interfere with the magnetic moment of O ions (exchange interaction) and try to reverse each other's magnetization. Therefore, in order to reverse the magnetic moment of a rare earth ion, it is necessary to simultaneously reverse the magnetic moments of a large number of surrounding CO ions, and it is therefore thought that the coercive force increases. On the other hand, in Y, La, Eu, and Lu, there is no interaction between rare earth elements and Co, and magnetization reversal is thought to be easy, resulting in a decrease in magnetic force. To confirm this, Sm has a magnetic moment and La has no magnetic moment.
The magnetic properties of amorphous materials alloyed with CO were investigated (Examples 2 and 3). As a result, G o
In the -S m system, soft magnetism was not obtained, and in the Co-La system, a coercive force of 30 e or less and a B s of 16,000 Gauss were obtained. This value exceeds the B s of 15000 Gauss for the Go-Zr system. From the above, it is presumed that Eu and Lu can similarly amorphize Co and obtain soft magnetic properties.

表1 希土類元素の磁気モーメント (イオンは3価イオンの値) 〔発明の実施例〕 以下、本発明の詳細な説明する。Table 1 Magnetic moments of rare earth elements (Ion is the value of trivalent ion) [Embodiments of the invention] The present invention will be explained in detail below.

実施例1 純度99.9%のCOツタ−ゲット上直径4インチ)に
、純度99.9%のY板(4X4X1mm)を20〜4
0枚、純度99.9%のW板(4×4XIIm)を0〜
30枚置き、直径3インち、厚さ5mのガラス基板上に
Co−Y(−W)膜をスパッタリングした。組成変化は
各板の枚数を変化させた。Arガス圧は5 X 1’O
−’Torr 、投入電力は37 kW/rrrであっ
た。ブリスパッタは3時間行った。スパッタアップ方式
であり、ガラス基板はターゲット上方70rmの水冷さ
れたバッフル板に直接ワックスで貼り付けた。基板には
一対のマグネットにより一方向磁場を印加した。膜の構
造はX線回折で、磁気特性はB−Hメータ及び振動試料
型磁力計で調べた。その結果を表2に示す。
Example 1 20 to 4 Y plates (4 x 4 x 1 mm) with a purity of 99.9% were placed on a CO target with a purity of 99.9% (4 inches in diameter above).
0 sheets, 99.9% purity W plate (4×4XIIm) from 0 to
A Co--Y(--W) film was sputtered on every 30 glass substrates with a diameter of 3 inches and a thickness of 5 m. The composition was changed by changing the number of each plate. Ar gas pressure is 5 x 1'O
-'Torr, and the input power was 37 kW/rrr. Bliss sputtering was carried out for 3 hours. It was a sputter-up method, and the glass substrate was directly attached with wax to a water-cooled baffle plate located 70 rm above the target. A unidirectional magnetic field was applied to the substrate by a pair of magnets. The structure of the film was examined by X-ray diffraction, and the magnetic properties were examined using a B-H meter and a vibrating sample magnetometer. The results are shown in Table 2.

実施例2 純度99.9%のCOメタ−ット(直径4インチ)上に
、純度99.9%のSm板(4X4X1rrn)と純度
99.9%のTa板(4X4X1nn)を置き、1と同
条件でスパッタリングした。その結果を表3に示す。
Example 2 A 99.9% pure Sm plate (4X4X1rrn) and a 99.9% pure Ta plate (4X4X1nn) were placed on a 99.9% pure CO metal (diameter 4 inches). Sputtering was performed under the same conditions. The results are shown in Table 3.

実施例3 純度99.9%のcoツタ−ット(直径4インチ)上に
、純度99.9%のLa板(4x4xlrm)及び純度
99.9%のTa板(4X4X1ma+)を置き、1と
同条件でスパッタリングした。その構造及び磁気特性を
表4に示す。
Example 3 A 99.9% pure La plate (4x4xlrm) and a 99.9% pure Ta plate (4x4x1ma+) were placed on a 99.9% pure cot (4 inch diameter). Sputtering was performed under the same conditions. Its structure and magnetic properties are shown in Table 4.

表2Go−Y−W系合金の磁気特性 表3Co−8m−Ta系合金の磁気特性表4Co−La
−Ta系合金の磁気特性〔発明の効果〕 本発明によれば、従来のNiFe、Co−Zr等より大
きな飽和磁束密度(15000〜16000ガウス)を
有する磁気コア用磁性材料を提供できるので、より高密
度記録の可能な薄膜磁気ヘッドを実現できる。
Table 2 Magnetic properties of Go-Y-W alloy Table 3 Magnetic properties of Co-8m-Ta alloy Table 4 Co-La
-Magnetic properties of Ta-based alloy [Effect of the invention] According to the present invention, it is possible to provide a magnetic material for a magnetic core having a larger saturation magnetic flux density (15,000 to 16,000 Gauss) than conventional NiFe, Co--Zr, etc. A thin-film magnetic head capable of high-density recording can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は薄膜磁気ヘッド外観図、第2図は薄膜磁気ヘッ
ド磁気コア部断面図である。 1・・磁気コア、2・・・コイル端子、3・・・コイル
、4・・・基板。
FIG. 1 is an external view of the thin film magnetic head, and FIG. 2 is a sectional view of the magnetic core of the thin film magnetic head. 1... Magnetic core, 2... Coil terminal, 3... Coil, 4... Board.

Claims (1)

【特許請求の範囲】[Claims] 1、Co_1_−_a_−_bM_aX_bなる組成式
を有し、0≦a、b≦0.1、0.04≦a+b≦0.
1を満す非晶質コバルト合金であり、MはYとLaの少
なくとも1つ、XはTaとWとNbとMoとV及びCr
の少なくとも1つよりなることを特徴とする非晶質高飽
和磁束密度材料。
1, Co_1_-_a_-_bM_aX_b, 0≦a, b≦0.1, 0.04≦a+b≦0.
1, where M is at least one of Y and La, and X is Ta, W, Nb, Mo, V, and Cr.
An amorphous high saturation magnetic flux density material comprising at least one of the following.
JP60220112A 1985-10-04 1985-10-04 Amorphous high saturable magnetic flux density material Pending JPS6281008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60220112A JPS6281008A (en) 1985-10-04 1985-10-04 Amorphous high saturable magnetic flux density material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60220112A JPS6281008A (en) 1985-10-04 1985-10-04 Amorphous high saturable magnetic flux density material

Publications (1)

Publication Number Publication Date
JPS6281008A true JPS6281008A (en) 1987-04-14

Family

ID=16746099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60220112A Pending JPS6281008A (en) 1985-10-04 1985-10-04 Amorphous high saturable magnetic flux density material

Country Status (1)

Country Link
JP (1) JPS6281008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436740A (en) * 1987-07-31 1989-02-07 Kazuaki Fukamichi Amorphous alloy and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436740A (en) * 1987-07-31 1989-02-07 Kazuaki Fukamichi Amorphous alloy and its production

Similar Documents

Publication Publication Date Title
US7968219B1 (en) Magnetically soft, high saturation magnetization laminate of iron-cobalt-nitrogen and iron-nickel for perpendicular media underlayers
US5792564A (en) Perpendicular recording medium and magnetic recording apparatus
JPS6032330B2 (en) magnetic thin film structure
EP0360055B1 (en) Soft-magnetic film having high saturation magnetic-flux density and magnetic head utilizing the same
US6828046B2 (en) Soft magnetic film of FeCoMO having a high saturation flux density, a moderate soft magnetism and a uniaxial magnetic anisotropy
US5262915A (en) Magnetic head comprising a soft magnetic thin film of FeNiZrN having enhanced (100) orientation
EP0144150B1 (en) Ferromagnetic material, ferromagnetic laminate and magnetic head
KR960004065B1 (en) Magnetic head using magnetic film
US20060057429A1 (en) Magnetic recording medium and magnetic memory device for high density recording
Ohashi et al. Write performance of heads with a 2.1-Tesla CoNiFe pole
Aoyama et al. Fabrication and properties of CoPt patterned media with perpendicular magnetic anisotropy
JP2698814B2 (en) Soft magnetic thin film
US5777828A (en) Magnetic alloy and magnetic head having at least a part made of the magnetic alloy
US6809901B2 (en) Low moment material for magnetic recording head write pole
EP0168825A2 (en) Magnetic alloy thin film
JPS6281008A (en) Amorphous high saturable magnetic flux density material
JPH01124108A (en) Thin-film magnetic head
JPH0553852B2 (en)
JPS6111455B2 (en)
JP3232592B2 (en) Magnetic head
JPH0727822B2 (en) Fe-Co magnetic multilayer film and magnetic head
JPH083883B2 (en) Thin film magnetic head
JPS62159313A (en) Magnetic memory
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film