JPS628040A - Washing apparatus - Google Patents

Washing apparatus

Info

Publication number
JPS628040A
JPS628040A JP14653385A JP14653385A JPS628040A JP S628040 A JPS628040 A JP S628040A JP 14653385 A JP14653385 A JP 14653385A JP 14653385 A JP14653385 A JP 14653385A JP S628040 A JPS628040 A JP S628040A
Authority
JP
Japan
Prior art keywords
ammonia
hydrogen peroxide
concentration
cleaning
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14653385A
Other languages
Japanese (ja)
Inventor
Masa Ito
雅 伊藤
Masaaki Harazono
正昭 原園
Yutaka Hiratsuka
豊 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14653385A priority Critical patent/JPS628040A/en
Publication of JPS628040A publication Critical patent/JPS628040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform not only the monitoring of the concns. of hydrogen peroxide and ammonia in a washing solution but also the automatic supply of both chemicals, by performing the control of the concns. of chemicals in the washing solution with good controllability. CONSTITUTION:A washing tank 1 is filled with a washing solution consisting of hydrogen peroxide, ammonia and water and heated by a heater 3 to perform the washing of a Si-wafer 4. A part of the washing solution 2 is sampled by a specimen sampling pump 5 to be sent into the flow cell 7 of an oxygen concn. measuring part 6. Next, the concn. of oxygen in the flow cell 7 is photometrically measured by an ultraviolet ray source 8 and an ultraviolet detector 9 detecting the transmitted light thereof. Subsequently, the sampled specimen of the washing solution measured by the flow cell 7 is sent into the conductivity detection part 12 of an ammonium ion concn. measuring part 11 by a specimen sampling pump 10 and measured by an operation part 13. The measured data is sent to an interface 14 along with the data measured by the measuring part 6 and the concns. of hydrogen peroxide and ammonia are calculated from two measured values by a microcomputer 20.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、Siウェハなどの洗浄のための、過酸化水素
、アンモニアおよび水からなる洗浄液を用いる洗浄装置
にかかわシ、特に、適正な洗浄液組成を保つための洗浄
液の成分濃度モニタを有し、これに従って洗浄液の成分
濃度を適正な値にコントロールする機能を有する洗浄装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cleaning apparatus that uses a cleaning liquid consisting of hydrogen peroxide, ammonia, and water for cleaning Si wafers, etc. The present invention relates to a cleaning device that has a component concentration monitor of the cleaning fluid to maintain the cleaning fluid and has a function of controlling the component concentration of the cleaning fluid to an appropriate value in accordance with the monitor.

〔発明の背景〕[Background of the invention]

従来、過酸化水素とアンモニアと水とを用いたS1ウニ
八など用の洗浄液は、しばしば80℃程度に加熱して使
用されるため、熱分解によυ数十分で過酸化水素の分解
とアンモニアの蒸発によって洗浄液の劣化が起こる。従
来、これらの成分を確認しようとすれば、滴定分析など
の、オフラインでしかも時間のかかる成分の分析法で行
うか、アンモニア濃度の測定にイオン電極を用いる方法
と過酸化水素濃度の測定に紫外線吸収を用いる方法とを
併用して測定する技術(例えば、特開昭59−4603
2号公報)が用いられている。
Conventionally, cleaning solutions for S1 sea urchins and the like that use hydrogen peroxide, ammonia, and water are often heated to about 80°C, so the hydrogen peroxide can be decomposed in just a few minutes due to thermal decomposition. Evaporation of ammonia causes deterioration of the cleaning solution. Conventionally, these components have been confirmed using off-line and time-consuming component analysis methods such as titration analysis, or using ion electrodes to measure ammonia concentration and ultraviolet light to measure hydrogen peroxide concentration. A technique for measuring in combination with a method using absorption (for example, Japanese Patent Application Laid-Open No. 59-4603
Publication No. 2) is used.

しかし、アンモニア濃度の測定にイオン電極を用いるも
のでは、隔膜を透過するアンモニアガスと電極の内部液
との化学反応を利用するために、電極の寿命が短くて保
守性に問題がある上、応答性も悪いので洗浄液中の薬液
濃度管理が制御性よく行えないという問題があった。
However, methods that use ion electrodes to measure ammonia concentration utilize a chemical reaction between the ammonia gas that passes through the diaphragm and the internal liquid of the electrode, so the life of the electrode is short, there are problems with maintainability, and the response is There was a problem in that the concentration of the chemical solution in the cleaning solution could not be controlled with good controllability because of its poor performance.

また、別の公知例として、試薬を用いて発光させて吸光
度を測定する方法がある(実開昭57−41742号公
報)。しかし、この方法は、試薬としてナトリウムフェ
ノラート溶液、次亜塩素酸ナトリウム溶液を用いておシ
、これらは半導体プロセスで最も注意を要するナトリウ
ム汚染を起こす危険があるので、製造ラインで使用する
ことは不適当である。
Another known example is a method of emitting light using a reagent and measuring the absorbance (Japanese Utility Model Application Publication No. 57-41742). However, this method uses sodium phenolate solution and sodium hypochlorite solution as reagents, and these have the risk of causing sodium contamination, which requires the utmost care in semiconductor processes, so they cannot be used in production lines. It's inappropriate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した従来技術の欠点をなくシ、イ
ンラインで測定可能な、過酸化水素とアンモニアと水と
からなるS1ウエハなど用の洗浄液の過酸化水素濃度の
モニタとアンモニア濃度のモニタ、およびこれらの薬品
の自動供給手段を有する洗浄装置を提供することにある
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a method for monitoring hydrogen peroxide concentration and ammonia concentration in a cleaning solution for S1 wafers, etc., which is made of hydrogen peroxide, ammonia, and water and can be measured in-line. , and a cleaning device having an automatic supply means for these chemicals.

〔発明の概要〕[Summary of the invention]

本発明は、洗浄槽から採取した試料液中の酸素による紫
外線吸光量を計測(第1の計測部)するとともに、試料
液中のアンモニウムイオン量による導電率を計測(第2
の計測部)シ、百計測部の測定結果を基に試料液中の過
酸化水素濃度とアンモニア濃度とを計算し、該濃度を設
定濃度と比較し、その結果に基づいてこれらの薬液また
は純水を自動補給して洗浄液中の薬液成分濃度を一定範
囲に保ち、Siウェハなどの洗浄を安定して行えるよう
に図ったものである。
The present invention measures the amount of ultraviolet light absorbed by oxygen in a sample liquid collected from a cleaning tank (first measurement part), and measures the conductivity based on the amount of ammonium ions in the sample liquid (second measurement part).
(measuring unit) Calculates the hydrogen peroxide concentration and ammonia concentration in the sample solution based on the measurement results of the measuring unit, compares the concentration with the set concentration, and based on the results, calculates the concentration of hydrogen peroxide and ammonia in the sample solution. This system automatically replenishes water to maintain the concentration of chemical components in the cleaning solution within a certain range, allowing stable cleaning of Si wafers and the like.

第1図は本発明の構成を明示するための全体構成図であ
る。
FIG. 1 is an overall configuration diagram for clearly showing the configuration of the present invention.

ここで、本発明で用いる濃度測定方法の基本的原理につ
いて、以下に詳説する。
Here, the basic principle of the concentration measurement method used in the present invention will be explained in detail below.

水溶液に酸素が溶けていると、紫外部領域にきわめて特
徴的な吸収帯が現れる。第2図は、過酸化水素による酸
素とアンモニアとの紫外線波長に対する吸光度の変化を
示す図である。第2図において、曲線Aが過酸化水素の
みによる酸素の吸光度を示す曲線1曲線Bがアンモニア
のみの吸光度を示す曲線である。第2図のグラフかられ
かるように、過酸化水素による酸素とアンモニアとは、
共に波長19Jnm付近の紫外線領域に吸収のピークを
もっておシ、ピーク付近では両者の区別がつかない。し
かし、過酸化水素による酸素の吸収スペクトルはブロー
ドで、アンモニアの吸収がほとんどゼロになる波長30
0nm付近でもまだかなシの吸収を示す。従って、波長
500no付近の吸光度測定を行えば、アンモニアと過
酸化水素と水とが共存する洗浄液の採取試料中の過酸化
水素による酸素のみの吸収をアンモニアによる吸収と分
離して測定できる。
When oxygen is dissolved in an aqueous solution, a very characteristic absorption band appears in the ultraviolet region. FIG. 2 is a diagram showing changes in the absorbance of oxygen and ammonia with respect to ultraviolet wavelengths due to hydrogen peroxide. In FIG. 2, curve A is a curve showing the absorbance of oxygen only by hydrogen peroxide, and curve B is a curve showing the absorbance of only ammonia. As can be seen from the graph in Figure 2, oxygen and ammonia due to hydrogen peroxide are
Both have an absorption peak in the ultraviolet region around a wavelength of 19 Jnm, and it is difficult to distinguish between the two near the peak. However, the absorption spectrum of oxygen caused by hydrogen peroxide is broad, and the absorption spectrum of ammonia is almost zero at wavelength 30.
Even around 0 nm, it still exhibits a slight absorption. Therefore, by measuring the absorbance at a wavelength of around 500 nm, it is possible to separate the absorption of oxygen by hydrogen peroxide from the absorption by ammonia in the collected sample of the cleaning liquid in which ammonia, hydrogen peroxide, and water coexist.

上記の水溶液の酸素濃度は溶液の水素イオン濃度の影響
を受ける。しかし、水溶液の水素イオン濃度を4以下に
したとき、波長300nm付近の吸光度(Ab)としで
は、アンモニア濃度に無関係な吸光度が得られる。従っ
て、次式が成立する。
The oxygen concentration of the above aqueous solution is influenced by the hydrogen ion concentration of the solution. However, when the hydrogen ion concentration of the aqueous solution is set to 4 or less, the absorbance (Ab) at a wavelength of around 300 nm provides an absorbance that is unrelated to the ammonia concentration. Therefore, the following equation holds.

H2O2(%)=a XAb        ”=・・
11)ただし、aは定数。
H2O2 (%) = a XAb ” =...
11) However, a is a constant.

また、第3図は、水溶液中のH2O2濃度を変化させた
ときの、水素イオン濃度を4以上としたときと4以下と
したときの波長300nm付近の吸光度比(Aa/Ab
)と、溶液中のアンモニア濃度の対数との関係を示した
ものである。図に示すように、アンモニア濃度の対数と
波長300nm付近の吸光度比(Ac/Ab)の間には
比例関係がある。すなわち、 1ogNH4oHc%)=bxAc/hb    −−
−−−−・−・(2)式(2)に式(1)を代入すると
、次のようになる。
In addition, Figure 3 shows the absorbance ratio (Aa/Ab
) and the logarithm of the ammonia concentration in the solution. As shown in the figure, there is a proportional relationship between the logarithm of the ammonia concentration and the absorbance ratio (Ac/Ab) near a wavelength of 300 nm. That is, 1ogNH4oHc%)=bxAc/hb --
-----・-(2) Substituting equation (1) into equation (2) yields the following.

1ogNH40H(1) =l) x AQ/−x)I
2o2 (%)=cxAQ/H2O2(*)  −・−
・・(3)ただし、Cは定数(c=ab)。
1ogNH40H(1) =l) x AQ/-x)I
2o2 (%) = cxAQ/H2O2 (*) −・−
...(3) However, C is a constant (c=ab).

第4図はアンモニア濃度と導電率との関係を表わしたグ
ラフで、曲線Pは過素化水素が入っていないアンモニア
水溶液の場合であシ、曲線F、Fは過酸化水素が共存す
る場合で、F′はFよシも過酸化水素濃度が高い場合で
ある。第4図のグラフかられかるように、過酸化水素濃
度を一定とすると、試料液中のアンモニア濃度が増大す
ると導電率も高くなる関係にある。すなわち、アンモニ
アと過酸化水素が共存すると、水溶液中で緩衝作用が働
き、過酸化水素濃度に比例してアンモニウムイオンが解
離し、水溶液中のアンモニウムイオン量が増加するため
、導電率も増大するのである。
Figure 4 is a graph showing the relationship between ammonia concentration and electrical conductivity. Curve P is for an ammonia aqueous solution containing no hydrogen peroxide, and curves F and F are for a case where hydrogen peroxide coexists. , F' are cases where the hydrogen peroxide concentration is higher than F. As can be seen from the graph in FIG. 4, if the hydrogen peroxide concentration is constant, the electrical conductivity increases as the ammonia concentration in the sample liquid increases. In other words, when ammonia and hydrogen peroxide coexist, a buffering effect works in the aqueous solution, and ammonium ions dissociate in proportion to the hydrogen peroxide concentration, increasing the amount of ammonium ions in the aqueous solution and increasing the conductivity. be.

第5図は、洗浄液の採取試料の中に過酸化水素が共存す
る場合の導電率Xと、過酸化水素が全く共存しない場合
の導電率X′との比(X/X’ )の−酸化水素濃度に
対する関係を表わしたグラフである。
Figure 5 shows the ratio (X/X') of the conductivity X when hydrogen peroxide coexists in the sample of the cleaning solution and the conductivity X' when no hydrogen peroxide coexists. It is a graph showing the relationship with hydrogen concentration.

第5図のグラフかられかるように、洗浄液の採取試料中
の過酸化水素濃度は、X/Xを求めることによシ算出で
きる。すなわち、 H202(%) == a −X、/X’ −o   
  ・・・−−(4)ただし、d、eは定数。
As can be seen from the graph in FIG. 5, the hydrogen peroxide concentration in the sample of the cleaning liquid can be calculated by calculating X/X. That is, H202 (%) == a −X, /X' −o
...--(4) However, d and e are constants.

また、過酸化水素が共存しないときの溶液の導電率X′
は、第4図の曲線Eに示したように1次式の関係にある
Also, the conductivity of the solution when hydrogen peroxide is not present
is in a linear relationship as shown by curve E in FIG.

log N H40H(チ)=f−X+g     ・
・・・・・・・・(5)ただし、f、gは定数。
log N H40H (chi) = f-X + g ・
・・・・・・・・・(5) However, f and g are constants.

よって、式(4)に式(5)を代入すると以上述べたよ
うに、溶液中の波長300nm付近の吸光度(Ao)と
導電率(X)をそれぞれ測定し。
Therefore, by substituting equation (5) into equation (4), as described above, the absorbance (Ao) and conductivity (X) in the vicinity of a wavelength of 300 nm in the solution are measured.

これを式(3)と式(6)に代入して連立方程式を解く
ことKよシ、溶液中の過酸化水素とアンモニアの濃度を
求めることができる。
By substituting this into equations (3) and (6) and solving the simultaneous equations, the concentrations of hydrogen peroxide and ammonia in the solution can be determined.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第6図ないし第8図によって
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 8.

本実施例は、前記した過酸化水素およびアンモニアの成
分濃度測定方法を適用し、マイクロコンピュータを用い
て洗浄液の成分濃度をそれぞれ所定濃度に!IJ御する
ように構成したものである。
In this example, the above-mentioned method for measuring the concentration of hydrogen peroxide and ammonia is applied, and a microcomputer is used to adjust the concentration of each component of the cleaning liquid to a predetermined concentration. It is configured to control IJ.

第6図は、本発明を実施したS1クエノ〜洗浄用の洗浄
装置の一例を示す系統図である。図において、洗浄槽1
には、過酸化水素とアンモニアと水とからなる洗浄液2
が満たされ、ヒータ3で加熱されてお5.Siウエノ・
4の洗浄を行っている。洗浄液2の一部は、試料採取ポ
ンプ5によシサンプリングされ、酸素濃度測定部互のフ
ローセルフに送り込まれ、このフローセル内の酸素濃度
は、Hgランプなどの紫外線を発するランプとモノクロ
メータなどから構成される波長:500nm付近の紫外
線光源8と、その透過光を検出する紫外線検出器9とに
よって吸光測定される。70−セル7で紫外線吸光測定
された洗浄液の採取試料は、試料採取ポンプ10によジ
アンモニウムイオン濃度測定部11の導電率検出部12
に送り込まれ、次記の測定がなされた後、排出口22か
ら排出される。すなわち、アンモニウムイオン濃度によ
る導電率は、アンモニウムイオン濃度測定部11の導電
率検出部12と操作部13によって測定される。ここで
測定されたデータは、酸素濃度測定部6で測定されたデ
ータと共にインタ7エイス14に送られる。このように
して2つの測定値から、過酸化水素濃度とアンモニア濃
度が前に述べた測定原理に基づいてマイクロコンピュー
タ20で演算される。
FIG. 6 is a system diagram showing an example of a cleaning device for S1 cleaning according to the present invention. In the figure, cleaning tank 1
For cleaning solution 2 consisting of hydrogen peroxide, ammonia and water.
5. is filled and heated by heater 3. Si ueno・
4 cleaning is being carried out. A part of the cleaning liquid 2 is sampled by the sampling pump 5 and sent to the flow cell between the oxygen concentration measurement units. Absorption is measured using an ultraviolet light source 8 with a wavelength of around 500 nm and an ultraviolet detector 9 that detects the transmitted light. 70 - The collected sample of the cleaning liquid whose ultraviolet absorption was measured in the cell 7 is sent to the conductivity detection unit 12 of the diammonium ion concentration measurement unit 11 by the sample collection pump 10.
After the following measurements are taken, the sample is discharged from the discharge port 22. That is, the conductivity depending on the ammonium ion concentration is measured by the conductivity detection section 12 and the operation section 13 of the ammonium ion concentration measurement section 11. The data measured here is sent to the Inter 7Ace 14 together with the data measured by the oxygen concentration measuring section 6. In this manner, the hydrogen peroxide concentration and ammonia concentration are calculated from the two measured values by the microcomputer 20 based on the measurement principle described above.

上記によシ、はぼ同時刻の洗浄槽1内のアンモニアおよ
び過酸化水素の濃度測定が行われる。勿論この場合、酸
素濃度測定用の試料と、導電率測定用の試料とは、別々
に並行して採取しても差し支えない。また、排出口22
から排出される測定後の試料は、試薬を使用していない
ため、洗浄槽1に戻すこともできる。
As described above, the concentrations of ammonia and hydrogen peroxide in the cleaning tank 1 are measured at approximately the same time. Of course, in this case, the sample for oxygen concentration measurement and the sample for conductivity measurement may be collected separately and in parallel. In addition, the discharge port 22
The measured sample discharged from the tank can also be returned to the cleaning tank 1 since no reagent is used in the sample.

演算された過酸化水素とアンモニアの濃度データは、あ
らかじめマイクロコンピュータ20に記憶されていた洗
浄液の濃度設定値データと比較・参照される。そして、
濃度設定値と実際の濃度との差から、あらかじめマイク
ロコンピュータ20に与えられていたプログラムに基づ
き、電磁弁制御部15に命令が下され、電磁弁16.1
7が開閉し、過酸化水素タンク18、アンモニア水タン
ク19から、それぞれ必要量だけの過酸化水素とアンモ
ニアが洗浄槽1に供給されるか、または純水送液ポンプ
23を作動させて純水を供給する。これによって、洗浄
液2の過酸化水素濃度およびアンモニア濃度は常に一定
範囲内の値を保つことができ、安定したS1ウエハの洗
浄を行うことができる。
The calculated concentration data of hydrogen peroxide and ammonia are compared and referenced with the cleaning liquid concentration set value data stored in the microcomputer 20 in advance. and,
Based on the difference between the concentration setting value and the actual concentration, a command is given to the solenoid valve control section 15 based on a program given in advance to the microcomputer 20, and the solenoid valve 16.1 is
7 opens and closes, and the necessary amounts of hydrogen peroxide and ammonia are supplied to the cleaning tank 1 from the hydrogen peroxide tank 18 and the ammonia water tank 19, respectively, or the pure water supply pump 23 is operated to supply pure water. supply. As a result, the hydrogen peroxide concentration and ammonia concentration of the cleaning liquid 2 can always be kept within a certain range, and the S1 wafer can be cleaned stably.

第7図は、前記の過酸化水素濃度とアンモニア濃度の演
算部のフローチャートの一例を示した図である。第6図
の実施例では、この演算処理をマイクロコンピュータ2
0で行わせている場合を示したものであるが、別の演算
処理を行う装置を用いても濃度の算出は可能である。
FIG. 7 is a diagram showing an example of a flowchart of the arithmetic section for the hydrogen peroxide concentration and ammonia concentration. In the embodiment shown in FIG. 6, this arithmetic processing is performed by a microcomputer 2.
Although the case where the calculation is performed with 0 is shown, it is also possible to calculate the concentration using a device that performs another arithmetic processing.

第7図のフローチャートについて説明する。まず、ステ
ップKAでスタートし、演算に必要なパラメータを設定
する(ステップKB)と、紫外線吸光度の検出器9と導
電率計の操作部13の計器出力値を読み込んでよいかど
うかの判断がなされる(ステップK。)。読み込みの条
件が成立すれば、ステップに、で、紫外線吸光度の検出
器9と導電率計の操作部13からの各出力値が読み込ま
れる。
The flowchart in FIG. 7 will be explained. First, start at step KA, set the parameters necessary for calculation (step KB), and then it is determined whether or not to read the instrument output values of the ultraviolet absorbance detector 9 and the conductivity meter operating section 13. (Step K.). If the reading conditions are met, in step, each output value from the ultraviolet absorbance detector 9 and the conductivity meter operating section 13 is read.

ステップに、で指定回数N回の読み込みが判定されると
、ステップに、で平均化され、各測定値として次のステ
ップに送られる。ステップK。で測定値の取シ込みが判
断され条件が成立すれば、各測値の格納が行われる(ス
テップKg)。次に、ステップに1で、各測定値と先に
述べた関係式(3) 、 (6) Kよシ過酸化水素濃
度とアンモニア濃度とが算出され、ここで1サイクルの
濃度演算処理は終了する(ステップに、 )。
When it is determined that reading has been performed a specified number of times in step , the values are averaged in step and sent to the next step as each measured value. Step K. If it is determined whether to import the measured values and the conditions are met, each measured value is stored (step Kg). Next, in step 1, the hydrogen peroxide concentration and ammonia concentration are calculated using each measured value and the above-mentioned relational expressions (3) and (6) K, and one cycle of concentration calculation processing is completed here. (to step).

第8図は、前記マイクロコンピュータ20のフローチャ
ートである。本フローチャートに基づいて、本発明によ
る洗浄液濃度を自動的に所定濃度に管理する制御方法の
一例を説明する。まず、ステップAでスタートすると、
純水送液ポンプ23がオンとなシ(ステップB)、純水
が純水タンク24から洗浄槽1内に送られる。洗浄槽1
内の水位は液面センサ25で測定され(ステップC)、
洗浄槽1内の水位が所定値であるかを判定される(ステ
ップD)。所定水位になると、純水送液ポンプ23が停
止され(ステップE)、ヒータ3がオンとな#)(ステ
ップF)、洗浄液循環用ポンプ26がオンとなシ(ステ
ップG)、ついで、過酸化水素とアンモニア補給用の電
磁弁16.17がそれぞれ所定時間11,12の開開か
れる(ステップH)。
FIG. 8 is a flow chart of the microcomputer 20. An example of a control method for automatically managing the cleaning liquid concentration to a predetermined concentration according to the present invention will be explained based on this flowchart. First, if you start with step A,
When the pure water pump 23 is turned on (step B), pure water is sent from the pure water tank 24 into the cleaning tank 1. Cleaning tank 1
The water level inside is measured by the liquid level sensor 25 (step C),
It is determined whether the water level in the cleaning tank 1 is at a predetermined value (step D). When the water level reaches a predetermined level, the pure water pump 23 is stopped (step E), the heater 3 is turned on (step F), the cleaning liquid circulation pump 26 is turned on (step G), and then the The solenoid valves 16 and 17 for replenishing hydrogen oxide and ammonia are opened for predetermined times 11 and 12, respectively (step H).

ついで、送液サンプリング用の試料採取ポンプ5゜10
がオンとなる(ステップエ)。これによシ。
Next, a sample collection pump 5゜10 for liquid sampling.
is turned on (Step E). This is good.

酸素濃度測定部6、アンモニウムイオン濃度測定部11
で試料液の紫外線吸収量、導電率を測定しくステップJ
)、測定値に基づいて過酸化水素とアンモニアの濃度が
算出され(ステップK)%上記の算定濃度が目標濃度範
囲内であるか否かが判定される(ステップも)。算出し
た過酸化水素濃度とアンモニア濃度が目標値から外れて
いる場合、濃度が低すぎれば、電磁弁16.17を開い
て過酸化水素、アンモニアを性別すべき時間t、、t2
が算出され、濃度が高すぎれば、純水補給用の純水送液
ポンプ23を作動させて純水を性別すべき時間t5が算
出され(ステップM、N)、との性別が実行される(ス
テップQ)。このようにして洗浄液中の過酸化水素濃度
とアンモニア濃度とが制御され、洗浄液の液温が設定範
囲内かを判定しくステップR)、温度計28の液温測定
値が設定値内ならば、 Siウェハを一定時間洗浄する
(ステップS)。
Oxygen concentration measuring section 6, ammonium ion concentration measuring section 11
Step J
), the concentrations of hydrogen peroxide and ammonia are calculated based on the measured values (step K), and it is determined whether the above calculated concentrations are within the target concentration range (step also). If the calculated hydrogen peroxide and ammonia concentrations are outside the target values, or if the concentrations are too low, the solenoid valve 16.17 is opened to release hydrogen peroxide and ammonia at a time t, t2.
is calculated, and if the concentration is too high, a time t5 for sexing the pure water by operating the pure water supply pump 23 for pure water replenishment is calculated (steps M, N), and sexing is performed. (Step Q). In this way, the hydrogen peroxide concentration and ammonia concentration in the cleaning liquid are controlled, and it is determined whether the temperature of the cleaning liquid is within the set range (Step R). If the liquid temperature value measured by the thermometer 28 is within the set value, The Si wafer is cleaned for a certain period of time (step S).

続けて洗浄する場合は、洗浄液の組成と液温を上記ステ
ップによシもう一度測定した後、Siウェハを洗浄する
(ステップJ−9)。続けて洗浄しない場合は、排液し
て1サイクルを終了する(ステップU、V)。
When cleaning is to be continued, the composition and temperature of the cleaning solution are measured again according to the above steps, and then the Si wafer is cleaned (Step J-9). If washing is not to be continued, the liquid is drained and one cycle is completed (steps U and V).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体工業できわめて広く使われてい
る過酸化水素とアンモニアと水とからなる洗浄液におい
て、液中の過酸化水素成分とアンモニア成分の応答性に
優れたインラインモニタリングが可能となシ、過酸化水
素の減少によるS1ウエハの急激なエツチングの防止や
、過酸化水素とアンモニアの適量供給による洗浄液の再
生と寿命延長、洗浄の安定化を達成することができる。
According to the present invention, in-line monitoring with excellent responsiveness of the hydrogen peroxide and ammonia components in the cleaning solution made of hydrogen peroxide, ammonia, and water, which is extremely widely used in the semiconductor industry, is possible. Furthermore, rapid etching of the S1 wafer due to a reduction in hydrogen peroxide can be prevented, and by supplying appropriate amounts of hydrogen peroxide and ammonia, it is possible to regenerate the cleaning solution, extend its life, and stabilize cleaning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を明示するための全体構成因、第
2図は溶液中の酸素濃度の測定原理を説明するための過
酸化水素による酸素とアンモニアとの紫外線波長に対す
る吸光度の変化を示すグラフ、第3図は過酸化水素濃度
の測定原理を説明するだめの洗浄液におけるアンモニア
濃度に対する水素イオン濃度変化による紫外線吸光度の
変化を示すグラフ、第4図は洗浄液のアンモニア濃度と
導電率との関係を種々な過酸化水素含有量について示し
たグラフ、第5図は洗浄液に過酸化水素が共存する場合
と共存しない場合(アンモニアのみの場合)との導電率
の比と、過酸化水素濃度との関係を示すグラフ、第6図
は本発明を実施したS1ウエハ用の洗浄装置の一実施例
の系統図、第7図は該実施例における過酸化水素濃度と
アンモニア濃度の演算部の70−チャート、第8図は該
実施例で用いているマイクロコンピュータのフローチャ
ートである。 1・・・・・・洗浄槽 2・・・・・・洗浄液 3・・・φ・・ヒータ 4・・・・・・S1ウエハ 5.10・・・・・・試料採取ポンプ 6・・・・・・酸素濃度測定部 7・・・・・・透過光測定用フローセル8・・・・・・
紫外線光源 9・・・・・・紫外線検出部 11・・・・・・アンモニウムイオン濃度測定部12・
・・・・・導電率検出部 13・・・・・・操作部 14・・・・・・インタフェイス 15・・・・・・電磁弁制御部 16.17・・・・・・電磁弁 18・・・・・・過酸化水素タンク 19・・・・・・アンモニア水タンク 20…・・・マイクロコンピュータ 25・・・・・・純水送液ポンプ 24・・・・・・純水タンク 141 [ン]        組イ詠(11Az図 5L 長  (汽ffLン 軍4目 アンモニア:l&の少寸4女、 第5図 り線化水素濃度 19    アンモニア水タンク 1 5穴、!子種              −く)
、  酸t4A須リプピン自J5享7図
Figure 1 shows the overall structure of the present invention, and Figure 2 shows the change in absorbance of oxygen and ammonia due to hydrogen peroxide to ultraviolet wavelengths, to explain the principle of measuring oxygen concentration in a solution. Figure 3 is a graph showing the change in ultraviolet absorbance due to a change in hydrogen ion concentration with respect to ammonia concentration in a cleaning solution to explain the principle of measuring hydrogen peroxide concentration, and Figure 4 is a graph showing the relationship between ammonia concentration and conductivity in a cleaning solution. A graph showing the relationship for various hydrogen peroxide contents, Figure 5 shows the ratio of conductivity when hydrogen peroxide coexists in the cleaning solution and when it does not coexist (when only ammonia is present), and the hydrogen peroxide concentration. FIG. 6 is a system diagram of an embodiment of a cleaning apparatus for S1 wafers embodying the present invention, and FIG. FIG. 8 is a flowchart of the microcomputer used in this embodiment. 1...Cleaning tank 2...Cleaning liquid 3...φ...Heater 4...S1 wafer 5.10...Sample collection pump 6... ... Oxygen concentration measuring section 7 ... Flow cell for transmitted light measurement 8 ...
Ultraviolet light source 9... Ultraviolet detection section 11... Ammonium ion concentration measurement section 12.
... Conductivity detection section 13 ... Operation section 14 ... Interface 15 ... Solenoid valve control section 16.17 ... Solenoid valve 18 ...Hydrogen peroxide tank 19 ...Ammonia water tank 20 ...Microcomputer 25 ...Pure water pump 24 ...Pure water tank 141 [N] Group I song (11Az figure 5L length (Steam ffLn army 4th ammonia: l&'s small size 4 women, 5th figure linear hydrogen concentration 19 ammonia water tank 1 5 holes,! Child species -ku)
, acid t4a su lippin self J5 Kyo 7 figure

Claims (1)

【特許請求の範囲】[Claims] 過酸化水素とアンモニアと水とからなる洗浄液を用いる
洗浄装置であって、洗浄液を収納した洗浄槽から試料液
を採取して透過光測定用フローセル部に送り込み、該試
料液に紫外線を照射し、溶液中の酸素による紫外線吸収
量を紫外線検出器で計測する第1の計測部と、該第1の
計測部を出た溶液を導く配管または該配管とは別に設け
た配管系からの試料液を導電率測定用フローセル部に送
り込み、溶液中のアンモニウムイオン量による導電率を
導電率検出器で計測する第2の計測部と、前記第1およ
び第2の計測部の測定結果を基に試料液中の過酸化水素
濃度とアンモニア濃度とを計算する演算機能ブロックと
、計算された濃度値をあらかじめ定めた設定値と比較す
る比較機能ブロックと、該比較機能ブロックの比較結果
に基づき、電磁弁またはポンプを動作させて過酸化水素
、アンモニアまたは純水の供給タンクからそれぞれの薬
液または純水の適量を前記洗浄槽内に補給し、槽内の洗
浄液の薬液成分濃度を制御するための制御指令を出す指
令機能ブロックとにより構成される制御系を具備するこ
とを特徴とする洗浄装置。
A cleaning device that uses a cleaning liquid consisting of hydrogen peroxide, ammonia, and water, in which a sample liquid is collected from a cleaning tank containing the cleaning liquid and sent to a flow cell section for measuring transmitted light, and the sample liquid is irradiated with ultraviolet rays. A first measuring section that measures the amount of ultraviolet light absorbed by oxygen in the solution using an ultraviolet detector, and a pipe that guides the solution exiting the first measuring section, or a pipe system that is provided separately from the pipe that collects the sample liquid. A second measurement section that sends the sample solution to the conductivity measurement flow cell section and measures the conductivity according to the amount of ammonium ions in the solution using a conductivity detector, and a sample solution based on the measurement results of the first and second measurement sections. an arithmetic function block that calculates the concentration of hydrogen peroxide and ammonia in the water; a comparison function block that compares the calculated concentration value with a predetermined setting value; Operate the pump to supply an appropriate amount of each chemical solution or pure water from the hydrogen peroxide, ammonia, or pure water supply tank into the cleaning tank, and issue a control command to control the concentration of chemical components of the cleaning solution in the tank. A cleaning device characterized by comprising a control system comprising a command function block that issues commands.
JP14653385A 1985-07-05 1985-07-05 Washing apparatus Pending JPS628040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14653385A JPS628040A (en) 1985-07-05 1985-07-05 Washing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14653385A JPS628040A (en) 1985-07-05 1985-07-05 Washing apparatus

Publications (1)

Publication Number Publication Date
JPS628040A true JPS628040A (en) 1987-01-16

Family

ID=15409794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14653385A Pending JPS628040A (en) 1985-07-05 1985-07-05 Washing apparatus

Country Status (1)

Country Link
JP (1) JPS628040A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198559A (en) * 1993-12-28 1995-08-01 Nec Corp Method and device for measuring concentration of chemical fluid
US5472516A (en) * 1994-04-15 1995-12-05 At&T Corp. Process and apparatus for semiconductor device fabrication
JPH08136451A (en) * 1994-11-14 1996-05-31 Nec Corp Chemical composition monitoring method and device thereof
US5715173A (en) * 1994-06-27 1998-02-03 Dainippon Screen Mfg. Co., Ltd. Concentration controlling method and a substate treating apparatus utilizing same
DE102008048890A1 (en) 2007-09-26 2009-04-09 Tokyo Electron Ltd. Liquid processing apparatus and processing liquid supply method
JP2009092668A (en) * 2001-12-06 2009-04-30 Biocontrol Systems Inc Sample collection and testing system
JP2009098128A (en) * 2007-09-26 2009-05-07 Tokyo Electron Ltd Liquid treatment device and treatment liquid supply method
JP2012204746A (en) * 2011-03-28 2012-10-22 Dainippon Screen Mfg Co Ltd Substrate processing device
JP2013092526A (en) * 2007-06-05 2013-05-16 Ecolab Inc Kinetic determination of peracid and/or peroxide concentration
JP2015010881A (en) * 2013-06-27 2015-01-19 タツタ電線株式会社 Cleaned degree checking apparatus, and cleaned degree checking method
US9446406B2 (en) 2012-06-29 2016-09-20 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
CN106680326A (en) * 2016-12-15 2017-05-17 山东大学 Method for detecting clogging of subsurface flow constructed wetland

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198559A (en) * 1993-12-28 1995-08-01 Nec Corp Method and device for measuring concentration of chemical fluid
US5472516A (en) * 1994-04-15 1995-12-05 At&T Corp. Process and apparatus for semiconductor device fabrication
US5715173A (en) * 1994-06-27 1998-02-03 Dainippon Screen Mfg. Co., Ltd. Concentration controlling method and a substate treating apparatus utilizing same
JPH08136451A (en) * 1994-11-14 1996-05-31 Nec Corp Chemical composition monitoring method and device thereof
US7544961B2 (en) 2001-12-06 2009-06-09 Biocontrol Systems, Inc. Sample collection and testing system including a rotatable shaft with a helical guiding member to translate longitudinal motion of a slidable shaft into rotational motion
JP2009092668A (en) * 2001-12-06 2009-04-30 Biocontrol Systems Inc Sample collection and testing system
JP2013092526A (en) * 2007-06-05 2013-05-16 Ecolab Inc Kinetic determination of peracid and/or peroxide concentration
JP2009098128A (en) * 2007-09-26 2009-05-07 Tokyo Electron Ltd Liquid treatment device and treatment liquid supply method
DE102008048890A1 (en) 2007-09-26 2009-04-09 Tokyo Electron Ltd. Liquid processing apparatus and processing liquid supply method
US8491726B2 (en) 2007-09-26 2013-07-23 Tokyo Electron Limited Liquid processing apparatus and process liquid supplying method
JP2012204746A (en) * 2011-03-28 2012-10-22 Dainippon Screen Mfg Co Ltd Substrate processing device
US9446406B2 (en) 2012-06-29 2016-09-20 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
US10684232B2 (en) 2012-06-29 2020-06-16 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
JP2015010881A (en) * 2013-06-27 2015-01-19 タツタ電線株式会社 Cleaned degree checking apparatus, and cleaned degree checking method
CN106680326A (en) * 2016-12-15 2017-05-17 山东大学 Method for detecting clogging of subsurface flow constructed wetland

Similar Documents

Publication Publication Date Title
JPS628040A (en) Washing apparatus
JPH0822972A (en) Process and apparatus for manufacture of semiconductor device
EP0871877A4 (en) Method and apparatus for the measurement of dissolved carbon
US7810376B2 (en) Mitigation of gas memory effects in gas analysis
JP3265830B2 (en) Total organic carbon meter
US6171975B1 (en) Wet-chemical treatment method, treatment method of semiconductor substrate, and manufacturing method of semiconductor device
JPS61281532A (en) Concentration adjustment of washing liquid for semiconductor and its device
US10186427B2 (en) Substrate treating apparatus
JPH03175341A (en) Method and apparatus for determining chemical agent for semiconductor process
JPS6196446A (en) Method and device for measuring and monitoring concentrationof hydrogen peroxide in liquefied reaction medium
US20020146348A1 (en) Universal pickle liquor acid analyzer
US20090229995A1 (en) Analysis of fluoride at low concentrations in acidic processing solutions
US6330819B1 (en) Method and apparatus for calibrating a dissolved oxygen analyzer
Fried et al. Laser photoacoustic detection of nitrogen dioxide in the gas-phase titration of nitric oxide with ozone
JPS6316901B2 (en)
JP2658919B2 (en) Chemical composition monitoring method and device
JPH0799175A (en) Method and apparatus for supplying treatment liquid
JP3032410B2 (en) Concentration measurement method
Washburn et al. THE LAWS OF “CONCENTRATED” SOLUTIONS. V. 1 PART I: THE EQUILIBRIUM BETWEEN ARSENIOUS ACID AND IODINE IN AQUEOUS SOLUTION; PART II: A GENERAL LAW FOR CHEMICAL EQUILIBRIUM IN SOLUTIONS CONTAINING IONS; PART III: THE ENERGETICS OF THE REACTION BETWEEN ARSENIOUS ACID AND IODINE.
Bond et al. Ion-selective electrode with microprocessor-based instrumentation for on-line monitoring of copper in plant electrolyte
JPH02152544A (en) Liquid management method
JPH11340186A (en) Semiconductor treating device
JPH11142332A (en) Concentration measuring method and substrate treatment apparatus using the same
JPH0582437A (en) Automatic liquid controlling device
JP2677263B2 (en) Chemical composition monitoring method and device