JPS6274410A - Production process for separating membrane - Google Patents

Production process for separating membrane

Info

Publication number
JPS6274410A
JPS6274410A JP60214147A JP21414785A JPS6274410A JP S6274410 A JPS6274410 A JP S6274410A JP 60214147 A JP60214147 A JP 60214147A JP 21414785 A JP21414785 A JP 21414785A JP S6274410 A JPS6274410 A JP S6274410A
Authority
JP
Japan
Prior art keywords
thin film
copolyimide
inert gas
solution
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60214147A
Other languages
Japanese (ja)
Other versions
JPH0685858B2 (en
Inventor
Yukio Yanaga
弥永 幸雄
Asaji Hayashi
浅次 林
Tooru Imanara
今奈良 徹
Shizue Sakai
酒井 静枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP60214147A priority Critical patent/JPH0685858B2/en
Publication of JPS6274410A publication Critical patent/JPS6274410A/en
Publication of JPH0685858B2 publication Critical patent/JPH0685858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/641Polyamide-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To produce a separating membrane of high heat resistance and of high chemical resistance effective in removing vapor contained in gas by coagulating a thin film of copolyimide and copolyamideimide solution in the inert gas containing water and organic solvent vapor. CONSTITUTION:The aromatic copolyimide or the aromatic copolyamideimide is solved in the polar organic solvent into a dope. The logarithmic viscosity of polymer is preferably 0.1dl/g or more. A thin film of 1mm or less is produced by the dope having 5-35wt% concentration. Immediately then the said thin film is coagulated in the inert gas containing solvent vapor carrying coagulating power, and heated and containing solvent vapor carrying coagulating power, and heated and dried in the temperature of 50-400 deg.C. The vapor concentration of inert gas is 10-100% of amount of saturated vapor. The temperature of inert gas is -10-100 deg.C, and a normal pressure can be applied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特定の芳香族コポリイミド又は芳香族コポリア
ミドイミドを極性有機溶媒に溶解させて得られたコポリ
イミド虹#鞠又はコポリアミドイミド溶液を使用して、
その液状の薄膜を形成し、その薄膜を水蒸気等を含む不
活性気体中で凝固させ、次いで、加熱・乾燥してコポリ
イミド又はコポリアミドイミドの分離膜を製造する方法
に係るものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a copolyimide rainbow #mari or copolyamideimide solution obtained by dissolving a specific aromatic copolyimide or aromatic copolyamideimide in a polar organic solvent. using,
This method involves forming a liquid thin film, coagulating the thin film in an inert gas containing water vapor, and then heating and drying it to produce a copolyimide or copolyamide-imide separation membrane.

〔従来の技術〕[Conventional technology]

従来、分離膜として酢酸セルロース系の非対称構造の膜
がよく知られており、その製造方法としてアセトン−ホ
ルムアミド混合溶液又はその溶液に金属塩を溶解した溶
液を溶媒として使用し、その中に酢酸セルロースを溶解
してドープ液を調製し、そのドープ液の薄膜を形成して
その薄膜の片面から前記溶媒を一部蒸発させた後、その
薄膜を冷水中に浸漬するという方法が知られていた。し
かし、このような酢酸セルロース系の分離膜は耐熱性、
耐薬品性、耐微生物性、耐PH性、耐圧密性、耐塩素性
などについて不十分な性状しか有さす満足すべきもので
はなかった。
Conventionally, cellulose acetate-based asymmetric membranes have been well known as separation membranes, and the method for manufacturing them is to use an acetone-formamide mixed solution or a solution of a metal salt dissolved in that solution as a solvent, and to add cellulose acetate to the solution. A known method is to prepare a dope solution by dissolving the dope solution, form a thin film of the dope solution, partially evaporate the solvent from one side of the thin film, and then immerse the thin film in cold water. However, such cellulose acetate-based separation membranes have poor heat resistance and
It was unsatisfactory as it had insufficient properties in terms of chemical resistance, microbial resistance, PH resistance, compaction resistance, chlorine resistance, etc.

そこで耐熱性、耐薬品性、耐圧密性に優れた分離膜とし
て芳香族ポリイミド系分離膜、芳香族ポリアミド系分離
膜などが提案されている。
Therefore, aromatic polyimide-based separation membranes, aromatic polyamide-based separation membranes, and the like have been proposed as separation membranes with excellent heat resistance, chemical resistance, and compaction resistance.

特に、芳香族ポリイミド系分離膜は非常に優れた耐熱性
を有し、さらに機械的性質および耐薬品性にも優れてい
るので、分離膜としてかなり期待されているものである
In particular, aromatic polyimide separation membranes have very good heat resistance, and are also excellent in mechanical properties and chemical resistance, so they are highly expected as separation membranes.

しかしながら、公知のポリイミドの多孔質膜の製造方法
である、テトラカルボン酸二無水物と芳香族ジアミンの
重合反応によって得られたポリアミック酸の溶液を使用
してその薄膜を凝固液中でイミド化しながら凝固させて
芳香族ポリイミド膜を製造するという方法では、ポリア
ミック酸の溶液からの製膜、凝固、イミド化というや!
作が必要であるので非常にコントロールの靴しい複雑な
方法となっており、品質の安定した優れた性能のポリイ
ミド分離膜を安定的に製造することができないという欠
点があった。
However, in a known method for producing porous polyimide membranes, a solution of polyamic acid obtained by a polymerization reaction of tetracarboxylic dianhydride and aromatic diamine is used to imidize the thin membrane in a coagulating solution. The method of manufacturing an aromatic polyimide film by coagulating it involves forming a film from a solution of polyamic acid, coagulating it, and imidizing it!
This method is complicated and requires a lot of control, and has the disadvantage that it is not possible to stably produce polyimide separation membranes with stable quality and excellent performance.

又、p−クロルフェノール等の7工ノール化合物の融解
液中に溶解したビフェニルテトラカルボン酸二無水物と
芳香族ジアミンの重合反応によって得られた芳香族ポリ
イミドを凝固させて分1i1f#膜を製造する方法では
、フェノール化合物融解液中に溶解した芳香族ポリイミ
ドを凝固液で凝固して、一度に緻密相と多五質層とを形
成した凝固膜を作らなければならないので操作が極めて
難しく、再現よく安定した性能の分離膜を作ることが困
難であったり、かつ凝固液として無公害である水を主成
分とする溶媒を使用した場合には、凝固速度が遅いため
多孔質層が充分に発達せず緻密層が発達してしすう傾向
があり、極端な場合には凝固自体が長時間を要したり、
得られたポリイミド分離膜が充分な透過性能を有してい
なかったりする場合があった。
In addition, an aromatic polyimide obtained by a polymerization reaction of biphenyltetracarboxylic dianhydride and aromatic diamine dissolved in a melt of a heptanoyl compound such as p-chlorophenol is coagulated to produce a 1i1f # membrane. In this method, the aromatic polyimide dissolved in the phenolic compound melt must be coagulated with a coagulating liquid to create a coagulated film that forms a dense phase and a multi-pentate layer at once, which is extremely difficult to operate and difficult to reproduce. If it is difficult to create a separation membrane with good and stable performance, or if a solvent mainly composed of water, which is non-polluting, is used as the coagulation liquid, the coagulation rate is slow and the porous layer may not fully develop. There is a tendency for a dense layer to develop without solidification, and in extreme cases, solidification itself may take a long time, or
In some cases, the obtained polyimide separation membrane did not have sufficient permeability.

〔発明の目的〕[Purpose of the invention]

本発明者等は、以上のような点に鑑み鋭意検討した結果
、特定の芳香族ポリイミド又は芳香族コポリアミドイミ
ドを極性有機溶媒を主成分とする溶媒に溶解させて得ら
れたコポリイミド又はコポリイミド溶液を使用して液状
の薄膜を形成し、その薄膜を水蒸気等を含む不活性気体
中で凝固させ、次いで加熱・乾燥することにより、分離
性能、耐熱性、耐薬品性及び機械的特性に優れた分離膜
を再現性よく安定的に製造できることを見出し本発明に
到達した。
As a result of intensive studies in view of the above points, the present inventors have discovered a copolyimide or copolyimide obtained by dissolving a specific aromatic polyimide or aromatic copolyamideimide in a solvent whose main component is a polar organic solvent. By forming a liquid thin film using a polyimide solution, coagulating the thin film in an inert gas containing water vapor, etc., and then heating and drying it, we can improve separation performance, heat resistance, chemical resistance, and mechanical properties. The present invention was achieved by discovering that excellent separation membranes can be produced stably with good reproducibility.

すなわち、本発明の要旨は繰り返し単位の90〜70モ
ルチが式(1) で表わされる構造を有し、かつ繰り返し単位の/θ〜3
0モルチが式(n) ・・・・・・(It) で表わされる構造を有するコポリイミド、又は繰り返し
単位の70〜90′チモルが式(DT)で表わされる構
造を有し、かつ繰シ返し単位の3θ〜70モルチが式(
IV) で表わされる構造を有するコポリアミドイミドを極性有
機溶媒に溶解させたコポリイミド又はコポリアミドイミ
ド溶液をドープ液として使用しそのドープ液の薄膜を、
水、アルコール類、ケトン類、エーテル類、芳香族炭化
水素類、あるいはこれらの混合物からなる群より選ばれ
る〜100%となるように含む不活性気体中で凝固させ
、ついでその薄膜を加熱・乾燥することを特徴とする分
離膜の製造方法に存する。
That is, the gist of the present invention is that 90 to 70 moles of the repeating unit have a structure represented by formula (1), and /θ to 3 of the repeating unit
A copolyimide having a structure in which 0 mol th is represented by the formula (n) (It), or a copolyimide in which 70 to 90 thy mol of the repeating unit has a structure represented by the formula (DT), and a repeating unit has a structure represented by the formula (DT). The return unit 3θ~70molti is expressed by the formula (
IV) Using a copolyimide or a copolyamide-imide solution in which a copolyamide-imide having the structure represented by is dissolved in a polar organic solvent as a dope liquid, a thin film of the dope liquid is formed.
It is coagulated in an inert gas containing ~100% selected from the group consisting of water, alcohols, ketones, ethers, aromatic hydrocarbons, or mixtures thereof, and then the thin film is heated and dried. A method of manufacturing a separation membrane is provided.

〔発明の構成〕[Structure of the invention]

以下、本発明の方法についてさらに詳しく説明する。本
発明において使用される芳香族コポリイミドは一般式 の繰返し単位の存在を特徴とするコポリイミドであり、
ここで上記繰返し単位の10〜30モルチはRが〈ΣC
H,−1−Σ を表わすものであり、上記繰り返し単位
の9Q〜20モルチはRこのコポリイミドは3.3’、
鮎St’−ベンゾフェノンテトラカルボン酸二無水物を
適当なモル比の%、%’−メチレンビスフェニルインシ
アネート(g、a’−ジフェニルメタンジイソシアネー
ト)およびトリレンジインシアネート(2,9を一異性
体、あるいはそれらの混合物)とともに極性溶媒の存在
下で反応させることにより容易に得ることができる。
The method of the present invention will be explained in more detail below. The aromatic copolyimide used in the present invention is a copolyimide characterized by the presence of repeating units of the general formula,
Here, for 10 to 30 moles of the above repeating unit, R is <ΣC
H, -1-Σ, and 9Q to 20 molti of the above repeating unit is R. This copolyimide is 3.3',
Ayu St'-benzophenonetetracarboxylic dianhydride in appropriate molar ratios of %, %'-methylenebisphenyl incyanate (g, a'-diphenylmethane diisocyanate) and tolylene diinocyanate (2,9 as monoisomer, or a mixture thereof) in the presence of a polar solvent.

また、本発明において使用される芳香族コポリアミドイ
ミドは繰り返し単位の70〜90モルチが式(m) で表わされる構造を有し、かつ繰り返し単位の30〜7
0モルチが式(■) で表わされる構造を有するコポリアミドイミドである。
Further, the aromatic copolyamideimide used in the present invention has a structure in which 70 to 90 moles of repeating units are represented by the formula (m), and 30 to 7 moles of repeating units
0 molti is a copolyamideimide having a structure represented by the formula (■).

このコポリアミドイミドは米国特許第3.9コタ、に9
/号に教示の方法により容易に製造される。このような
コポリアミドイミドは、前記特許に記載の操作を用いて
約7θモルチから約7θモル千対約30モルチから約/
Qモルチの割合のトリメリット酸無水物とインフタル酸
の混合物とほぼ等量のiooモルチ割合のスキ′−メチ
レンビスフェニルイソシアナートの反応から容易に得る
ことができる。
This copolyamide-imide is disclosed in U.S. Patent No. 3.9, No. 9
It is easily produced by the method taught in No. Such copolyamideimides can be prepared from about 7θ molti to about 30 molti to about 7θ molti using the procedures described in the aforementioned patents.
It can be easily obtained from the reaction of a mixture of trimellitic anhydride and inphthalic acid in a proportion of Q molty and a substantially equal amount of ski'-methylenebisphenyl isocyanate in a proportion of ioo molty.

本発明で用いられるコポリイミド又はコポリアミドイミ
ドの対数粘度(ηinh )はo、idt/?以上、よ
り好ましくは0.3〜’、tdl/?(N−メチルピロ
リドン中、0.5%、30℃測定)の範囲から選ばれる
The logarithmic viscosity (ηinh) of the copolyimide or copolyamideimide used in the present invention is o, idt/? Above, more preferably 0.3~', tdl/? (0.5% in N-methylpyrrolidone, measured at 30°C).

コポリイミド又はコポリアミドイミドの重合に用いられ
る溶媒は、極性有機溶媒でありジメチルホルムアミド、
ジメチルアセトアミド、N−メチルピロリドン、ジメチ
ルスルホキシド、ジメチルスルホン、ヘキサメチルホス
ホルアミド、テトラメチル尿素、ピリジンなどが例示さ
れるが、特に限定されるものではない。好ましくはジメ
チルホルムアミド、ジメチルアセトアミド、N−メチル
ピロリドン、よシ好ましくはジメチルホルムアミドが好
適に用いられる。上述の重合に使用する極性有機溶媒の
分量は、すべての反応体が最初に溶解するのに少なくと
も十分なものであることが好ましい。溶媒の使用量は求
めるコポリイミド、又はコポリアミドイミドの粘度によ
って調節されるものであり、得られたコポリイミド、又
はコポリアミドイミドの重量%はそれほど重要でないが
、典型的には約5重t%から約3j重t%までが好まし
い。
The solvent used in the polymerization of copolyimide or copolyamideimide is a polar organic solvent such as dimethylformamide,
Examples include, but are not limited to, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, and pyridine. Dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and more preferably dimethylformamide are preferably used. Preferably, the amount of polar organic solvent used in the above polymerization is at least sufficient to initially dissolve all reactants. The amount of solvent used is adjusted depending on the desired viscosity of the copolyimide or copolyamideimide, and although the weight percentage of the resulting copolyimide or copolyamideimide is not very important, it is typically about 5% by weight. % to about 3j% by weight are preferred.

前記ポリイミド、又はポリアミドイミド組成物のドープ
液から薄膜を得るには、ガラス板等の平板の上にキャス
ティングする方法、ロールコートスる方法、スピンコー
ドする方法、あるいは、表面積を大きくするために通常
採用されている中空糸にする方法等の公知の方法によっ
て行うことができる。
To obtain a thin film from the dope solution of the polyimide or polyamide-imide composition, a method of casting on a flat plate such as a glass plate, a method of roll coating, a method of spin coding, or a conventional method to increase the surface area. This can be carried out by a known method such as the currently employed method of forming hollow fibers.

また、適当な多孔質(多孔質中空糸を含む)の裏打材上
に流延して、膜に対して支持体をさらに設けることもで
きる。この多孔質支持体としては膜に対する透過カスの
通過を阻止せずかつ膜材料、溶媒、凝固液に侵され彦い
よう々任意の不活性多孔質材料を用いることができる。
The membrane can also be further provided with support by casting onto a suitable porous (including porous hollow fiber) backing material. As this porous support, any inert porous material that does not block the passage of permeate through the membrane and is eroded by the membrane material, solvent, and coagulation liquid can be used.

この種の支持体の典型的なものとしては金属メツシュ、
多孔質セラミック、焼結ガラス、多孔質ガラス、焼結金
属、紙、多孔質非溶解性プラスチック等が好適に用いら
れ、たとえばレーヨンのような不織布、アスベスト、多
孔質ポリイミドなどが挙げられる。これらの材料は分離
に関与せず単に膜用の支持体として作用するのみである
。ドープ液の薄膜の厚さは通常/rrr!n以下である
ことが好ましい。
Typical examples of this type of support are metal mesh,
Porous ceramics, sintered glass, porous glass, sintered metals, paper, porous non-dissolving plastics, etc. are preferably used, and examples include nonwoven fabrics such as rayon, asbestos, porous polyimide, etc. These materials do not participate in the separation and merely act as supports for the membrane. The thickness of the dope film is usually /rrr! It is preferably n or less.

薄膜が形成されたら、直ちに水蒸気等を含む不活性気体
中で凝固させるが、この場合、薄膜を形成しながら、又
は薄膜形成後、コθ〜/!θ℃、好ましくはり0〜72
0℃の大気中で2〜30θ秒間、好ましくは70〜/♂
O秒間、さらに好ましくはコ0〜iro秒間加熱して薄
膜中の溶媒の一部を蒸発除去してから凝固させてもよい
。まだ上記の範囲で熱風を吹きつけてもよい。これによ
り、非対称膜の構造中の表面緻密層の厚みを変えること
ができ、得られる膜の分離性能を容易にコントロールす
ることが可能である。水蒸気は薄膜の表面から膜中に溶
解するのであるが、水はドープ液との相溶性が良好なも
のであり、しかも、本コポリイミド又は、コポリアミド
イミド組成物との溶解性が低い(貧溶媒)ため、本コポ
リイミド又は、コポリアミドイミド組成物を凝固する作
用を有する。
Once the thin film is formed, it is immediately coagulated in an inert gas containing water vapor or the like. In this case, while forming the thin film or after forming the thin film, θ~/! θ℃, preferably 0 to 72
2 to 30 θ seconds in the atmosphere at 0°C, preferably 70 to ♂
The thin film may be solidified after being heated for 0 seconds, more preferably for 0 to 10 seconds to evaporate and remove a portion of the solvent in the thin film. You may still blow hot air within the above range. Thereby, the thickness of the surface dense layer in the structure of the asymmetric membrane can be changed, and the separation performance of the resulting membrane can be easily controlled. Water vapor dissolves into the film from the surface of the thin film, but water has good compatibility with the dope solution and has low (poor) solubility with the present copolyimide or copolyamide-imide composition. solvent), it has the effect of coagulating the present copolyimide or copolyamide-imide composition.

このような凝固液としては水以外に、たとえばグロバノ
ール等の低級アルコール類、アセトン等のケトン類、エ
チレングリコール等のエーテル類、トルエン等の芳香族
炭化水素類あるいはこれらの混合物等を挙げることがで
き、これらの物質の蒸気も当然、水蒸気と同様に凝固作
用を有するが、経済性、公害等の問題から水蒸気が好適
に用いられる。不活性気体に含まれるこ蒸気量 れらの物質の□’1.100の値は/θ〜飽和蒸気量 700%、好ましくはtpto〜10〜100%の範囲
から選ばれる。
Examples of such a coagulating liquid include, in addition to water, lower alcohols such as globanol, ketones such as acetone, ethers such as ethylene glycol, aromatic hydrocarbons such as toluene, or mixtures thereof. Naturally, the vapors of these substances also have a coagulating effect in the same way as water vapor, but water vapor is preferably used from the viewpoint of economy, pollution, etc. The value of □'1.100 of these substances contained in the inert gas is selected from the range of /θ to 700% of the saturated vapor content, preferably tpto to 10 to 100%.

不活性気体としてはポリイミド又は、ポリアミドイミド
組成物、溶媒、凝固に用いる物質の蒸気、製膜を行う大
気雰囲気に対して実質的に何らの影響を及ぼさない気体
であることが必要であり、空気、窒素が好ましい。水蒸
気を含むこれら不活性気体の温度は−/θ〜100℃、
好ましくはθ〜/θ℃の範囲が好適であり、圧力は常圧
であればよい。
The inert gas must be a gas that does not have any substantial effect on the polyimide or the polyamide-imide composition, the solvent, the vapor of the substance used for coagulation, and the atmospheric atmosphere in which the film is formed. , nitrogen is preferred. The temperature of these inert gases containing water vapor is -/θ~100℃,
Preferably, the range is θ to /θ°C, and the pressure may be normal pressure.

液状、あるいは溶媒の一部を蒸発させた薄膜を凝固する
方法は公知のどのような方法であってもよい。例えば薄
膜をその薄膜を形成されている基材とともに水蒸気等を
含む不活性気体中で凝固させる方法又は中空糸の薄膜の
みで水蒸気等を含む不活性気体中で凝固させる方法勢が
挙げられる。
Any known method may be used to solidify the thin film in liquid form or in which a portion of the solvent has been evaporated. Examples include a method in which a thin film is coagulated together with a substrate on which the thin film is formed in an inert gas containing water vapor or the like, or a method in which only the hollow fiber thin film is coagulated in an inert gas containing water vapor or the like.

凝固した浸潤膜は風乾又はアルコール・炭化水素類に浸
消し、溶媒及び凝固液を低濃度にしておくことが好まし
い。
It is preferable that the coagulated wet film is air-dried or immersed in alcohol or hydrocarbons, so that the concentration of the solvent and coagulation liquid is kept low.

次いでコポリイミドの膜の場合は50〜ダθ0℃、好ま
しくは10θ〜3jθ℃の範囲、コポリアミドイミドの
嗅の場合は50〜350℃、好ましくは700〜3θθ
℃の範囲で加熱、乾燥するが、その方法としては、例え
ば、常温よりしだいに温度を上昇させていつCもよいし
、各温度範囲内で複数段階で温度上昇させてもよい。あ
まり急激に加熱乾燥を行うと発泡が生じたりして好まし
くない。
Next, in the case of a copolyimide film, the temperature is 50 to 00°C, preferably 100 to 300°C, and in the case of a copolyamide-imide film, the temperature is 50 to 350°C, preferably 700 to 300°C.
Heating and drying is carried out within a range of 0.degree. C., and the method may be, for example, by gradually increasing the temperature from room temperature at any time, or by increasing the temperature in multiple steps within each temperature range. Too rapid heating and drying may cause foaming, which is undesirable.

前述の凝固した湿潤膜の加熱乾燥温度、時間及び凝固膜
厚は、溶媒の種類、凝固した湿潤膜中の蒸発成分量など
によって変わるものであるので各具体例で適宜状めれば
よい。
The heating and drying temperature, time and thickness of the coagulated wet film described above may vary depending on the type of solvent, the amount of evaporated components in the coagulated wet film, etc., and may be determined as appropriate for each specific example.

上記の加熱、乾燥を行わない膜においても、分離膜とし
て使用することは可能であるが、上記の加熱、乾燥を行
うことによシ、各種ガスの分離性能、および引張強度、
引張り破断伸度等の膜強度が格段に改善される。
Although it is possible to use the membrane without heating and drying as described above as a separation membrane, performing the heating and drying described above improves the separation performance of various gases, the tensile strength,
Membrane strength such as tensile elongation at break is significantly improved.

この発明の方法ではドープ液中のポリイミド又は、ポリ
アミドイミドの濃度、溶媒の種類、溶媒の組合せ、膨潤
剤の添加、蒸発条件、凝固剤の種類及び凝固条件等によ
ジ気孔率や孔の形状、緻密層の厚みを容易にかえること
が出来る。
In the method of this invention, the porosity and pore shape are determined by the concentration of polyimide or polyamideimide in the dope solution, the type of solvent, the combination of solvents, the addition of a swelling agent, the evaporation conditions, the type of coagulant, the coagulation conditions, etc. , the thickness of the dense layer can be easily changed.

しかし、 N、N−ジメチルホルムアミド、ジメチルア
セトアミド、N−メチルピロリドン等の極性有機溶媒に
常温で溶解しているコポリイミド又は、コポリアミドイ
ミド組成物は膨賃剤の添加なしでも水等の凝固剤の存在
下にて容易に多孔質構造が得られるため特に膨潤剤を添
加しなくてもよい。コポリイミド又はコポリアミドイミ
ド分離膜の厚さは約/〜200μ、より典型的にはコO
〜10θμの厚さが好ましい。
However, copolyimide or copolyamide-imide compositions dissolved in polar organic solvents such as N,N-dimethylformamide, dimethylacetamide, and N-methylpyrrolidone at room temperature can be dissolved in coagulants such as water without the addition of a blowing agent. Since a porous structure can be easily obtained in the presence of a swelling agent, it is not necessary to add a swelling agent. The thickness of the copolyimide or copolyamide-imide separation membrane is about /~200μ, more typically co-O
A thickness of ~10θμ is preferred.

本発明で得られるコポリイミド又はコポリアミド分離膜
は、例えば、700〜260℃の熱的履歴を受けてもそ
の膜特性を紺持し10〜//θ℃程度の高温のガスの分
離を長期間にわたって行なうことができる等高い耐熱性
を示し、耐薬品性にも優れている。また、後述するガス
透過テストにおける分離性能も衡めて優れており、例え
ば、水蒸気とメタンの分離性能(水蒸気とメタンとの透
過速度の比QH,O/ QaH,)が約20以上、かつ
メタンの透過性能(メタンの透過速度Q、CH,)が/
x 1O−7cl/ ca −esc −cm Hy以
上である。さらに水蒸気による吸湿凝固の操作の代りに
水による浸漬凝固の操作を行って得られた膜と比較する
と、引張膜強度、引張シ破断伸度が格段に改良されてお
り、実用上極めて有利に使用することができる。
The copolyimide or copolyamide separation membrane obtained by the present invention maintains its membrane properties even after being subjected to a thermal history of 700 to 260°C, and can maintain the separation of gases at high temperatures of about 10 to 260°C for a long time. It exhibits high heat resistance such that it can be used for a long period of time, and also has excellent chemical resistance. In addition, the separation performance in the gas permeation test described below is also excellent. The permeation performance (methane permeation rate Q, CH,) is /
x 1O-7cl/ca-esc-cm Hy or more. Furthermore, compared to membranes obtained by immersion coagulation in water instead of hygroscopic coagulation in water vapor, the tensile membrane strength and tensile elongation at break have been significantly improved, making it extremely advantageous for practical use. can do.

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

ガス透過特性に関する評価はガス透過係数の単位 p = 7−C1n/cn4 ・θec*cmHyを用
いて表わされ、これは素材/G厚さに換算したものであ
る。
Evaluation regarding gas permeability characteristics is expressed using the unit of gas permeability coefficient: p=7-C1n/cn4·θec*cmHy, which is converted into material/G thickness.

一方、分離膜においては素材の厚みそのものの 透過温度 Q = crti/ad ・see −cm
 Hyの単位で表わされており、70μと/μの膜厚で
は透過係数は同じであっても透過係数は10倍の差が生
じる。従って必要な特性は膜の厚さの影響を含む透過速
度である。水蒸気透過係数はJ工S Z20♂に準じて
測定した。
On the other hand, in the case of a separation membrane, the permeation temperature of the material itself is Q = crti/ad ・see -cm
It is expressed in units of Hy, and even if the permeability coefficients are the same for film thicknesses of 70μ and /μ, there is a tenfold difference in the permeability coefficients. Therefore, the required characteristic is the permeation rate, including the influence of membrane thickness. The water vapor permeability coefficient was measured according to J Engineering S Z20♂.

製造参考例/ 米国特許第370.3”467号の実施例弘に述べられ
ている手順を使用し3.3’、4t、a’−ベンゾフェ
ノンテトラカルボン酸無水物と10モN%のトソ 1/レンジイソシアネートおよび20モルチのりJ′−
ジフェニルメタンジイソシアネートを含む混合物より共
重合ポリイミドを重合した。
Preparation Reference Example: 3.3',4t,a'-benzophenonetetracarboxylic anhydride and 10 moN% Toso 1 / diisocyanate and 20 mole glue J'-
A copolyimide was polymerized from a mixture containing diphenylmethane diisocyanate.

重合溶媒はN、N’−ジメチルホルムアミドを使用し樹
脂物s度はコ/重景チであった。
N,N'-dimethylformamide was used as the polymerization solvent, and the resin content was 1/2.

このコポリイミドの3O℃における相対粘就(η1nh
)(ジメチルホルムアミド中、O,j%)は0,6dt
/Wであった。
The relative viscosity of this copolyimide at 30°C (η1nh
) (O,j% in dimethylformamide) is 0,6dt
/W.

製造参考例コ 予備乾燥した/θtの反応器に乙/ス、?2?(3,2
0モル)のトリメリット酸無水物および/3コ、?θf
(OJOモル)のインフタル酸を装入した。この反応器
は温度計、凝縮器、攪拌機及び窒素入口を備えていた。
Production reference example: Into the pre-dried /θt reactor, 2? (3,2
0 mol) of trimellitic anhydride and /3, ? θf
(OJO mol) of inphthalic acid was charged. The reactor was equipped with a thermometer, condenser, stirrer and nitrogen inlet.

5tの乾燥したびん中に7000,9t r (u、0
モル)のt、t 、9t/−メチレンビスフェニルイソ
シアナート(以下MDIと略称)をはかり取9次いで’
13%liのN−メチルピロリドン(以下NMPと略称
)をはかシ取ってMDIを溶解した。
7000,9t r (u, 0
Weigh out t, t, 9t/-methylene bisphenyl isocyanate (hereinafter abbreviated as MDI) (mole), and then
13% li of N-methylpyrrolidone (hereinafter abbreviated as NMP) was removed to dissolve MDI.

このMDI溶液を反応器に加え、次いでMDIをはかり
取ったびんをすすぐために36jOwlのNMPを加え
た。
This MDI solution was added to the reactor and then 36jOwl of NMP was added to weigh out the MDI and rinse the bottle.

& j rpmの橿拌速度および窒素雰囲気の下でこの
溶液を3時間弘0分にわたって53℃から77θ℃壕で
加熱しさらに/時間j!分/6り℃〜/7/℃に加熱し
た。このようKして繰返し単位の約♂0モルチが の構造を有し、繰返し単位の約20モルチがのlt造を
有するランダムコポリアミドイミドのNMPの一2j″
重i%溶液が得られた。
The solution was heated in a tube from 53° C. to 77° C. for 3 hours and 0 minutes under a stirring speed of &j rpm and a nitrogen atmosphere and then heated for an additional hour/hour. The mixture was heated to 1/6°C to 7/°C. In this way, NMP of a random copolyamide-imide in which about 0 moles of repeating units have a structure of K and about 20 moles of repeating units have a structure of 12j''
A weight i% solution was obtained.

このコポリアミドイミドの30℃における対数粘It 
(η1nh) (NMP中、θ、!%)は0.t03d
i/?であった。
Logarithmic viscosity It of this copolyamideimide at 30°C
(η1nh) (θ, !% in NMP) is 0. t03d
i/? Met.

この溶液をメタノール中に加え、ポリマーを析出させた
後、750℃で3時間乾燥し、コポリアミドイミド粉末
を得た。
This solution was added to methanol to precipitate a polymer, which was then dried at 750° C. for 3 hours to obtain a copolyamide-imide powder.

実施例/ 参考例/で得たポリイミド溶液をN、N’−ジメチルホ
ルムアミドで希釈し77重責係のポリイミド溶液を生成
し/μミリポアフィルターによυ濾過・精製した。この
ドープ液を室温でガラス板上に流延しドクターナイフで
均一な厚さく / 9tmj、L : / m1=25
μ)としてドープ液の薄膜を形成し1.20℃、相対湿
度50%からなる大気中に20時間放置し、200℃−
2Q分間加熱乾燥して溶媒を除去して膜をカラス板よシ
剥離し、約/ % j IIの厚さのポリイミド多孔質
膜を製造した。このポリイミド多孔質膜を使用してガス
透過テストを行ったところ、水蒸気の透過速度QH,O
、メタンの透過速11 Qcn、、水蒸気とメタンの分
離性能(水蒸気とメタンの透過速度の比) Q、H,o
/QaH4は下記のとおりであった。
The polyimide solution obtained in Example/Reference Example/ was diluted with N,N'-dimethylformamide to produce a polyimide solution of 77 layers, which was filtered and purified using a μ Millipore filter. This dope solution was cast on a glass plate at room temperature, and the thickness was uniformized using a doctor knife / 9tmj, L: / m1 = 25
A thin film of the dope solution was formed as μ) and left in an atmosphere of 1.20°C and 50% relative humidity for 20 hours.
The solvent was removed by heating and drying for 2Q minutes, and the membrane was peeled off from a glass plate to produce a polyimide porous membrane with a thickness of about % j II. When a gas permeation test was conducted using this polyimide porous membrane, the water vapor permeation rate QH, O
, methane permeation rate 11 Qcn, , separation performance of water vapor and methane (ratio of permeation rate of water vapor and methane) Q, H, o
/QaH4 was as follows.

QH,O= 6.ワ×/θ−’  cr/l/cr/l
 −sec @crrHyQ、C1(、=コ0.2 x
 10−” crA/li−sec *cmHyQ、H
,o/QcH,= J’ 3 またこの膜の引張り強度は2.3Aマ/−1引張シ破断
伸度は2.2%であった。
QH,O=6. wa×/θ-' cr/l/cr/l
-sec @crrHyQ, C1(,=ko0.2 x
10-” crA/li-sec *cmHyQ,H
, o/QcH, = J' 3 The tensile strength of this film was 2.3 A/-1, and the elongation at break was 2.2%.

実施例コ 参考例コで得たポリアミドイミド溶液をN、N’−ジメ
テルホルムアミドで希釈し77重′It%のポリアミド
イミド溶液を生成し/μミリポアフィルターにより濾過
・精製した。このドープ液を室温でガラス板上に流延し
ドクターナイフで20時間放置し、200℃−20分間
、加熱乾燥して溶媒を除去して膜をガラス板より剥離し
て約/jθμの厚さのポリアミドイミド多孔質膜を製造
した。この膜を使用してガス透過テストを行ったところ
、Q、H,O% Q、OH,、Q、H,O/Q、OH4
は下記のとおりてあった。
The polyamide-imide solution obtained in Examples and Reference Examples was diluted with N,N'-dimethylformamide to produce a polyamide-imide solution having a concentration of 77% by weight and was purified by filtration with a /μ Millipore filter. This dope solution was cast onto a glass plate at room temperature, left for 20 hours with a doctor knife, heated and dried at 200°C for 20 minutes to remove the solvent, and the film was peeled off from the glass plate to a thickness of approximately /jθμ. A porous polyamide-imide membrane was manufactured. When we conducted a gas permeation test using this membrane, we found that Q, H, O% Q, OH,, Q, H, O/Q, OH4
was as follows.

OH20= 41% X / Ocrl/cF7!伊s
ec TcmHyQ、0H4= /、9 X 10−” QH,o/Q、aH4= 3ダ またこの膜の引張膜強度は/、!kLi/md、引張り
破断伸度は79%であった。
OH20= 41% X/Ocrl/cF7! IS
ec TcmHyQ, 0H4 = /, 9 X 10-'' QH, o/Q, aH4 = 3 da Further, the tensile strength of this film was /, !kLi/md, and the tensile elongation at break was 79%.

比較例/ 実施例/と同ポリイミド溶液を同方法で薄膜を形成し、
20℃の水の中にガラス板ごと浸漬し、/θ分間放置後
剥離した膜を金属わくに固定し、sO℃の水の中で30
分間静置した。さらに室温の大気中で約7時間静置後、
200℃で20分間加熱乾燥し溶媒を除去して約/弘0
μの厚さのポリイミド多孔質膜を製造した。この膜を用
いてガス透過テストを行ったところ、下記の結果を得た
Comparative Example/Example/A thin film was formed using the same polyimide solution in the same manner as in Example/.
The glass plate was immersed in water at 20°C, and after being left for /θ minutes, the peeled film was fixed on a metal frame and soaked in water at sO°C for 30 minutes.
It was left standing for a minute. After leaving it in the air at room temperature for about 7 hours,
Dry by heating at 200℃ for 20 minutes to remove the solvent, and the
A polyimide porous membrane with a thickness of μ was produced. When a gas permeation test was conducted using this membrane, the following results were obtained.

QH,O=/、7X/(7ad/d拳8ec*cmHy
QOH,= l! x 10−” また、この膜の引張り強度はθ、 7 Ay / md
、引張り破断伸度はダチであった。
QH, O=/, 7X/(7ad/d fist 8ec*cmHy
QOH,=l! x 10-” Also, the tensile strength of this film is θ, 7 Ay/md
, the tensile elongation at break was the same.

比較例コ 実施例2と同ポリアミドイミド溶液を同方法で薄膜を形
成し、−0℃の水の中にガラス板ごと浸漬し、/θ分間
放置後剥離した膜を金属わくに固定し、50℃の水の中
で3θ分間靜置した。さらに室温の大気中で約7時間静
置後、200℃で20分間加熱乾燥し溶媒を除去して約
/弘3μの厚さのポリアミドイミド多孔質膜を製造した
。この膜を用いてガス透過テストを行ったところ、下記
の結果を得た。
Comparative Example: A thin film was formed using the same polyamide-imide solution as in Example 2, immersed together with the glass plate in water at -0°C, left for /θ minutes, and the peeled film was fixed on a metal frame. It was placed in water at 0.degree. C. for 3.theta. minutes. Further, the mixture was allowed to stand in the air at room temperature for about 7 hours, and then heated and dried at 200° C. for 20 minutes to remove the solvent, thereby producing a polyamideimide porous membrane with a thickness of about 3 μm. When a gas permeation test was conducted using this membrane, the following results were obtained.

QH!o=/、2X10  i/cn拳5ec−(BH
yQcH,= Jj X 10−” であった。また、この膜の引張り強度はO,j醇/−1
引張υ破断伸度は3%であった。
QH! o=/, 2X10 i/cn fist 5ec-(BH
yQcH,= Jj
The tensile elongation at break was 3%.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られるコポリイミド又はコポリアミド
イミド分離膜は例えば石油随伴ガス中の水蒸気の除去、
化学プロセスの合成に供されるガス中の水蒸気の除去、
コークス炉ガス中の水蒸気の除去等、工業分野への応用
が広く期待されるものである。
The copolyimide or copolyamide-imide separation membrane obtained by the present invention can be used, for example, to remove water vapor from petroleum-associated gas,
Removal of water vapor in gases subjected to synthesis of chemical processes,
It is widely expected to be applied in industrial fields, such as removing water vapor from coke oven gas.

出 願 人  三菱化成工業株式会社 代 理 人  弁理士 長谷用   −ほか7名 手続補正書(自発) 昭和60年/7月75日 1 事件の表示 昭和6θ年 特 許 願第2/ダ/4
t7号3 補正をする者
Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Patent attorney: Yo Hase - and 7 others Procedural amendment (voluntary) July 75, 1985 1 Indication of case: 1985 Patent Application No. 2/Da/4
t7 No. 3 Person making the amendment

Claims (4)

【特許請求の範囲】[Claims] (1)繰り返し単位の90〜70モル%が式( I )▲
数式、化学式、表等があります▼・・・・・・( I ) で表わされる構造を有し、かつ繰り返し単位の10〜3
0モル%が式(II) ▲数式、化学式、表等があります▼・・・・・・(II) で表わされる構造を有するコポリイミド、又は繰り返し
単位の70〜90モル%が式(III)▲数式、化学式、
表等があります▼・・・・・・(III) で表わされる構造を有し、かつ繰り返し単位の30〜1
0モル%が式(IV) ▲数式、化学式、表等があります▼・・・・・・(IV) で表わされる構造を有するコポリアミドイミドを極性有
機溶媒に溶解させた、コポリイミド又はコポリアミドイ
ミド溶液をドープ液として使用しそのドープ液の薄膜を
、水、アルコール類、ケトン類、エーテル類、芳香族炭
化水素類、あるいはこれらの混合物からなる群より選ば
れる一種類の蒸気を 蒸気量/飽和蒸気量 ×100の値が10〜100%となるように含む不活性
気体中で凝固させ、ついでその薄膜を加熱、乾燥するこ
とを特徴とする分離膜の製造方法。
(1) 90 to 70 mol% of repeating units are of the formula (I) ▲
There are mathematical formulas, chemical formulas, tables, etc. ▼・・・・・・It has a structure represented by (I) and has 10 to 3 repeating units.
0 mol% is formula (II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(II) Copolyimide having the structure represented by, or 70 to 90 mol% of the repeating units is formula (III) ▲Mathematical formulas, chemical formulas,
There are tables, etc. ▼・・・・・・(III) It has the structure expressed as 30 to 1 repeating unit.
0 mol% is the formula (IV) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(IV) Copolyimide or copolyamide made by dissolving copolyamideimide having the structure represented by the following in a polar organic solvent. An imide solution is used as a dope solution, and a thin film of the dope solution is heated with one type of vapor selected from the group consisting of water, alcohols, ketones, ethers, aromatic hydrocarbons, or mixtures thereof. A method for producing a separation membrane, comprising coagulating it in an inert gas containing a saturated vapor amount x 100 of 10 to 100%, and then heating and drying the thin film.
(2)ドープ液の薄膜を相対湿度10〜100%を有す
る不活性気体中で吸湿凝固させ、ついでその薄膜を加熱
、乾燥することを特徴とする特許請求の範囲第1項記載
の分離膜の製造方法。
(2) A separation membrane according to claim 1, characterized in that a thin film of the dope liquid is hygroscopically coagulated in an inert gas having a relative humidity of 10 to 100%, and then the thin film is heated and dried. Production method.
(3)ドープ液の薄膜を形成しながら、又は形成後、そ
の薄膜の片面から極性有機溶媒を一部蒸発させた後、凝
固させ、ついでその薄膜を加熱、乾燥することを特徴と
する特許請求の範囲第1項又は第2項記載の分離膜の製
造方法。
(3) A patent claim characterized in that while or after forming a thin film of dope liquid, a portion of the polar organic solvent is evaporated from one side of the thin film, and then solidified, and then the thin film is heated and dried. A method for producing a separation membrane according to item 1 or 2.
(4)不活性気体が空気又は窒素であることを特徴とす
る特許請求の範囲第1項ないし第3項のいずれかに記載
の分離膜の製造方法。
(4) The method for producing a separation membrane according to any one of claims 1 to 3, wherein the inert gas is air or nitrogen.
JP60214147A 1985-09-27 1985-09-27 Method for manufacturing separation membrane Expired - Lifetime JPH0685858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214147A JPH0685858B2 (en) 1985-09-27 1985-09-27 Method for manufacturing separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214147A JPH0685858B2 (en) 1985-09-27 1985-09-27 Method for manufacturing separation membrane

Publications (2)

Publication Number Publication Date
JPS6274410A true JPS6274410A (en) 1987-04-06
JPH0685858B2 JPH0685858B2 (en) 1994-11-02

Family

ID=16651004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214147A Expired - Lifetime JPH0685858B2 (en) 1985-09-27 1985-09-27 Method for manufacturing separation membrane

Country Status (1)

Country Link
JP (1) JPH0685858B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932983A (en) * 1989-06-01 1990-06-12 E. I. Du Pont De Nemours And Company Copolyimide gas separation membranes derived from substituted methylene dianilines and unsubstituted diamines
US4932982A (en) * 1989-06-01 1990-06-12 E. I. Du Pont De Nemours And Company Copolyimide gas separation membranes derived from substituted phenylene diamines and substituted methylene dianilines
US4952319A (en) * 1986-12-15 1990-08-28 Mitsubishi Kasei Corporation Process for separating liquid mixture
US4954144A (en) * 1989-09-12 1990-09-04 Air Products And Chemicals, Inc. Polyimide membranes and their use for gas separation
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
US5026823A (en) * 1989-09-12 1991-06-25 The Dow Chemical Company Novel alicyclic polyimides and a process for making the same
US5071452A (en) * 1989-08-11 1991-12-10 Institut Francais Du Petrole Gas separation membrane
US5076816A (en) * 1989-08-14 1991-12-31 Institut Francais Du Petrole Gas separation membrane
US5248319A (en) * 1992-09-02 1993-09-28 E. I. Du Pont De Nemours And Company Gas separation membranes made from blends of aromatic polyamide, polymide or polyamide-imide polymers
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
CN114709558A (en) * 2022-03-25 2022-07-05 中材锂膜有限公司 High-heat-resistance polyamide-imide composite diaphragm and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170935A (en) * 1981-04-14 1982-10-21 Ube Ind Ltd Preparation of porous polyimide film
JPS5858113A (en) * 1981-10-02 1983-04-06 Teijin Ltd Preparation of selective permeable membrane
JPS59230604A (en) * 1983-05-13 1984-12-25 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Crossed polyimide reverse osmosis membrane, manufacture thereof and use thereof for separating organic liquid
JPS6022902A (en) * 1983-07-15 1985-02-05 Mitsubishi Chem Ind Ltd Separation membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170935A (en) * 1981-04-14 1982-10-21 Ube Ind Ltd Preparation of porous polyimide film
JPS5858113A (en) * 1981-10-02 1983-04-06 Teijin Ltd Preparation of selective permeable membrane
JPS59230604A (en) * 1983-05-13 1984-12-25 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Crossed polyimide reverse osmosis membrane, manufacture thereof and use thereof for separating organic liquid
JPS6022902A (en) * 1983-07-15 1985-02-05 Mitsubishi Chem Ind Ltd Separation membrane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952319A (en) * 1986-12-15 1990-08-28 Mitsubishi Kasei Corporation Process for separating liquid mixture
US4932983A (en) * 1989-06-01 1990-06-12 E. I. Du Pont De Nemours And Company Copolyimide gas separation membranes derived from substituted methylene dianilines and unsubstituted diamines
US4932982A (en) * 1989-06-01 1990-06-12 E. I. Du Pont De Nemours And Company Copolyimide gas separation membranes derived from substituted phenylene diamines and substituted methylene dianilines
US5071452A (en) * 1989-08-11 1991-12-10 Institut Francais Du Petrole Gas separation membrane
US5076816A (en) * 1989-08-14 1991-12-31 Institut Francais Du Petrole Gas separation membrane
US4954144A (en) * 1989-09-12 1990-09-04 Air Products And Chemicals, Inc. Polyimide membranes and their use for gas separation
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
US5026823A (en) * 1989-09-12 1991-06-25 The Dow Chemical Company Novel alicyclic polyimides and a process for making the same
US5248319A (en) * 1992-09-02 1993-09-28 E. I. Du Pont De Nemours And Company Gas separation membranes made from blends of aromatic polyamide, polymide or polyamide-imide polymers
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
CN114709558A (en) * 2022-03-25 2022-07-05 中材锂膜有限公司 High-heat-resistance polyamide-imide composite diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JPH0685858B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US4378324A (en) Process for preparing aromatic polyimide semipermeable membranes
US4528004A (en) Aromatic polyimide composite separating membrane
US4385084A (en) Process for preparing a selective permeable membrane
US4440643A (en) Process for producing aromatic polyimide composite separating membrane
US5286539A (en) Gas separating asymmetric membrane
JPS6355974B2 (en)
JPS6153103B2 (en)
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JPS621617B2 (en)
JPH03178325A (en) Production of aromatic polyimide membrane
JPS6274410A (en) Production process for separating membrane
JPS588512A (en) Preparation of polyimide separation membrane
JPS6252603B2 (en)
JPS6252604B2 (en)
JPS6274411A (en) Production process for separating membrane
EP0437611A1 (en) Separative membrane made of aromatic polyimide
JPH0685860B2 (en) Separation membrane manufacturing method
JPS62163712A (en) Dope for producing separation membrane
JPS5998704A (en) Gas separation membrane comprising polyimide
JPS6261228B2 (en)
JPS621615B2 (en)
JPH0693984B2 (en) Polyimide gas separation membrane
JPS6153089B2 (en)
JP2506837B2 (en) Method for manufacturing composite separation membrane
JPS621616B2 (en)