JPS6260857B2 - - Google Patents

Info

Publication number
JPS6260857B2
JPS6260857B2 JP6823583A JP6823583A JPS6260857B2 JP S6260857 B2 JPS6260857 B2 JP S6260857B2 JP 6823583 A JP6823583 A JP 6823583A JP 6823583 A JP6823583 A JP 6823583A JP S6260857 B2 JPS6260857 B2 JP S6260857B2
Authority
JP
Japan
Prior art keywords
signal
power
transmitter
transformer
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6823583A
Other languages
Japanese (ja)
Other versions
JPS59193638A (en
Inventor
Kozo Watanabe
Sumio Kobane
Minoru Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP6823583A priority Critical patent/JPS59193638A/en
Publication of JPS59193638A publication Critical patent/JPS59193638A/en
Publication of JPS6260857B2 publication Critical patent/JPS6260857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は信号の伝送路として単相3線式結線の
配電線を利用して各種計測信号又は状態監視信号
等の伝送を行なう際の信号伝送方式に関するもの
である。 第1図は従来公知の単相3線式結線の配電線を
利用した信号伝送方式の1例を示すものであり、
第1図に於て、1は電力の配電側に設置される伝
送信号の送信機、2は電力の受電側に設置される
伝送信号の受信機、3及び4は受電によつて動作
する、例えばモーターの如き電力負荷、5及び6
は接地されていない配電線、7は接地された配電
線、T0は電力中継用トランス、P1,P2は電
力会社又は自家発電装置等からの電力受電端子、
P3,P4及びP5は電力負荷3,4側への配電
端子、P6,P7は電力負荷3側の受電端子、P
8,P9は電力負荷4側の受電端子を示す。 また送信機1に於て、P10は信号の対地信号
送出端子、T1は信号の中継トランス、C0はコ
ンデンサであり、受信機2に於て、P11は信号
の対地信号受信端子、T2は信号の中継トラン
ス、C1はコンデンサである。 尚、各トランスT0,T1及びT2に於て、P
は1次側巻線を、Sは2次側巻線をそれぞれ示し
ている。また、電力中継用トランスT0の2次側
巻線Sに於て、配電端子P3,P4間に接続され
る巻線のインダクタンスと配電端子P5,P4間
に接続される巻線のインダクタンスは等しく設定
されている。 電力負荷3又は4を動作させるための電力は電
力会社等から受電端子P1,P2に供給され、ト
ランスT0で中継されて配電線5−7間又は6−
7間を介して当該電力負荷3又は4に供給され
る。また送信機1から送出された信号は配電線5
又は6の一方(第1図は配電線6を使用した例を
示す。)を経由して接地した配電線7を帰路とす
る対地帰路方式で受信機2に伝送される。即ち、
以下の経路による。
The present invention relates to a signal transmission system for transmitting various measurement signals, condition monitoring signals, etc. using a single-phase three-wire power distribution line as a signal transmission path. Figure 1 shows an example of a signal transmission system using a conventionally known single-phase three-wire distribution line.
In FIG. 1, 1 is a transmission signal transmitter installed on the power distribution side, 2 is a transmission signal receiver installed on the power reception side, and 3 and 4 are operated by receiving power. Power loads such as motors, 5 and 6
is an ungrounded distribution line, 7 is a grounded distribution line, T0 is a power relay transformer, P1 and P2 are power receiving terminals from a power company or a private power generator, etc.
P3, P4 and P5 are power distribution terminals for the power loads 3 and 4, P6 and P7 are power receiving terminals for the power load 3, and P
8, P9 indicates a power receiving terminal on the power load 4 side. In the transmitter 1, P10 is a signal ground signal sending terminal, T1 is a signal relay transformer, and C0 is a capacitor. In the receiver 2, P11 is a signal ground signal receiving terminal, and T2 is a signal ground signal receiving terminal. The relay transformer C1 is a capacitor. In addition, in each transformer T0, T1 and T2, P
indicates the primary winding, and S indicates the secondary winding. In the secondary winding S of the power relay transformer T0, the inductance of the winding connected between the power distribution terminals P3 and P4 and the inductance of the winding connected between the power distribution terminals P5 and P4 are set to be equal. has been done. Electric power for operating the power load 3 or 4 is supplied from the electric power company etc. to the power receiving terminals P1 and P2, relayed by the transformer T0, and transmitted between the power distribution lines 5-7 or 6-
The power is supplied to the power load 3 or 4 through the power supply line 7. In addition, the signal sent from the transmitter 1 is transmitted to the power distribution line 5.
or 6 (FIG. 1 shows an example using the power distribution line 6), and is transmitted to the receiver 2 using a ground return method using the grounded power distribution line 7 as the return route. That is,
By the following route.

【表】 また、送信機1からの送出信号は同時に次の経
路、即ち 信号送出端子P10−トランスT1(P−S)
−コンデンサC0−配電端子P5−トランスT0
(S)−配電端子P4−大地 によつてトランスT0の2次側巻線Sに印加さ
れ、当該トランスT0の2次側巻線Sに上記送出
信号による電流が流れて上記トランスT0の1次
側巻線Pに電圧が誘起され、受電端子P1,P2
間に於ける雑音信号となる。即ち、送信機1から
の送出信号が電力中継用トランスT0の1次側巻
線Pに漏洩し、電力会社等から電力を供給するた
めの電力線(受電端子P1,P2に接続されてい
る。)を介して他の電力設備への雑音信号となり
悪影響を与える。このため電力中継用トランスT
0の1次側巻線Pで送信機1からの送出信号によ
る漏洩出力レベルが許容範囲内になるように上記
送信機1からの送出信号の出力レベルを小さく抑
制している。しかしながら、例えば送信機1と受
信機2との間の伝送経路が長くなつた場合、即ち
伝送経路の抵抗値が大きい場合などでは、上記送
信機1からの送出信号出力レベルがあまり小さい
と、上記送信機1からの送出信号を上記受信機2
で正常に受信出来なくなる欠点を有している。 本発明は上記欠点を除く信号伝送方式を簡単な
手段で提供するものである。 第2図は本発明の実施例の回路図を示し、図中
第1図と異なる所は送信機1のトランスT1の2
次側巻線Sと、信号伝送路となる配電線6とは異
なるもう一方の配電線5との間にコンデンサC2
が追加接続されていて、送信機1からの送出信号
は双方のコンデンサC0及びC2を介して配電線
5及び6(単相3線式結線の接地されていない双
方の配電線)に同じ位相で送出されていることで
ある。 送信機1から受信機2への信号の伝送は、前記
従来例と同様に接地されていない配電線6を伝送
路とする対地帰路方式で行なわれるが、電力中継
用トランスT0の2次側巻線Sに当該信号が印加
される状態が前記従来例とは異なる。即ち、送信
機1から送出された信号は、次の2つの経路、 信号送出端子P−トランスT1(P−S)−コ
ンデンサC0−配電端子P5−トランスT0
(S)−配電端子P4−大地 信号送出端子P10−トランスT1(P−S)
−コンデンサC2−配電端子P3−トランスT0
(S)−配電端子P4−大地 に流れ、電力中継用トランスT0の2次側巻線S
に流れる信号電流で、配電端子P5からP4に流
れる電流と、配電端子P3からP4に流れる電流
とは位相が互に逆となる。 従つて接地されていない2本の配電線5及び6
に送信機1からの送出信号が同相、かつ等電流値
で印加されるようにコンデンサC0,C2の値を
設定することにより、電力中継用トランスT0の
2次側巻線Sの2つの巻線に流れる電流の方向が
逆となるため当該電力中継用トランスT0の1次
側巻線Pには送信機1からの信号による電圧が誘
起されない。即ち、送信機1からの送出信号が電
力中継用トランスT0の1次側巻線Pに漏洩しな
い。従つて送信機1の送出信号出力レベルを任意
に設定出来るため、上記送信機1と受信機2との
間の伝送経路が長くなつた場合、即ち伝送経路の
抵抗値が大きな場合においても上記送信機1の送
出信号出力レベルを大きく設定することにより上
記送信機1からの送出信号が上記受信機2で正常
に受信出来る。
[Table] Also, the sending signal from transmitter 1 is simultaneously routed through the following route: Signal sending terminal P10 - Transformer T1 (P-S)
- Capacitor C0 - Distribution terminal P5 - Transformer T0
(S) - Power distribution terminal P4 - Applied to the secondary winding S of the transformer T0 by the ground, the current according to the above sending signal flows through the secondary winding S of the transformer T0, and the primary of the transformer T0 A voltage is induced in the side winding P, and the power receiving terminals P1 and P2
It becomes a noise signal in between. That is, the transmission signal from the transmitter 1 leaks to the primary winding P of the power relay transformer T0, and the power line (connected to the power receiving terminals P1 and P2) for supplying power from the power company etc. It becomes a noise signal to other power equipment through the power supply and has an adverse effect. Therefore, the power relay transformer T
The output level of the signal sent out from the transmitter 1 is suppressed to a low level so that the leakage output level due to the signal sent out from the transmitter 1 is within an allowable range in the primary winding P of 0. However, when the transmission path between the transmitter 1 and the receiver 2 becomes long, that is, when the resistance value of the transmission path is large, if the output level of the output signal from the transmitter 1 is too low, the The transmission signal from the transmitter 1 is transmitted to the receiver 2.
It has the disadvantage that it cannot be received normally. The present invention provides a signal transmission system that eliminates the above-mentioned drawbacks using simple means. FIG. 2 shows a circuit diagram of an embodiment of the present invention, and the difference from FIG.
A capacitor C2 is connected between the next winding S and the other distribution line 5, which is different from the distribution line 6 serving as the signal transmission path.
is additionally connected, and the output signal from transmitter 1 is sent through both capacitors C0 and C2 to distribution lines 5 and 6 (both distribution lines that are not grounded in a single-phase 3-wire connection) with the same phase. It is being sent out. The transmission of the signal from the transmitter 1 to the receiver 2 is performed by the return-to-ground method using the ungrounded distribution line 6 as the transmission path, as in the conventional example, but the secondary winding of the power relay transformer T0 is The state in which the signal is applied to the line S is different from the conventional example. That is, the signal sent from the transmitter 1 goes through the following two paths: Signal sending terminal P - Transformer T1 (P-S) - Capacitor C0 - Distribution terminal P5 - Transformer T0
(S) - Distribution terminal P4 - Ground Signal sending terminal P10 - Transformer T1 (P-S)
- Capacitor C2 - Distribution terminal P3 - Transformer T0
(S) - Power distribution terminal P4 - Flows to ground, secondary winding S of power relay transformer T0
The signal current flowing from the power distribution terminals P5 to P4 and the current flowing from the power distribution terminals P3 to P4 have opposite phases. The two distribution lines 5 and 6 are therefore not grounded.
By setting the values of capacitors C0 and C2 so that the sending signal from transmitter 1 is applied in the same phase and with equal current value, the two windings of the secondary winding S of the power relay transformer T0 Since the direction of the current flowing in is reversed, no voltage is induced in the primary winding P of the power relay transformer T0 by the signal from the transmitter 1. That is, the transmission signal from the transmitter 1 does not leak to the primary winding P of the power relay transformer T0. Therefore, since the output signal output level of the transmitter 1 can be set arbitrarily, even when the transmission path between the transmitter 1 and the receiver 2 becomes long, that is, when the resistance value of the transmission path is large, the transmission is still possible. By setting the transmitting signal output level of the transmitter 1 to be high, the transmitting signal from the transmitter 1 can be normally received by the receiver 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の信号伝送方式を示した回路図、
第2図は本発明の実施例に係る信号伝送方式を示
した回路図を示す。 1……送信機、2……受信機、3,4……配電
線の負荷、5,6……配電線、T0……電力中継
トランス、T1……信号の送信中継トランス、T
2……信号の受信中継トランス、C0,C1,C
2……コンデンサ。
Figure 1 is a circuit diagram showing a conventional signal transmission system.
FIG. 2 shows a circuit diagram showing a signal transmission system according to an embodiment of the present invention. 1... Transmitter, 2... Receiver, 3, 4... Distribution line load, 5, 6... Distribution line, T0... Power relay transformer, T1... Signal transmission relay transformer, T
2...Signal reception relay transformer, C0, C1, C
2... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 単相3線式結線の配電線を利用した信号伝送
方式に於て、送信側の信号出力線と接地されてい
ない2本の配電線との間、及び受信側の信号入力
線と上記接地されていない配電線のいずれか一方
との間を各々コンデンサで結合し、受信側でコン
デンサが結合された上記一方の配電線と対地間と
で信号の伝送路を構成し、上記送信側の接地され
ていない2本の配電線には同じ位相で送信すべき
信号が印加されるようにしたことを特徴とする配
電線を利用した信号伝送方式。
1. In a signal transmission system using a single-phase three-wire distribution line, the connection between the signal output line on the transmitting side and two ungrounded distribution lines, and between the signal input line on the receiving side and the ground A signal transmission path is formed between one of the distribution lines connected to the capacitor and the ground on the receiving side, and the transmission line is connected to the ground on the sending side. A signal transmission method using distribution lines characterized in that signals to be transmitted are applied in the same phase to two distribution lines that are not connected to each other.
JP6823583A 1983-04-18 1983-04-18 Signal transmission system utilizing distribution line Granted JPS59193638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6823583A JPS59193638A (en) 1983-04-18 1983-04-18 Signal transmission system utilizing distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6823583A JPS59193638A (en) 1983-04-18 1983-04-18 Signal transmission system utilizing distribution line

Publications (2)

Publication Number Publication Date
JPS59193638A JPS59193638A (en) 1984-11-02
JPS6260857B2 true JPS6260857B2 (en) 1987-12-18

Family

ID=13367919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6823583A Granted JPS59193638A (en) 1983-04-18 1983-04-18 Signal transmission system utilizing distribution line

Country Status (1)

Country Link
JP (1) JPS59193638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417168Y2 (en) * 1987-05-09 1992-04-16

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5219469B2 (en) * 2007-11-16 2013-06-26 ローム株式会社 Electrical equipment and power line communication system
JP2011130124A (en) * 2009-12-16 2011-06-30 Canon Inc Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417168Y2 (en) * 1987-05-09 1992-04-16

Also Published As

Publication number Publication date
JPS59193638A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
US3895370A (en) High-frequency communication system using A-C utility lines
US4504705A (en) Receiving arrangements for audio frequency signals
US4473816A (en) Communications signal bypass around power line transformer
US4254402A (en) Transformer arrangement for coupling a communication signal to a three-phase power line
US4188619A (en) Transformer arrangement for coupling a communication signal to a three-phase power line
US4602240A (en) Apparatus for and method of attenuating power line carrier communication signals passing between substation distribution lines and transmission lines through substation transformers
US4481501A (en) Transformer arrangement for coupling a communication signal to a three-phase power line
JPH02241233A (en) Power cable communication system
JPS6243924A (en) Switch bypass circuit for line of electric force communication system
US4918422A (en) Method and apparatus for extracting inbound information generated line-to-line in a multi-phase electric distribution system
JPS6260857B2 (en)
US4835516A (en) Arrangement for introducing audio-frequency signals into a power supply line
FI800918A (en) ANALYZING MEDIA FOER TVAOLEDAR-FYRLEDAR-OEVERGAONG I PCM-TIDSMULTIPLEXSYSTEM
JP2629131B2 (en) Power line communication device and power line communication network
JP2003037533A (en) Power-line carrier communication apparatus
US4130851A (en) Directional relays
JPS59229935A (en) Signal transmission system utilizing low voltage distribution line
US3654483A (en) Apparatus for transferring intelligence between two voltage levels
US2531146A (en) System of polarizing relays
JPH05218912A (en) Transmission/reception method for carrier signal applied to electric line
JPS6046900B2 (en) Signal transmission method using power lines
JPS6329456B2 (en)
US1687432A (en) Composite signaling system
US1855576A (en) Frequency translating system
JPH1010177A (en) Interference wave applying unit