JPS6253457B2 - - Google Patents

Info

Publication number
JPS6253457B2
JPS6253457B2 JP58093116A JP9311683A JPS6253457B2 JP S6253457 B2 JPS6253457 B2 JP S6253457B2 JP 58093116 A JP58093116 A JP 58093116A JP 9311683 A JP9311683 A JP 9311683A JP S6253457 B2 JPS6253457 B2 JP S6253457B2
Authority
JP
Japan
Prior art keywords
acrylate
inner layer
meth
coating
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58093116A
Other languages
Japanese (ja)
Other versions
JPS59217654A (en
Inventor
Takao Kimura
Hisashi Yaginuma
Mitsuo Yoshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58093116A priority Critical patent/JPS59217654A/en
Publication of JPS59217654A publication Critical patent/JPS59217654A/en
Publication of JPS6253457B2 publication Critical patent/JPS6253457B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は紫外線ないし電子線硬化型の被覆材
料を用いた光学ガラスフアイバ被覆体の製造法に
関する。 光学ガラスフアイバ(以下、光フアイバとい
う)により光伝送を行う場合、光フアイバに力学
的側圧が加わると伝送される光は著しく弱められ
伝送損失の原因となる。このため通常の光フアイ
バケーブルは光フアイバの表面にこれを側圧から
防護する高剛性の材料からなる被覆外層とその内
側に微小の内部歪みを緩衝効果によつて吸収減失
させる低剛性の材料からなる被覆内層とを設けて
いる。 このような光フアイバケーブルの代表的なもの
としては、光フアイバの表面微小傷に基づく破断
防止用の樹脂被覆処理を施した光フアイバ素線に
シリコン樹脂からなる低剛性の内層を設けこの上
にさらにナイロンの如きポリアミド系の高剛性の
外層を押出被覆したものが知られている。 しかるに、上記従来のケーブルでは、外層形成
時に内外層の界面に気泡が混入しこれが側圧の原
因となつて光伝送損失が大きくなる問題があつ
た。また、内層形成工程と外層形成工程とは成形
法が全く異なるためバツチシステムとなつて全体
の被覆工程が複雑となるほか、ナイロン樹脂は結
晶性であるため押出速度に制約があり、さらに内
層形成用材料としてのシリコン樹脂は高価である
など、被覆作業上および光フアイバケーブルの低
価格化の面でも問題があつた。 この発明は、上記の問題をいずれも回避した工
業的有用な光フアイバ被覆体の製造法を提供せん
とするもので、その要旨とするところは、光フア
イバの表面に、分子内に重合性炭素―炭素二重結
合を有する高粘度液状ないし固形状の主材および
その反応性希釈剤としてのモノアクリレートない
しモノメタクリレート類を含んでなる硬化後の引
張弾性率が1000Kg/cm2以下の内層形成用材料を塗
布したのち紫外線ないし電子線を照射して硬化し
た内層を形成し、ついでこの上に上記の内層形成
用材料の前記主材と同種の主材およびその反応性
希釈剤としての多官能性アクリレートないしメタ
クリレート類を含んでなる硬化後の引張弾性率が
3000Kg/cm2以上である外層形成用材料を塗布した
のち紫外線ないし電子線を照射して硬化した外層
を形成することを特徴とする光フアイバ被覆体の
製造法に係るものである。 この発明の製造法によれば、光フアイバの表面
にまず上記の内層形成用材料を塗布したのち紫外
線ないし電子線を照射して硬化した内層を形成
し、つぎにその上に上記の外層形成用材料を塗布
したのち紫外線ないし電子線を照射して硬化した
外層を形成することにより、被覆目的を達成でき
る。この場合、内外層形成材料は同種の主材を用
いた同じタイプのものであることから、外層形成
時に外層形成用材料が紫外線硬化した内層中に一
部含浸されてその界面部が一体化され、図面の実
線で表わされるように、低剛性の内層から高剛性
の外層にわたつて引張弾性率が連続的に大きくな
るような被覆層が形成される。 このため、図中点線で表わされる低剛性の内層
と高剛性の外層との完全二層構造となる如き被覆
層を与える従来のものとは異なつて、内外層界面
部への気泡の混入が少なくなり、また気泡が混入
することがあつたとしてもその内側に含浸硬化し
た比較的高剛性の連続層が形成されることとなる
から、気泡に基づく光フアイバに与える悪影響が
少なくなる。 また、この発明の製造法によれば、上述したと
おり、内外層形成用材料として同種の主材を用い
た同じタイプのものを使用して光フアイバへの塗
布―紫外線ないし電子線硬化を繰り返すだけで被
覆目的を達成できるから、連続化が容易であり、
また各材料共それほど高価な成分を必要としない
から、被覆作業上および光フアイバケーブルの低
価格化の面で非常に有利となる。 この発明において内外層形成用材料に用いられ
る主材は、分子内に重合性炭素―炭素二重結合を
有する高粘度液状ないし固形状の化合物であり、
ここで高粘度液状である場合の粘度としては25℃
で10ポイズ以上のものである。このような主材の
代表的なものとしては、ポリエーテル(メタ)ア
クリレート、ポリエステル(メタ)アクリレー
ト、ウレタン(メタ)アクリレート、エポキシ
(メタ)アクリレート、ポリブタジエン(メタ)
アクリレートなどの(メタ)アクリレート類や、
その他不飽和ポリエステル樹脂、アリル化合物な
どが挙げられる。 この主材と併用される反応性希釈剤は、前記主
材の粘度を低下させあるいは溶解させるためのも
のであると共に、主材と共に重合硬化して硬化物
の一構成成分となるものであり、したがつて主材
と同様に分子内に重合性炭素―炭素二重結合を有
する低粘度液状の化合物が用いられ、特にこの化
合物として(メタ)アクリレート化合物が有効な
ものとして選択使用される。この反応性希釈剤の
使用量は、前記主材との合計量中10〜70重量%、
好適には30〜50重量%の割合で用いられる。 内外層形成用材料の構成成分としては、その他
紫外線硬化を補助するための光重合開始剤が通常
用いられる。光重合開始剤の具体例としては、ベ
ンゾインイソブチルエーテルの如きベンゾインア
ルキルエーテル、ベンゾフエノン、アセトフエノ
ン、チオキサントンなどが挙げられる。使用量
は、主材および反応性希釈剤100重量部に対して
1〜5重量部程度である。なお、電子線硬化の場
合は、このような光重合開始剤はあえて必要でな
い。 上記構成成分からなり必要に応じてその他の任
意成分を加えてなる内層形成用材料と外層形成用
材料とは、両者の主材が同種であることが必要
で、同種の主材を用いることにより、外層形成時
の外層形成用材料の内層への含浸性がよくなり、
気泡に基づく悪影響をなくすことができる。 また、内層形成用材料は紫外線ないし電子線硬
化後の引張弾性率が1000Kg/cm2以下(通常5Kg/
cm2まで)、外層形成用材料は上記同様の引張弾性
率が3000Kg/cm2以上(通常50000Kg/cm2まで)と
されていることが必要で、上記範囲を満足しなけ
れば内層としての緩衝効果および外層としての側
圧防護効果をいずれも充分に発揮できなくなる。 内外層形成用材料を上述の如き引張弾性率とす
るためには、既述のとおり、両材料の主材が同種
であることから、両材料の反応性希釈剤の種類と
要すればその量を選択すればよく、特に反応性希
釈剤の種類として、内層形成用材料でモノアクリ
レートないしモノメタクリレート類を、外層形成
用材料で多官能性アクリレートないしメタクリレ
ート類を用いることにより、内外層形成用材料の
硬化後の引張弾性率を共に前記範囲内に容易に調
整することができる。 上記の内層形成用材料としてのモノアクリレー
トないしモノメタクリレート類としては、たとえ
ばポリエチレングリコールモノ(メタ)アクリレ
ート、エチレングリコールモノ(メタ)アクリレ
ート、ポリプロピレングリコールモノ(メタ)ア
クリレート、1,6―ヘキサンジオールモノ(メ
タ)アクリレート、1,4―ブタンジオールモノ
(メタ)アクリレート、テトラハイドロフルフリ
ル(メタ)アクリレート、フエノキシエチル(メ
タ)アクリレート、2―ヒドロキシ―3―フエノ
キシ(メタ)アクリレートなどが挙げられる。 また、上記の外層形成用材料としての多官能性
アクリレートないしメタクリレート類としては、
たとえばエチレングリコールジ(メタ)アクリレ
ート、ジエチレングリコールジ(メタ)アクリレ
ート、トリエチレングリコールジ(メタ)アクリ
レート、ポリエチレングリコールジ(メタ)アク
リレート、ポリプロピレングリコールジ(メタ)
アクリレート、ブチレングリコールジ(メタ)ア
クリレート、ネオペンチルグリコールジ(メタ)
アクリレート、1,4―ブタンジオールジ(メ
タ)アクリレート、1,6―ヘキサンジオールジ
(メタ)アクリレート、ペンタエリスリトールト
リ(メタ)アクリレート、トリメチロールプロパ
ントリ(メタ)アクリレートなどが挙げられる。 以上の構成成分からなる内外層形成用材料は、
一般に無溶剤型として取り扱われるが、その粘度
としては通常25℃で1000〜7000センチポイズ程度
である。この粘度が低すぎてもまた高すぎても光
フアイバに対する塗工作業性を失する結果とな
り、好ましくない。 この発明の光フアイバ被覆体の製造法において
は、上述した内層形成用材料をまず光フアイバの
表面に塗布したのち紫外線ないし電子線を照射し
て硬化させるが、このときの硬化膜の厚みとして
は通常10〜50μm程度である。また、この内層上
に上述した外層形成用材料を塗布し再度紫外線な
いし電子線を照射して硬化させたのちの全硬化膜
の厚みとしては一般に20〜200μm程度である。 以上詳述したとおり、この発明の製造法によれ
ば、光フアイバの表面に特定の内層形成用材料を
塗布したのち紫外線ないし電子線を照射して硬化
させ、さらにその上に特定の外層形成用材料を塗
布したのち紫外線ないし電子線を照射して硬化さ
せるという連続的操作にて光フアイバ被覆体を得
ることができるから、被覆作業性の大巾な改善を
図ることができ、また内外層の界面部における気
泡の混入に基づいた光伝送損失の増加を抑制で
き、さらに材料コストを低減できる。 以下に、この発明の実施例を記載してより具体
的に説明する。なお、以下において部とあるは重
量部を意味する。 実施例 1 1,4―ポリブタジエンウレタンアクリレート
30部、平均分子量(w)1200のポリエチレング
リコールモノアクリレート70部およびベンゾイン
イソブチルエーテル3部からなる25℃での粘度が
1780センチポイズの内層形成用材料と、1,4―
ポリブタジエンウレタンアクリレート60部、ネオ
ペンチルグリコールジアクリレート40部およびベ
ンゾインイソブチルエーテル3部からなる25℃で
の粘度が4050センチポイズの外層形成用材料とか
らなるこの発明に係る光フアイバ用被覆材料を調
製した。 上記内層形成用材料と外層形成用材料とをそれ
ぞれ別個に剥離板上に塗布して紫外線照射によつ
て完全に硬化させ、各硬化膜の引張弾性率を測定
したところ、内層形成用材料で18Kg/cm2、外層形
成用材料で3800Kg/cm2であつた。また、先に説明
した図面は、上記内外層形成用材料を剥離板上に
順次塗布―紫外線硬化させたときの硬化物の厚み
方向と引張弾性率との関係を、従来の材料と対比
的に示したものである。 つぎに、上記の被覆材料を用いて、VAD法に
より作製されたフアイバ母材からつくられた光フ
アイバの表面に、まず内層形成用材料を塗布した
のち2KW高圧水銀灯で50m/分の速度で紫外線
を照射して硬化させ、厚み40μmの内層を形成し
た。つぎに、この内層上に外層形成用材料を塗布
したのち上記同様の条件で紫外線を照射して硬化
させ、全体厚みが140μmとなるような硬化被覆
層を形成した。 このようにして製造された光フアイバ被覆体
は、低剛性率の被覆内層と高剛性率の被覆外層に
よつて側圧による伝送損失の増加が効果的に抑え
られており、また内外層間の気泡に基づく伝送損
失の増加が少ないものであつた。 実施例 2〜5 つぎの表に示される配合組成からなる内層形成
用材料と外層形成用材料とを、この発明に係る4
種の光フアイバ用被覆材料とした。内外層形成用
の各材料の粘度(25℃)および実施例1と同様に
測定した硬化物の引張弾性率は同表に併記される
とおりであつた。
The present invention relates to a method for manufacturing optical glass fiber coatings using ultraviolet or electron beam curable coating materials. When transmitting light using an optical glass fiber (hereinafter referred to as an optical fiber), when mechanical side pressure is applied to the optical fiber, the transmitted light is significantly weakened, causing transmission loss. For this reason, normal optical fiber cables have an outer coating layer on the surface of the optical fiber made of a highly rigid material that protects it from lateral pressure, and an inner layer made of a low-rigidity material that absorbs and reduces minute internal strains by a buffering effect. A covering inner layer is provided. A typical example of such an optical fiber cable is an optical fiber that has been coated with resin to prevent breakage due to minute scratches on the surface of the optical fiber, and a low-rigidity inner layer made of silicone resin is placed on top of the optical fiber. Further, it is known that a highly rigid outer layer made of polyamide such as nylon is coated by extrusion. However, in the conventional cable described above, there was a problem that air bubbles were mixed into the interface between the inner and outer layers during the formation of the outer layer, which caused lateral pressure and increased optical transmission loss. In addition, since the molding methods for the inner layer forming process and the outer layer forming process are completely different, a batch system is required, which complicates the entire coating process.Nylon resin is crystalline, so extrusion speed is limited, and the inner layer The silicone resin used as the forming material is expensive, which poses problems in terms of coating work and in terms of lowering the price of optical fiber cables. The present invention aims to provide an industrially useful method for manufacturing an optical fiber coating that avoids all of the above problems. - For forming an inner layer with a tensile modulus of 1000 Kg/cm 2 or less after curing, comprising a high viscosity liquid or solid main material having carbon double bonds and a monoacrylate or monomethacrylate as a reactive diluent. After applying the material, a hardened inner layer is formed by irradiation with ultraviolet rays or electron beams, and then a main material of the same type as the main material of the above-mentioned inner layer forming material and a polyfunctionality as a reactive diluent thereof are applied. The tensile modulus after curing of a material containing acrylate or methacrylate is
The present invention relates to a method for producing an optical fiber coating, which comprises applying an outer layer forming material having a weight of 3000 kg/cm 2 or more and then irradiating it with ultraviolet rays or electron beams to form a hardened outer layer. According to the manufacturing method of the present invention, the above-mentioned inner layer forming material is first applied to the surface of the optical fiber, and then a hardened inner layer is formed by irradiation with ultraviolet rays or electron beams, and then the above-mentioned outer layer forming material is applied thereon. The coating objective can be achieved by applying the material and then irradiating it with UV or electron beams to form a hardened outer layer. In this case, since the materials forming the inner and outer layers are of the same type using the same type of main material, the material for forming the outer layer is partially impregnated into the ultraviolet-cured inner layer during the formation of the outer layer, and the interface between them is integrated. As shown by the solid line in the drawing, a coating layer is formed in which the tensile modulus continuously increases from the low-rigidity inner layer to the high-rigidity outer layer. Therefore, unlike the conventional coating layer that has a complete two-layer structure consisting of a low-rigidity inner layer and a high-rigidity outer layer, as shown by the dotted line in the figure, there is less air bubbles mixed into the interface between the inner and outer layers. Furthermore, even if air bubbles are mixed in, a continuous layer of relatively high rigidity is formed by impregnation and hardening inside the bubbles, so that the adverse effects of air bubbles on the optical fiber are reduced. Furthermore, according to the manufacturing method of the present invention, as described above, the same type of material using the same type of main material is used as the material for forming the inner and outer layers, and the coating on the optical fiber and curing with ultraviolet rays or electron beams are repeated. Since the purpose of coating can be achieved with
Furthermore, since each material does not require very expensive components, it is very advantageous in terms of coating work and cost reduction of optical fiber cables. In this invention, the main material used for the material for forming the inner and outer layers is a high viscosity liquid or solid compound having a polymerizable carbon-carbon double bond in the molecule,
Here, the viscosity in the case of high viscosity liquid is 25℃.
It is more than 10 poise. Typical such main materials include polyether (meth)acrylate, polyester (meth)acrylate, urethane (meth)acrylate, epoxy (meth)acrylate, and polybutadiene (meth)acrylate.
(meth)acrylates such as acrylate,
Other examples include unsaturated polyester resins and allyl compounds. The reactive diluent used in combination with the main material is for reducing or dissolving the viscosity of the main material, and also polymerizes and hardens together with the main material to become a component of the cured product. Therefore, like the main material, a low viscosity liquid compound having a polymerizable carbon-carbon double bond in the molecule is used, and in particular, a (meth)acrylate compound is selected and used as an effective compound. The amount of this reactive diluent used is 10 to 70% by weight based on the total amount of the main material,
It is preferably used in a proportion of 30 to 50% by weight. As a component of the material for forming the inner and outer layers, a photopolymerization initiator for assisting ultraviolet curing is usually used. Specific examples of the photopolymerization initiator include benzoin alkyl ethers such as benzoin isobutyl ether, benzophenone, acetophenone, and thioxanthone. The amount used is about 1 to 5 parts by weight per 100 parts by weight of the main material and reactive diluent. In addition, in the case of electron beam curing, such a photopolymerization initiator is not necessary. The inner layer-forming material and the outer layer-forming material, which are made of the above constituent components and optionally add other optional components, must have the same type of main material, and by using the same type of main material, , the impregnation of the material for forming the outer layer into the inner layer is improved,
Negative effects caused by air bubbles can be eliminated. In addition, the inner layer forming material has a tensile modulus of 1000 Kg/cm 2 or less (usually 5 Kg/cm 2 or less) after curing with ultraviolet rays or electron beams.
cm 2 ), the material for forming the outer layer must have a tensile modulus of 3000 Kg/cm 2 or higher (usually up to 50000 Kg/cm 2 ), and if it does not satisfy the above range, it cannot be used as a buffer as an inner layer. Both the effect and the lateral pressure protection effect as an outer layer cannot be sufficiently exhibited. In order to make the materials for forming the inner and outer layers have the tensile modulus as described above, since the main ingredients of both materials are the same as mentioned above, the type and, if necessary, the amount of the reactive diluent in both materials must be adjusted. In particular, as the type of reactive diluent, monoacrylates or monomethacrylates are used as the material for forming the inner layer, and polyfunctional acrylates or methacrylates are used as the material for forming the outer layer. Both tensile moduli after curing can be easily adjusted within the above range. Examples of the monoacrylates or monomethacrylates used as the inner layer forming material include polyethylene glycol mono(meth)acrylate, ethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, and 1,6-hexanediol mono(meth)acrylate. Examples thereof include meth)acrylate, 1,4-butanediol mono(meth)acrylate, tetrahydrofurfuryl(meth)acrylate, phenoxyethyl(meth)acrylate, and 2-hydroxy-3-phenoxy(meth)acrylate. In addition, the polyfunctional acrylate or methacrylate as the material for forming the outer layer is as follows:
For example, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate
Acrylate, butylene glycol di(meth)acrylate, neopentyl glycol di(meth)
Acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, and the like. The material for forming inner and outer layers consisting of the above components is
It is generally handled as a solvent-free type, but its viscosity is usually around 1000 to 7000 centipoise at 25°C. If the viscosity is too low or too high, the coating workability for optical fibers will be lost, which is not preferable. In the method of manufacturing the optical fiber coating of the present invention, the above-mentioned inner layer forming material is first applied to the surface of the optical fiber and then cured by irradiation with ultraviolet rays or electron beams. It is usually about 10 to 50 μm. Further, the thickness of the entire cured film after coating the above-mentioned outer layer forming material on this inner layer and curing it by irradiating it again with ultraviolet rays or electron beams is generally about 20 to 200 μm. As detailed above, according to the manufacturing method of the present invention, a specific inner layer forming material is coated on the surface of the optical fiber, cured by irradiation with ultraviolet rays or electron beams, and then a specific outer layer forming material is coated on the surface of the optical fiber. Since the optical fiber coating can be obtained through a continuous process of coating the material and curing it by irradiating it with ultraviolet rays or electron beams, it is possible to greatly improve the coating workability, and it is possible to improve the coating workability. It is possible to suppress an increase in optical transmission loss due to the inclusion of air bubbles at the interface, and further to reduce material costs. EXAMPLES Below, examples of the present invention will be described in more detail. In addition, in the following, parts mean parts by weight. Example 1 1,4-polybutadiene urethane acrylate
30 parts, 70 parts of polyethylene glycol monoacrylate with an average molecular weight (w) of 1200, and 3 parts of benzoin isobutyl ether.
1780 centipoise inner layer forming material and 1,4-
An optical fiber coating material according to the present invention was prepared, comprising an outer layer-forming material having a viscosity of 4050 centipoise at 25°C and consisting of 60 parts of polybutadiene urethane acrylate, 40 parts of neopentyl glycol diacrylate, and 3 parts of benzoin isobutyl ether. The above-mentioned inner layer forming material and outer layer forming material were applied separately on a release plate and completely cured by ultraviolet irradiation, and the tensile modulus of each cured film was measured. The inner layer forming material was 18 kg. /cm 2 , and the outer layer forming material was 3800Kg/cm 2 . In addition, the above-mentioned drawings show the relationship between the thickness direction and tensile modulus of the cured material when the above-mentioned inner and outer layer forming materials are sequentially applied on a release plate and cured by ultraviolet rays, in contrast to conventional materials. This is what is shown. Next, using the above-mentioned coating material, an inner layer forming material was first applied to the surface of the optical fiber made from the fiber base material produced by the VAD method, and then ultraviolet rays were applied at a speed of 50 m/min using a 2KW high-pressure mercury lamp. was irradiated and cured to form an inner layer with a thickness of 40 μm. Next, an outer layer forming material was applied onto this inner layer, and then cured by irradiation with ultraviolet rays under the same conditions as above to form a cured coating layer having an overall thickness of 140 μm. The optical fiber sheath manufactured in this way effectively suppresses the increase in transmission loss due to lateral pressure by the inner sheathing layer with a low rigidity and the outer sheathing layer with a high rigidity, and also prevents air bubbles between the inner and outer layers. Therefore, the increase in transmission loss was small. Examples 2 to 5 Inner layer forming materials and outer layer forming materials having the compositions shown in the following table were prepared using the four materials according to the present invention.
It was used as a coating material for optical fibers. The viscosity (25° C.) of each material for forming the inner and outer layers and the tensile modulus of the cured product measured in the same manner as in Example 1 were as shown in the same table.

【表】【table】

【表】 上記の各被覆材料を用いて実施例1と同様にし
て光フアイバの表面に硬化した内層と硬化した外
層とからなる被覆層を形成した。得られた各光フ
アイバ被覆体は、実施例1の場合と同様に、低剛
性率の被覆内層と高剛性率の被覆外層とによつて
測圧による伝送損失の増加が効果的に抑えられて
おり、また内外層間の気泡に基づく伝送損失の増
加が少ないものであつた。
[Table] A coating layer consisting of a hardened inner layer and a hardened outer layer was formed on the surface of an optical fiber in the same manner as in Example 1 using each of the above-mentioned coating materials. As in the case of Example 1, each of the obtained optical fiber coatings effectively suppressed the increase in transmission loss due to pressure measurement by the inner coating layer with a low rigidity and the outer coating layer with a high rigidity. Furthermore, there was little increase in transmission loss due to air bubbles between the inner and outer layers.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は光学ガラスフアイバ用被覆材料の硬化物
特性を説明するための特性図である。
The drawing is a characteristic diagram for explaining the properties of a cured product of the coating material for optical glass fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 光学ガラスフアイバの表面に、分子内に重合
性炭素―炭素二重結合を有する高粘度液状ないし
固形状の主材およびその反応性希釈剤としてのモ
ノアクリレートないしモノメタクリレート類を含
んでなる硬化後の引張弾性率が1000Kg/cm2以下の
内層形成用材料を塗布したのち紫外線ないし電子
線を照射して硬化した内層を形成し、ついでこの
上に上記の内層形成用材料の前記主材と同種の主
材およびその反応性希釈剤としての多官能性アク
リレートないしメタクリレート類を含んでなる硬
化後の引張弾性率が3000Kg/cm2以上である外層形
成用材料を塗布したのち紫外線ないし電子線を照
射して硬化した外層を形成することを特徴とする
光学ガラスフアイバ被覆体の製造法。
1 After curing, the surface of the optical glass fiber contains a highly viscous liquid or solid main material having a polymerizable carbon-carbon double bond in its molecules and a monoacrylate or monomethacrylate as a reactive diluent thereof. After applying an inner layer forming material with a tensile modulus of 1000 Kg/cm 2 or less, a hardened inner layer is formed by irradiation with ultraviolet rays or electron beams, and then a material of the same kind as the main material of the above inner layer forming material is applied on top of this. After applying an outer layer forming material containing a main material and a polyfunctional acrylate or methacrylate as a reactive diluent and having a tensile modulus of 3000 Kg/cm 2 or more after curing, irradiation with ultraviolet rays or electron beams is performed. 1. A method for producing an optical glass fiber coating, comprising: forming a hardened outer layer.
JP58093116A 1983-05-25 1983-05-25 Coating material for optical glass fiber Granted JPS59217654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093116A JPS59217654A (en) 1983-05-25 1983-05-25 Coating material for optical glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093116A JPS59217654A (en) 1983-05-25 1983-05-25 Coating material for optical glass fiber

Publications (2)

Publication Number Publication Date
JPS59217654A JPS59217654A (en) 1984-12-07
JPS6253457B2 true JPS6253457B2 (en) 1987-11-10

Family

ID=14073544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093116A Granted JPS59217654A (en) 1983-05-25 1983-05-25 Coating material for optical glass fiber

Country Status (1)

Country Link
JP (1) JPS59217654A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689521B2 (en) 2014-11-18 2020-06-23 Ofs Fitel, Llc Low density UV-curable optical fiber coating, fiber made therewith, and method of fiber manufacture

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050182A (en) * 1973-09-03 1975-05-06
JPS53131851A (en) * 1977-04-22 1978-11-17 Hitachi Ltd Optical fiber production
JPS53139545A (en) * 1977-05-11 1978-12-05 Grace W R & Co Coating method of optical fiber
JPS5542246A (en) * 1978-09-20 1980-03-25 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS569240A (en) * 1979-06-29 1981-01-30 Siemens Ag Manufacture of antiswelling light conductive tube
JPS56134539A (en) * 1980-02-25 1981-10-21 Western Electric Co Optical fiber with ultraviolet ray cured coating
JPS5730820A (en) * 1980-07-31 1982-02-19 Olympus Optical Co Ltd Strobe tuning device
JPS5792552A (en) * 1980-11-29 1982-06-09 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS5792553A (en) * 1980-11-29 1982-06-09 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS59217653A (en) * 1983-05-25 1984-12-07 Furukawa Electric Co Ltd:The Preparation of coated optical fiber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050182A (en) * 1973-09-03 1975-05-06
JPS53131851A (en) * 1977-04-22 1978-11-17 Hitachi Ltd Optical fiber production
JPS53139545A (en) * 1977-05-11 1978-12-05 Grace W R & Co Coating method of optical fiber
JPS5542246A (en) * 1978-09-20 1980-03-25 Nippon Telegr & Teleph Corp <Ntt> Production of optical fiber
JPS569240A (en) * 1979-06-29 1981-01-30 Siemens Ag Manufacture of antiswelling light conductive tube
JPS56134539A (en) * 1980-02-25 1981-10-21 Western Electric Co Optical fiber with ultraviolet ray cured coating
JPS5730820A (en) * 1980-07-31 1982-02-19 Olympus Optical Co Ltd Strobe tuning device
JPS5792552A (en) * 1980-11-29 1982-06-09 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS5792553A (en) * 1980-11-29 1982-06-09 Nitto Electric Ind Co Ltd Covering material for optical glass fiber
JPS59217653A (en) * 1983-05-25 1984-12-07 Furukawa Electric Co Ltd:The Preparation of coated optical fiber

Also Published As

Publication number Publication date
JPS59217654A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
KR100460366B1 (en) Coated optical fiber and its manufacturing method
JP2003531799A (en) Optical fiber coating
WO2020255829A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
WO2020250838A1 (en) Resin composition, optical fiber, and method for producing optical fiber
JPS6198305A (en) Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby
WO2021019908A1 (en) Optical fiber ribbon and optical fiber cable
US4639080A (en) Optical fibers coated with modified 1,4-polybutadienes
JPS60262115A (en) Fiber for optical transmission
CN1094909C (en) Optical fiber equipped with cladding and method of manufacturing the same
JPS6253457B2 (en)
US20030223718A1 (en) Coated optical fiber and optical fiber ribbon and method for the fabrication thereof
JPS647018B2 (en)
WO2022074914A1 (en) Resin composition, optical fiber, and method for producing optical fiber
JPS6322872A (en) Ultraviolet-curing coating compound and optical fiber using same
CN110358487B (en) Low-shrinkage UV glue, preparation method and application
JPS5921542A (en) Coating material for optical glass fiber
JP3134648B2 (en) Plastic clad optical fiber
EP0570917B1 (en) Light transmitting glass fiber
JP3321930B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JPS6071550A (en) Cladding material for optical glass fiber
JPS63306406A (en) Coated optical fiber and its production
JPS6045139B2 (en) Optical fiber manufacturing method
WO2022074913A1 (en) Resin composition, optical fiber, and method for manufacturing optical fiber
WO2020255774A1 (en) Resin composition, optical fiber and method for producing optical fiber
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same