JPS62500061A - MOS transistor with Schottky layer electrode - Google Patents

MOS transistor with Schottky layer electrode

Info

Publication number
JPS62500061A
JPS62500061A JP60503826A JP50382685A JPS62500061A JP S62500061 A JPS62500061 A JP S62500061A JP 60503826 A JP60503826 A JP 60503826A JP 50382685 A JP50382685 A JP 50382685A JP S62500061 A JPS62500061 A JP S62500061A
Authority
JP
Japan
Prior art keywords
layer
silicon
gate electrode
transistor
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60503826A
Other languages
Japanese (ja)
Inventor
レプセルター,マーチン ポール
Original Assignee
アメリカン テレフオン アンド テレグラフ カムパニ−
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アメリカン テレフオン アンド テレグラフ カムパニ− filed Critical アメリカン テレフオン アンド テレグラフ カムパニ−
Publication of JPS62500061A publication Critical patent/JPS62500061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66643Lateral single gate silicon transistors with source or drain regions formed by a Schottky barrier or a conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ショットキーN電極領域を持つMOSトランジスタ見匪叫分夏 本発明は半導体デバイス、より詳細にはショットキ一層電極領域を持つMOS( 金属酸化物半導体)電界効果形トランジスタに関する。[Detailed description of the invention] MOS transistor with Schottky N electrode area The present invention relates to a semiconductor device, more specifically a MOS (MOS) having a Schottky single-layer electrode region. (metal oxide semiconductor) field effect transistor.

見匪段笈見 あるタイプの金属および金属に類似する材質から構成される層(“ショットキ一 層″)はこれらと半導体本体との界面のところにショットキーバリアを形成する 特性を持ち、これらショットキ一層は幾つかの重要な特性。Miyo Dan Tosami Layers composed of certain types of metals and metal-like materials (“Schottky layers”) layers'') form a Schottky barrier at the interface between these and the semiconductor body. These Schottky layers have some important characteristics.

例えば、漏れ電流が低い等を持つp−チャネルMOSトランジスタ内のソースお よび/あるいはドレン電極として使用できることが知られている。しかし、この ショットキ一層トランジスタではこのソースおよび/ある&Nはドレン領域とゲ ート電極のエツジとを整合させること力蒐ある。For example, the source or source in a p-channel MOS transistor with low leakage current etc. It is known that it can be used as a drain electrode and/or as a drain electrode. However, this In a Schottky single-layer transistor, this source and/or &N are connected to the drain region and the gate. It is possible to align the edge of the ground electrode with the edge of the ground electrode.

光J1υL冷 本発明の1つの実施m様においては、シリコン半導体本体の主表面上にショット キーソースおよび/あるbqltドレン電極層、並びに絶縁材質層にて覆われた ゲート電極を持つMO5FETデバイス構造が提供される。このソースおよび/ あるいはドレン電極層はそれぞれこの本体内のくぼみの中に延びる。このくぼみ は絶縁されたゲート電極構造の下に延び、これによってソースおよび/あるいは ドレン領域とゲート電極のエツジとの間の整合が達成される。ショットキー電極 がショットキーバリアを作るか、あるいは抵抗接触を作るかは後に説明されるご とくコンタクトされる半導体材質の導電率に依存する。light J1υL cold In one embodiment of the invention, a shot is formed on the main surface of the silicon semiconductor body. Key source and/or bqlt drain electrode layer and covered with insulating material layer A MO5FET device structure is provided having a gate electrode. This source and/or Alternatively, each drain electrode layer extends into a recess within this body. this hollow extends below the insulated gate electrode structure, thereby providing access to the source and/or Alignment between the drain region and the edge of the gate electrode is achieved. schottky electrode Whether it creates a Schottky barrier or a resistive contact will be explained later. In particular, it depends on the conductivity of the semiconductor material being contacted.

図面の簡単な説明 第1図から第10図は、本発明の特定の実施態様に従う一例としてのp−チャネ ルMO8FET構造の部分を製造するためのさまざまな段階でのこの構造の断面 図を示し: 第11図は1本発明のもう1つの実施態様に従う一例としてのP−チャネルMO 3FET構造の部分を製造する一段階でのこの構造の断面図を示し;そして第1 2図は、本発明のさらにもう1つの実施態様に従うn−チャネルMO8FET構 造の断面図を示す。Brief description of the drawing FIGS. 1-10 illustrate exemplary p-channel channels in accordance with certain embodiments of the present invention. Cross-sections of this structure at various stages to fabricate parts of the MO8FET structure Show the diagram: FIG. 11 shows an exemplary P-channel MO according to another embodiment of the present invention. 3 shows a cross-sectional view of this structure at one stage in the fabrication of a portion of the FET structure; FIG. 2 shows an n-channel MO8FET structure according to yet another embodiment of the invention. A cross-sectional view of the structure is shown.

第5図から第8図は、第1図から第4図並びに第9図および第10図に示される 構造の左側部分を拡大図にて示す。Figures 5 to 8 are shown in Figures 1 to 4 and Figures 9 and 10. The left side of the structure is shown in an enlarged view.

国凰象皿里 第1図に示される加工物は周知のプロセスにて製造され、nタイプのエピタキシ ャル表面層10、パ電界酸化物″として知られる厚い酸化物層11.終局的には ゲート誘電層を形成する薄い酸化物層12、およびポリシリコンのゲート電極層 13を含む。Kokuou Elephant Village The workpiece shown in Figure 1 was manufactured by a well-known process, and field surface layer 10, a thick oxide layer known as "field oxide" 11. a thin oxide layer 12 forming a gate dielectric layer and a polysilicon gate electrode layer Contains 13.

次に(第2図)ポリシリコン層12の露出された上面および側面について、この 層に薄いシリコン酸化物カバ一層14を生成するために従来の酸化ステップが実 行される。典型的にはこの薄い酸化物層14は約300オングストロームの厚さ を持つ、このポリシリコンの酸化の結果、元の薄い酸化物層12(第1図)の厚 さが酸化物層121(第2図)によって示されるごとく、ポリシリコン層13の 下の部分(第2図において参照番号12によって示される)を除いていくぶん増 加する。Next (FIG. 2), the exposed top and side surfaces of the polysilicon layer 12 are A conventional oxidation step is performed to produce a thin silicon oxide cover layer 14. will be carried out. Typically, this thin oxide layer 14 is about 300 Angstroms thick. As a result of this polysilicon oxidation, the thickness of the original thin oxide layer 12 (FIG. 1) As shown by the oxide layer 121 (FIG. 2), the polysilicon layer 13 somewhat increased except for the lower part (indicated by reference numeral 12 in Figure 2). Add.

次に薄い酸化物層121の露出された部分と薄い酸化物層14の(側壁部分でな く)上の部分が周知のCHF。Next, the exposed portions of the thin oxide layer 121 and the sidewall portions of the thin oxide layer 14 are h) The upper part is the well-known CHF.

(フレオン23)によって生成されるプラズマ内のフッ化物イオン(F+)によ る化学的反応性バック スパッタリング(反応性イオンエツチング)などの異方 性エツチングステップによって完全に除去される。″異方性”エツチングとは、 エツチングの際の材質の除去が層10の上面に平行の表面のみがエツチングプロ セスによって攻撃および除去されるという点において選択的であることを意味す る。Fluoride ions (F+) in the plasma generated by (Freon 23) Chemically reactive backing, anisotropic processes such as sputtering (reactive ion etching) completely removed by an etching step. What is “anisotropic” etching? Only the surfaces parallel to the top surface of the layer 10 are removed by the etching process. selective in that it is attacked and removed by Ru.

次に第4図に示されるごとく、n−タイプ表面層10のこのとき露出されている 上面層の等方性エツチングステップが遂行され、典型的にはシリコンが約95オ ングストロームの厚さだけ除去され、残りの側壁酸化物ff14の下部が除去さ れ、 この側壁酸化物層の底と n−タイプ表面層10の上面の間に空洞が形成 される・ここで・″等方性″エツチングとは、エツチングによる除去速度が実質 的に全ての方向で等しいことを意味する。ただし。Next, as shown in FIG. 4, the n-type surface layer 10 is exposed at this time. An isotropic etch step of the top layer is performed, typically when the silicon is about 95 oz. ngstrom thickness is removed, and the lower part of the remaining sidewall oxide ff14 is removed. A cavity is formed between the bottom of this sidewall oxide layer and the top surface of the n-type surface layer 10. Here, "isotropic" etching means that the removal rate by etching is means that it is equal in all directions. however.

n−タイプシリコン層】、0の露出された上面部分101および102の傾斜壁 部分101.1および102.1によって示されるように幾らかの結晶学上の選 択性は存在する。この等方性エツチングは5通常、フッ化水素酸と硝酸の液体混 合物による湿式エツチング、あるいは、通常、アルゴンあるいは他の適当なエツ チングガスによる乾式エツチングによって遂行される。このプロセスは等方性エ ツチングを実現するのに十分に高い圧力である約1 m m Hgにて、側壁酸 化物14の下部を10オングストローム以内の精度にて95オングストロームの 距離だけ除去するのに部分な期間だけ遂行される。次に第5図に示さ九るごとく −正に電荷さ九たアルゴンイオンがプラチナ陰極ターゲット3】に向けられ、製 造される構造の」二面にプラチナ層32.33および34の異方性被着が行なわ れる。より具体的には、ここに製造される構造が、正に電化したアルゴンイオン に起因してプラチナ原子がスパッタリングによって除去されるプラチナターゲッ トの付近に置かれる。 こ九らイオンはプラチナターゲット31の所にかなりの 運動量にて到達する。この運動量はターゲット3]に加えられる負の極性のDC 電圧E1によって生成されるイオン加速DC電界およびコンデンサC2を通じて 表面層10に加えられるRF電圧E2によって生成されるイオン加速AC電界の 影響下でイオンに与えられる。通常、Elは約 1,000ボルトとされ;E2 は約13 M Hzの周波数の所で約500ボルト ピークピーク(AC振幅の 二倍)とされる。従って、ターゲット31と比較して、存在するとしても非常に 少ないアルゴンが(幾らかの運動量にて)この構造物に衝突する。このためプラ チナは層32.33および34から除去されない。この構造物は被着されたプラ チナがプラチナケイ化物とならないようにこの異方性プラチナ被着の際に、好ま しくは約200’Cあるいはこれ以下に保持される。n-type silicon layer], the sloped walls of the exposed top portions 101 and 102 of 0 Some crystallographic selections as shown by sections 101.1 and 102.1 Optionality exists. This isotropic etching is typically performed using a liquid mixture of hydrofluoric acid and nitric acid. Wet etching with a compound, or usually with argon or other suitable etching. This is accomplished by dry etching using etching gas. This process is an isotropic sidewall acid at approximately 1 mm Hg, a pressure high enough to achieve tucking. The lower part of compound 14 is 95 angstroms accurate to within 10 angstroms. It is carried out only for a partial period to remove only a distance. Next, as shown in Figure 5, - Positively charged argon ions are directed toward the platinum cathode target 3 Platinum layers 32, 33 and 34 are anisotropically deposited on two sides of the structure to be fabricated. It will be done. More specifically, the structure fabricated here uses positively charged argon ions. platinum target where platinum atoms are removed by sputtering due to placed near the Kokura ion is located at platinum target 31. Reached by momentum. This momentum is the negative polarity DC applied to target 3] Through the ion accelerating DC electric field generated by voltage E1 and capacitor C2 of the ion accelerating AC electric field generated by the RF voltage E2 applied to the surface layer 10. given to ions under the influence. Normally, El is approximately 1,000 volts; E2 is approximately 500 volts peak to peak (AC amplitude) at a frequency of approximately 13 MHz. twice). Therefore, compared to Target 31, very few, if any, Less argon (with some momentum) hits this structure. For this reason, plastic China is not removed from layers 32, 33 and 34. This structure is made of deposited plastic. During this anisotropic platinum deposition, a preferable or maintained at about 200'C or lower.

次にスパッタリングプロセスが反復されるが、これはプラチナ層32.33およ び34が除去され、酸化物[11および14の下側の空個内に被着物35および 36(第6図)として再分配するために行なわれる。これはAC電圧E2をより 高い電圧、例えば、1000ボルト以上に増加し、アルゴンイオンがプラチナ層 32.33および34を除去するように加工物の上面に当たるようにすることに よって行なわ九る。これら層並びに幾らかのターゲット31からのプラチナは空 洞への方向を含む全ての方向に拡散される。しかし、いったん空洞内に被着され ると、酸化物層11および14の端によって被着物35および36にアルゴンイ オンが当たるのが防止され、これら被着がこのスパッタリングプロセスを通じて 保持される。通常、この構造は、ここでも(プラチナと比較してスパッタリング 除去に対して強い抵抗を示す)プラチナケイ化物が生成されないようにするため 約200℃あるいはこれ以下に保持される。The sputtering process is then repeated, which includes platinum layers 32,33 and and 34 are removed, deposits 35 and 34 are removed in the cavities below the oxides [11 and 14]. 36 (FIG. 6) for redistribution. This is more than the AC voltage E2 When the voltage is increased to a higher voltage, e.g. 1000 volts or more, argon ions are added to the platinum layer. 32.33 and 34 should be removed so that they hit the top surface of the workpiece. Therefore, let's do it. Platinum from these layers as well as some targets 31 is empty It is diffused in all directions, including towards the sinuses. However, once it is deposited inside the cavity, The edges of oxide layers 11 and 14 then inject argon into deposits 35 and 36. These deposits are removed through this sputtering process. Retained. Typically, this structure is also sputtered (compared to platinum). To avoid the formation of platinum silicides (which exhibit strong resistance to removal) The temperature is maintained at about 200°C or lower.

通常、Jl:32,33および34(第5図)が存在することは空洞を完全に満 たす上で好ましいことではあるが、必ずしもこれら層を前もって形成する必要は なく、この空洞を満たすための全てのプラチナを単一のスパッタリングプロセス によってターゲット31がら直接に得ることもできる。Normally, the presence of Jl: 32, 33 and 34 (Figure 5) indicates that the cavity is completely filled. It is not always necessary to form these layers in advance, although this is preferable. A single sputtering process to fill all the platinum into this cavity without It can also be obtained directly from the target 31.

次に第7図に示されるとと<、AC電圧E2が典型的には約500ボルト ピー クピークに減少され、これによってプラチナ層41.42および43が製造中の 構造の−L面に異方的に被着される。ここでも、この構造の温度はプラチナケイ 化物を生成されないように約200℃以下に保持される3、 次にプラチナを焼結してプラチナケイ化物を生成するため、この構造物が適当な 雰囲気内1例えば、15パーセントの酸素が混合されたアルゴンガス内で、典型 的には約625℃の温度にて熱処理される。層42および43内のプラチナは、 これらがシリコンを覆うためプラチナケイ化物層15 および1G(第8図)と なる。しかし、層42の最も左側の部分はシリコンを覆わないため基本的にプラ チナのままにとどまる。次に、プラチナケイ化物でなくプラチナが、例えば、王 水による湿式エツチングにて典型的には約80℃にて除去され、これによってプ ラチナケイ化物層15および16が残る。As shown in FIG. 7, the AC voltage E2 is typically about 500 volts per minute. the platinum layers 41, 42 and 43 during manufacture. It is deposited anisotropically on the -L plane of the structure. Again, the temperature of this structure is 3. The temperature is kept below about 200°C to prevent the formation of chemical compounds. This structure is then suitable for sintering the platinum to produce platinum silicide. In an atmosphere 1 For example, in argon gas mixed with 15 percent oxygen, typical Generally, the heat treatment is performed at a temperature of about 625°C. The platinum in layers 42 and 43 is These cover the silicon with platinum silicide layers 15 and 1G (Figure 8). Become. However, the leftmost portion of layer 42 does not cover silicon and is essentially a plastic layer. Stay Chyna. Second, platinum rather than platinum silicide, e.g. It is removed by wet etching with water, typically at about 80°C, thereby Latina silicide layers 15 and 16 remain.

ケイ化物生成プロセスの際に、層43(1,6)は周囲のシリコン内に拡張され る。寸法および処理パラメータを適当に選択することによって、この拡張の結果 として。During the silicide formation process, layer 43(1,6) is expanded into the surrounding silicon. Ru. By appropriate selection of dimensions and processing parameters, the result of this expansion is As.

層16(ソース領域)の右エツジをゲート電極13の左エツジとほぼ整合するこ とができる。必要であれば、このデバイスのドレン領域17(第9図)について も同様な結果を得ることができる。このような整合が達成できることは、本発明 の重要な特徴である。The right edge of layer 16 (source region) is approximately aligned with the left edge of gate electrode 13. I can do it. If necessary, for the drain region 17 (FIG. 9) of this device. can also obtain similar results. The ability to achieve such alignment is demonstrated by the present invention. This is an important feature of

プラチナケイ化物層15.16 および17の生成の後、製造中の構造物の上面 の選択された領域が、下側のプラチナケイ化物層15 を露出するための開口部 を持つ周知の絶縁層22(第9図)によって被覆される。次に、第10図に示さ れるように、それぞれゲート電極並びにソース領域およびドレン領域へのコンタ クト18゜19および20が提供される。After the formation of platinum silicide layers 15, 16 and 17, the top surface of the structure being manufactured selected areas have openings to expose the underlying platinum silicide layer 15. It is covered with an insulating layer 22 (FIG. 9), which is well known in the art. Next, as shown in Figure 10, Contours to the gate electrode and the source and drain regions, respectively, are cts 18, 19 and 20 are provided.

上記のステップに代わる方法として、第11図に示されるように、正に電荷され たアルゴンイオンをプラチナ陰極ターゲット31に向け、これによって、プラチ ナを1ステツプにて加工物上に被着すると同時に、シリコンと接触する部分をプ ラチナケイ化物に変化することができる。このプロセスにおいては、加工物はケ イ化物を生成するために約625℃の温度に維持される。As an alternative to the above steps, as shown in FIG. directed the argon ions into the platinum cathode target 31, thereby causing the platinum cathode target 31 to The material is deposited on the workpiece in one step, and at the same time the part that will contact the silicone is plated. It can be converted into latina silicide. In this process, the workpiece is A temperature of about 625° C. is maintained to produce the ionide.

プラチナを被着するもう1つの方法においては、プラチナの低圧化学蒸着に続い てシリコンの上の領域内にプラチナケイ化物を生成するために被着されたプラチ ナの焼結が行なわれ、さらにこれに続いて、例えば、王水による湿式エツチング によって(プラチナケイ化物の上でなく)二酸化シリコンの上のプラチナが除去 される。Another method of depositing platinum involves low pressure chemical vapor deposition of platinum followed by platinum deposited to produce platinum silicide in the area above the silicon. This is followed by wet etching, e.g. with aqua regia. Platinum on silicon dioxide (not on platinum silicide) is removed by be done.

第12図には1本発明のもう1つの実施態様に従うn−チャネルMO8FETデ バイス構造100の断面が示される。ここでは、プラチナケイ化物のソースおよ びドレン電極86および87が基本的に下のp−タイプ表面MBO内のn+にド ープされたシリコン領域81および82と(ショットキーバリアではなく)抵抗 コンタクトを作る。前述の構造のようにゲート電極のエツジをプラチナケイ化物 電極の対応するエツジと整合するかわりに、構造100内のゲート電極18の個 々のエツジは下のn十にドープされたシリコン領域81あるいは82の対応する エツジ(pn接合)と整合される。FIG. 12 shows an n-channel MO8FET device according to another embodiment of the present invention. A cross section of a vice structure 100 is shown. Here we will discuss platinum silicide sources and and drain electrodes 86 and 87 essentially drain to n+ in the underlying p-type surface MBO. doped silicon regions 81 and 82 and a resistor (rather than a Schottky barrier). Make a contact. Platinum silicide edges of the gate electrode as in the previous structure. Instead of aligning the corresponding edges of the electrodes, each of the gate electrodes 18 in the structure 100 Each edge corresponds to the lower doped silicon region 81 or 82. edge (pn junction).

構造100は以下の点を除いて前述と同様に製造される。つまり、(1)p−タ イプ層8o内にn中領域81て形成される空洞の深さが(整合の目的上)幾分浅 くされ、そして(3)対応するだけ少ないプラチナが被着される。Structure 100 is fabricated as described above with the following exceptions. In other words, (1) p-ta The depth of the cavity formed in the n-type region 81 in the deep layer 8o is somewhat shallow (for the purpose of matching). and (3) correspondingly less platinum is deposited.

より詳細には、プラチナのスパッタリングの際に、n+領域81および82がタ ーゲット31(第7図あるいは第11図)にドーナー不純物ドーパントであるヒ 素あるいはアンチモン(あるいは両者)を加えることによって形成される。これ によりn+領域81および82がプラチナのスパッタリングの際に同時に形成さ れる(コースバッタリング)。これらn十領域は、従って不純物ドーパントのプ ラチナからシリコン内への排除によって形成される(分離係数)。後の処理温度 はシリコン内に不純物の多量の拡散が発生する温度よりも十分に低く保持される ため、n中領域81および82の厚さは約100オングストローム(あるいはこ れ以下)となる。これに代わる方法として、製造のこれより早い段階において、 例えば、ゲート電極層13並びに側壁酸(t22M(第4図)を、これら不純物 を透過しない保護マスクとして使用してドーナー不純物を移入および拡散する従 来の技術によ “ってn中領域81および82を形成することもできる。More specifically, during platinum sputtering, n+ regions 81 and 82 are The target 31 (FIG. 7 or FIG. 11) contains hydrogen, which is a donor impurity dopant. It is formed by adding element or antimony (or both). this Therefore, n+ regions 81 and 82 are formed simultaneously during platinum sputtering. (course battering). These n0 regions are therefore filled with impurity dopants. Formed by exclusion from latina into silicon (separation factor). Post-processing temperature is kept well below the temperature at which significant diffusion of impurities occurs within the silicon. Therefore, the thickness of the n-medium regions 81 and 82 is approximately 100 angstroms (or approximately 100 angstroms). (below). Alternatively, at an earlier stage of manufacturing, For example, the gate electrode layer 13 and sidewall acid (t22M (FIG. 4)) are coated with these impurities. A conventional method for importing and diffusing donor impurities using The n-middle regions 81 and 82 can also be formed using conventional techniques.

いずれの場合もn中領域81および82の両端の所でp−タイプ層80内にpn 接合91および92が形成される。好ましくは、pn接合91の右端はゲートの 左端と実質的に整合される。この整合は、例えば、空洞(第4図)の最初の深さ を約63オングストロームとし、n+領領域厚さを約100オングストロームと することによって得られる。ここで、プラチナを100オングストロームの厚さ に被着した後のプラチナケイ化物層81 の厚さは約200オングストロームと なる。In either case, pn Junctions 91 and 92 are formed. Preferably, the right end of the pn junction 91 is connected to the gate. substantially aligned with the left edge. This alignment can be achieved, for example, at the initial depth of the cavity (Fig. 4). is about 63 angstroms, and the thickness of the n+ region is about 100 angstroms. obtained by doing. Here, the platinum is 100 angstroms thick. The thickness of the platinum silicide layer 81 after being deposited is approximately 200 angstroms. Become.

当技術において周知のごとく、プラチナケイ化物はn−タイプシリコンとショッ トキーバリアを形成するが、これはp−タイプシリコンによって形成されるバリ アの高さが0.25ボルトであるのに対して0.85ボルトのバリアの高さを持 つ(例えば1M、P、レプセルター(M、 P 、 Lepselter )お よびJ、M、アンドリュウス(J 、 M、Andrews)によって、B、ス クワーツ(B 、 S chvartz)編集、電気化学学会(Electro chemicalSoceity)、1969年出版の文献「 導 への抵 接 触(Ohmic Contacts to Sem1conductors J のページ159から186に発表の論文[シリコンへの抵抗接触(Otusic Contacts to 5i1icon)]およびページ173の表1を参照 )。n−タイプシリコンと形成されるバリアの高さがこのように比較的高く、こ れがMOSFET構造の相互コンダクタンスを大きく妨害するため、n中領域8 1および82はn−チャネル構造100内に形成される。このように有効バリア がバリアを通じての電荷キャリアの量子力学的トンネル効果によって許容できる レベルに落とされ、MO8FET相互コンダクタンスがショットキーバリアによ って大きく妨害されないようにされる。As is well known in the art, platinum silicides are compatible with n-type silicon and This is a barrier formed by p-type silicon. The barrier height is 0.85 volts while the barrier height is 0.25 volts. (For example, 1M, P, Lepselter (M, P, Lepselter) and J.M. Andrews, B.S. Edited by B. and S. Chvartz, Electrochemical Society of Japan (Electro Chemical Society), published in 1969, “Resistance to Conduct” Ohmic Contacts to Sem1 conductors J Paper published on pages 159 to 186 of [Resistive Contacts to Silicon (Otusic Contacts to 5i1icon) and see Table 1 on page 173. ). The height of the barrier formed with n-type silicon is thus relatively high; Since this greatly disturbs the mutual conductance of the MOSFET structure, the n middle region 8 1 and 82 are formed within n-channel structure 100. Effective barrier in this way can be tolerated by quantum mechanical tunneling of charge carriers through the barrier. level, the MO8FET transconductance is reduced by the Schottky barrier. This will ensure that there is no major interference.

このように同一のシリコン本体9の上にP−チャネルMOSFET構造20およ びn−チャネルMOSFET構造100の両方を形成することができ、これによ って0MO8技術の用語を使用すると′、n−タイプ表面[10が”n−タブ″ となり、p−タイプ表面層8oが゛lp−タブ1′となる。In this way, P-channel MOSFET structures 20 and 20 are placed on the same silicon body 9. and n-channel MOSFET structure 100, which Using the terminology of 0MO8 technology, 'n-type surface [10 is "n-tab"] Thus, the p-type surface layer 8o becomes the lp-tab 1'.

金属ケイ化物のソース電極およびドレン電極を形成するためにプラチナの代わり にチタニウムあるいはジルコニウムを使用することもできる。 さらに、 チタ ニウムケイ化物およびジルコニウムケイ化物は両方とも p −タイプおよびn −タイプシリコンの両者に対して概ね同一のバリア高さ、つまり、0.55ボル トを持つため、これらケイ化物に対して対称構造を使用することができる。つま り、ジルコニウムあるいはチタニウムケイ化物電極を持つP−チャネルおよびn −チャネル トランジスタに好ましくは、それぞれケイ化物電極の間に介在する 高度にドープされたP+およびn+不純物領域並びにそれぞれn−タイプおよび p−タイプ表面層10および80が提供される。典型的には、これらp十および n+領領域厚さは両方とも約100オングストローム(あるいはこれ以下)とさ れる。これらP+およびn+不純物領域内の平方センチメートル当たりの不純物 原子(あるいはイオン)(つまり″表面濃度″)にて表わされるドーピング濃度 は、ラッチアップ問題が再び発生するのを回避するのに十分な低さにされる。典 型的には、これは平方センチメートル当たり1013あるいはそれ以上のオーダ ーのドーピングレベルのタブに対しては平方センチター1〜ル当たり1013あ るいはこれ以下のオーダーとされる。一方において、容積濃度は結果として得ら れるMOS)−ランジスタ構造の相互コンダクタンスが大きく妨害されないよう (トンネル効果によって)有効バリアを低くするため十分に高くされる。典型的 には、立方センチメートル当たり5X10”のオーダーとされる。別に、有効バ リアを下げるためn+およびp+不純物領域の不純物の表面濃度を幾分高くし、 従って、この厚さを厚くすることによって、通常の電源の電流限界内での動作に おいてラッチアップの問題が発生するのを回避することもできる。Alternative to platinum to form metal silicide source and drain electrodes Titanium or zirconium can also be used. In addition, Chita Nium silicide and zirconium silicide are both p-type and n - approximately the same barrier height for both types of silicon, i.e. 0.55 volts; symmetric structures can be used for these silicides. wife P-channel and n-channel with zirconium or titanium silicide electrodes - channel preferably interposed between respective silicide electrodes in the transistor; Highly doped P+ and n+ impurity regions and n-type and P-type surface layers 10 and 80 are provided. Typically, these p and The thickness of both n+ regions is approximately 100 angstroms (or less). It will be done. Impurities per square centimeter within these P+ and n+ impurity regions Doping concentration expressed in atoms (or ions) (i.e. "surface concentration") is made low enough to avoid the latch-up problem from occurring again. Noriyoshi Typical, this is on the order of 1013 or more per square centimeter. 1013 per square centimeter to 1000 ml for tabs with doping levels of - Rui is considered to be of lower order. On the one hand, the volume concentration is the resulting The transconductance of the transistor structure is not significantly disturbed. It is made high enough to reduce the effective barrier (by tunneling effect). typical is on the order of 5 x 10" per cubic centimeter. Separately, the effective bar In order to lower the rear, the surface concentration of impurities in the n+ and p+ impurity regions is increased somewhat, Therefore, increasing this thickness allows operation within the current limits of typical power supplies. It is also possible to avoid latch-up problems.

この他の修正も可能である。例えば、金属ケイ化物電極を形成するために、 シ リコンとのショットキーバリアに適する金属ケイ化物を生成する他の遷移金属、 例えば、コバルト、ハフニウム、あるいはタンタルを使用することもできる。ま たスパッタリングによってプラチナあるいは他の金属ケイ化物を生成する代わり に、最初にこの金属を製造される構造の上面全体に蒸着し、つぎに(シリコン領 域上で)、典型的には約400℃から650℃で約2から6分間部度パルス(ス パイク)処理を行なうことによって金ノρtケイ化物に変化させ、その後、この 酸化物上に残る金属を熱い王水にてエツチングすることによって除去することも できる。Other modifications are also possible. For example, to form a metal silicide electrode, Other transition metals that produce metal silicides suitable for Schottky barriers with recon, For example, cobalt, hafnium or tantalum can also be used. Ma Alternatives to producing platinum or other metal silicides by sputtering This metal is first deposited over the entire top surface of the structure to be fabricated and then 400°C to 650°C for about 2 to 6 minutes. Pike) treatment to convert the gold into ρt silicide, and then this Metals remaining on the oxide can also be removed by etching with hot aqua regia. can.

FIG、/ FIG、3 FIG、9 FIG、/2 国際調査報告 ANNEX To lA、l: INTER)IATIONAム5EARCHR EPORT (JNrNTERNATIONAL APPLICATZON N o、 PCT/US 85101589 (SA 10526)―――・−+− 一・−−一響一呻−−―+−−−−―鴫−−−−−−−一一一−−−−−■−− − +噌・−−一噛++南・・τha European Pat=nt 0f fice is in no way 1iable Eor thesepa rticulars which are merely gxvan for  the purposa ofinformation。FIG./ FIG.3 FIG.9 FIG, /2 international search report ANNEX To lA, l: INTER) IATION A M 5 EARCHR EPORT (JNrNTERNATIONAL APPLICATZON N o, PCT/US 85101589 (SA 10526) ---・-+- 1・−−One sound and one groan−−−+−−−−−Izuku−−−−−−−111−−−−−■−− -+噌・--One bite+++Minami...τha European Pat=nt 0f fice is in no way 1iable Eor thesepa rticulars which are mostly gxvan for the purposa ofinformation.

Claims (8)

【特許請求の範囲】[Claims] 1.半導体本体10の上に形成されたショットキー層ソース電極(16);ゲー ト絶縁層(12)によって該半導体本体から分離されたゲート電極層(13); および該ゲート電極の側壁を覆う側壁絶縁層(14)を持つMOSトランジスタ 構造において、 該トランジスタのソース電極(16)が該側壁絶縁層の下をえぐり該ゲート電極 層のエッジと所定の関係に終端する該半導体本体内の空洞内に延び、これを満た すことを特徴とするトランジスタ。1. Schottky layer source electrode (16) formed on the semiconductor body 10; a gate electrode layer (13) separated from the semiconductor body by an insulating layer (12); and a MOS transistor having a sidewall insulating layer (14) covering the sidewall of the gate electrode. In structure, A source electrode (16) of the transistor is hollowed out under the sidewall insulating layer and connected to the gate electrode. extending into and filling a cavity within the semiconductor body terminating in a predetermined relationship with an edge of a layer; A transistor characterized by: 2.請求の範囲第1項に記載のトランジスタにおいて、該半導体本体がシリコン であり、該ゲート絶縁層が二酸化シリコンであり、該ゲート電極層が多結晶シリ コンであり、そして該ソース電極層が金属ケイ化物であることを特徴とするトラ ンジスタ。2. A transistor according to claim 1, wherein the semiconductor body is made of silicon. , the gate insulating layer is silicon dioxide, and the gate electrode layer is polycrystalline silicon. and the source electrode layer is a metal silicide. Njista. 3.請求の範囲第2項に記載のトランジスタにおいて、該側壁絶縁層が二酸化シ リコンであることを特徴とするトランジスタ。3. The transistor according to claim 2, wherein the sidewall insulating layer is made of silicon dioxide. A transistor characterized by being a reconductor. 4.請求の範囲第1項に記載の回路において、該ソース電極が該側壁絶縁層の下 の該ゲート電極層のこれを覆うエッジと実質的に整合する位置まで延びることを 特徴とする回路。4. The circuit according to claim 1, wherein the source electrode is below the sidewall insulating layer. extending to a position substantially aligned with the overlying edge of the gate electrode layer. Featured circuit. 5.個々が酸化物層を被覆されたペアの対面する側壁を持つポリシリコンゲート 電極を形成するステップを含み、該ゲート電極が単結晶シリコン半導体本体の主 表面から二酸化シリコン層によって分離されている半導体本体内にMOSFET トランジスタを製造する方法において; 該側壁酸化物層のこのとき露出されているエッジと隣接するシリコン本体の主表 面のこのとき露出されている部分をエッチングすることによって、該シリコン本 体内に該側壁酸化物層の1つの下をえぐる空洞を形成するステップ;および 該主表面に金属を衝突させ、該空洞を金属ケイ化物層にて満たすように該シリコ ン本体の該主表面のこのとき露出されているシリコン部分の上に金属ケイ化物層 を形成するステップが含まれることを特徴とする方法。5. Polysilicon gate with a pair of facing sidewalls each coated with an oxide layer forming an electrode, the gate electrode being a main body of a single crystal silicon semiconductor body; MOSFET within the semiconductor body separated from the surface by a silicon dioxide layer In a method of manufacturing a transistor; a major surface of the silicon body adjacent the now exposed edge of the sidewall oxide layer; The silicon book is removed by etching the now exposed portion of the surface. forming a cavity under one of the sidewall oxide layers in the body; and The main surface is bombarded with metal, and the silicone is heated so as to fill the cavity with a metal silicide layer. a metal silicide layer on the now exposed silicon portion of the main surface of the main body; A method comprising the step of forming. 6.請求の範囲第5項に記載の方法において、該金属を衝突させるプロセスの際 に該酸化物上には実質的に金属あるいは金属ケイ化物が蓄積せず、一方、該シリ コン本体の露出された部分の上に金属ケイ化物が生成および蓄積されることを特 徴とする方法。6. In the method according to claim 5, during the process of colliding the metal, substantially no metal or metal silicide builds up on the oxide; It is characterized by the formation and accumulation of metal silicides on exposed parts of the con body. How to make it a sign. 7.請求の範囲第6項に記載の方法において、該金属を衝突させるプロセスの際 にポリシリコンゲート電極の上側主表面が露出され、これによって、このプロセ スの際にゲート電極の主表面上にも金属ケイ化物が生成および蓄積されることを 特徴とする方法。7. In the method according to claim 6, during the process of colliding the metals, The upper major surface of the polysilicon gate electrode is exposed, thereby allowing the process to metal silicide is also generated and accumulated on the main surface of the gate electrode during How to characterize it. 8.請求の範囲第7項に記載の方法において、該金属がプラチナであることを特 徴とする方法。8. The method according to claim 7, characterized in that the metal is platinum. How to make it a sign.
JP60503826A 1984-08-24 1985-08-20 MOS transistor with Schottky layer electrode Pending JPS62500061A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64395684A 1984-08-24 1984-08-24
US643956 1984-08-24

Publications (1)

Publication Number Publication Date
JPS62500061A true JPS62500061A (en) 1987-01-08

Family

ID=24582832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60503826A Pending JPS62500061A (en) 1984-08-24 1985-08-20 MOS transistor with Schottky layer electrode

Country Status (5)

Country Link
EP (1) EP0191841A1 (en)
JP (1) JPS62500061A (en)
KR (1) KR870002659A (en)
ES (1) ES8704037A1 (en)
WO (1) WO1986001641A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049182A (en) * 1999-12-16 2007-02-22 Spinnaker Semiconductor Inc System and method of mosfet device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663584A (en) * 1994-05-31 1997-09-02 Welch; James D. Schottky barrier MOSFET systems and fabrication thereof
JP3833903B2 (en) * 2000-07-11 2006-10-18 株式会社東芝 Manufacturing method of semiconductor device
JP2002184716A (en) * 2000-12-11 2002-06-28 Sharp Corp Method of manufacturing semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141022A (en) * 1977-09-12 1979-02-20 Signetics Corporation Refractory metal contacts for IGFETS
FR2480371A1 (en) * 1980-04-15 1981-10-16 Ferodo Sa ASSISTED HYDRAULIC CONTROL, IN PARTICULAR FOR CLUTCHES AND BRAKES
US4485550A (en) * 1982-07-23 1984-12-04 At&T Bell Laboratories Fabrication of schottky-barrier MOS FETs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049182A (en) * 1999-12-16 2007-02-22 Spinnaker Semiconductor Inc System and method of mosfet device

Also Published As

Publication number Publication date
ES8704037A1 (en) 1987-03-01
EP0191841A1 (en) 1986-08-27
ES546353A0 (en) 1987-03-01
WO1986001641A1 (en) 1986-03-13
KR870002659A (en) 1987-04-06

Similar Documents

Publication Publication Date Title
KR100443475B1 (en) Semiconductor device and method of manufacturing the same
TWI342601B (en) Ultra-thin soi vertical bipolar transistors with an inversion collector on thin-buried oxide(box) for low substrate-bias operation and methods thereof
TW567612B (en) Memory cell, memory cell arrangement and fabrication method
US5723376A (en) Method of manufacturing SiC semiconductor device having double oxide film formation to reduce film defects
EP0342952B1 (en) Topographic pattern delineated power MOSFET with profile tailored recessed source
US5182234A (en) Profile tailored trench etch using a SF6 -O2 etching composition wherein both isotropic and anisotropic etching is achieved by varying the amount of oxygen
TWI292221B (en) Manufacturing method of semiconductor device
JP3915180B2 (en) Trench type MOS semiconductor device and manufacturing method thereof
TW201301366A (en) Method of making an insulated gate semiconductor device and structure
JPH0744272B2 (en) Transistor manufacturing method
JPH1131815A (en) Semiconductor device having trench structure and fabrication thereof
JPH0834313B2 (en) Semiconductor device and manufacturing method thereof
JPH07249770A (en) Semiconductor device and its fabrication
JP2003068751A (en) Semiconductor device and manufacturing method thereof
EP4270490A1 (en) Mosfet device and manufacturing method therefor
JPS62500061A (en) MOS transistor with Schottky layer electrode
JP2657588B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPH10125904A (en) Silicon carbide semiconductor device
JP3264262B2 (en) Semiconductor device and manufacturing method thereof
JPH0334541A (en) Manufacture of semiconductor device
JPS61170067A (en) Semiconductor device
TW200845390A (en) Semiconductor structure including stepped source/drain region
JPH08255902A (en) Insulated gate semiconductor device and fabrication thereof
TWI808856B (en) Bottom source trench mosfet with shield electrode
JP2004193281A (en) Semiconductor device and its manufacturing method