JPS6245119A - Dry etching device - Google Patents

Dry etching device

Info

Publication number
JPS6245119A
JPS6245119A JP18521985A JP18521985A JPS6245119A JP S6245119 A JPS6245119 A JP S6245119A JP 18521985 A JP18521985 A JP 18521985A JP 18521985 A JP18521985 A JP 18521985A JP S6245119 A JPS6245119 A JP S6245119A
Authority
JP
Japan
Prior art keywords
etching
electrode
intensity
emission spectrum
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18521985A
Other languages
Japanese (ja)
Inventor
Ichiro Nakayama
一郎 中山
Riyuuzou Houchin
隆三 宝珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18521985A priority Critical patent/JPS6245119A/en
Publication of JPS6245119A publication Critical patent/JPS6245119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To detect the intensity of an emission spectrum from a CO molecule before and after the completion of etching, and to detect the end point of etching precisely by monitoring the intensity of a plasma emission spectrum between a second electrode, from which a polymer is hardly formed, and an intermediate electrode. CONSTITUTION:A material 17 to be processed is manufactured in such a manner that a thermal oxide film (an SiO2 film) is formed on an Si substrate in 5,000Angstrom , and a resist pattern is shaped onto the thermal oxide film. The state of the etching of the material 17 is detected by an etching monitor 19 through a silica glass 18. Accordingly, the luminescent intensity of a CO molecule having a wavelength of 519.8nm suddenly increased by the generation of plasma with the application of high-frequency power as shown in a graph, a fixed level is maintained, and luminescent intensity after approximately fifty sec after the application of high frequency begins to reduce, and reaches predetermined intensity at a comparatively low level after approximately sixty sec after the application of high-frequency power. The etching of SiO2 is completed at that time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体デバイス製造におけるドライエツチング
装置に関するものであり、その中でも特にシリコン酸化
膜等のエツチングの進行および終点のモニターに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a dry etching apparatus used in the manufacture of semiconductor devices, and more particularly to monitoring the progress and end point of etching of silicon oxide films and the like.

従来の技術 近年、ドライエツチングのモニタ一方法は、質量分析法
、プローブ法2分光分析法などが検討されているが、装
置に対しての取りつけ方法が容易であることや、プラズ
マ状態を変化させないということで分光分析法が主流と
なっている。
Conventional technology In recent years, mass spectrometry, probe method, and spectroscopic analysis have been considered as methods for monitoring dry etching, but these methods are easy to attach to the equipment and do not change the plasma state. Therefore, spectroscopic analysis has become mainstream.

以下図面を参照にしながら、従来のドライエツチングの
モニター装置の一例について説明する。
An example of a conventional dry etching monitoring device will be described below with reference to the drawings.

第6図で1は真空チャンバー、2は上部電極、3は下部
電極である04はガス導入口、6はガス排気口である。
In FIG. 6, 1 is a vacuum chamber, 2 is an upper electrode, 3 is a lower electrode, 04 is a gas inlet, and 6 is a gas exhaust port.

6は被加工物、7は石英ガラス、8はエツチングモニタ
ーである。
6 is a workpiece, 7 is quartz glass, and 8 is an etching monitor.

分光分析だよるモニタ一方法は上部電極2と被加工物6
を置載させた下部電極3の間でエツチング中の特有な発
光スペクトル強度の変化をエッチングモニタ−8で検出
してエツチング終了点を制御している。
One method of monitoring using spectroscopic analysis is to use the upper electrode 2 and the workpiece 6.
The end point of etching is controlled by detecting the characteristic change in the intensity of the emission spectrum during etching between the lower electrodes 3 on which etching is placed.

シリコン酸化膜(以下S iO2と記す)のドライエツ
チングモニタ一方法もこの分光分析法が用いられている
This spectroscopic analysis method is also used as a method for dry etching monitoring of silicon oxide films (hereinafter referred to as SiO2).

発明が解決しようとする問題点 しかしながらS 102膜のドライエツチングに使用さ
れるエツチングガス、たとえばCHF3゜CF+CHF
3.C2F6+CHF3.C3F8+CHF3などを利
用してエツチングすると、Sio2の反応で、F 、C
o、Co2.COF  とい−) だi子や分子75E
発生し、個々の発光スペクトルが検出されるが、エツチ
ング終了後すなわちSio2の下地であるSi膜が出た
時点でも、発光スペクトルの変化が極めて小さい。発光
強度の強い00分子の発光スペクトルはエツチング終了
時に強度が低下するはずであるが、実際に測定した場合
、はとんど強度変化が見られない。これは、上記エツチ
ングガスのエツチング中に生成する重合物は酸素が一部
化学結合した状態になっていると考えられ、エツチング
終了後もこの重合物からCo分子が発散するだめだと考
えられる。このためエツチング終了前後での発光分光に
よるモニターは困難であるという問題点を有していた。
Problems to be Solved by the Invention However, the etching gas used for dry etching the S102 film, for example, CHF3°CF+CHF
3. C2F6+CHF3. When etching is performed using C3F8+CHF3, etc., F, C
o, Co2. COF Toi-) Daikoya Molecule 75E
Although each emission spectrum is detected, the change in the emission spectrum is extremely small even after etching is completed, that is, when the Si film underlying Sio2 is exposed. The emission spectrum of the 00 molecule, which has a strong emission intensity, is supposed to decrease in intensity when etching is completed, but when actually measured, almost no change in intensity is observed. This is thought to be because the polymer produced during etching with the etching gas has some oxygen chemically bonded to it, and Co molecules continue to emanate from this polymer even after etching is completed. For this reason, there was a problem in that it was difficult to monitor by emission spectroscopy before and after the etching was completed.

本発明は上記問題点に鑑み、フッ化炭素及びフッ化炭化
水素のガスでSio2をエツチングするときに化学反応
で発生する00分子のみをモニターし、エツチング中に
生成する重合物から発散する00分子はモニターしない
ドライエツチングモニタ一方法を用いたドライエツチン
グ装置を提供するものである。
In view of the above problems, the present invention monitors only the 00 molecules generated by the chemical reaction when etching Sio2 with fluorocarbon and fluorohydrocarbon gases, and monitors only the 00 molecules generated from the polymer generated during etching. provides a dry etching apparatus using a method of dry etching monitoring without monitoring.

問題点を解決するだめの手段 上記問題点を解決するために本発明のS iO2のドラ
イエツチング装置は、被加工物を載置した第1の電極と
それに対向する第2の電極との間に通気性を有する中間
電極を設け、前記中間電極と第1及び第2電極間でプラ
ズマを発生させて、中間電極と第2の電極間で発生する
プラズマ発光スペクトルのみ監視しようとするものであ
る。
Means for Solving the Problems In order to solve the above problems, the SiO2 dry etching apparatus of the present invention has a structure in which a workpiece is placed between the first electrode and the second electrode opposite thereto. An air permeable intermediate electrode is provided, plasma is generated between the intermediate electrode and first and second electrodes, and only the plasma emission spectrum generated between the intermediate electrode and the second electrode is monitored.

作  用 本発明は上記した構成によって、エツチング中の重合物
の生成が第1の電極と中間電極の間に集中し、第2の電
極と中間電極との間には重合物がほとんど生成しないこ
とを利用するものである。
Effect: Due to the above-described configuration, the present invention has the feature that during etching, the production of polymers is concentrated between the first electrode and the intermediate electrode, and almost no polymers are produced between the second electrode and the intermediate electrode. It uses

即ちモニター側ではエツチング終了時点で重合物からの
00分子の発生がないことてより、SiO□膜のエツチ
ング終了前後でCo分子の発光強度が大きく変化するだ
め、正確にエツチングの終点を検出できる。
That is, on the monitor side, since no 00 molecules are generated from the polymer at the end of etching, the emission intensity of Co molecules changes greatly before and after the end of etching the SiO□ film, so the end point of etching can be accurately detected.

実施例 以下本発明の一実施例のドライエツチング装置について
、図面を参照しながら説明する。
EXAMPLE Hereinafter, a dry etching apparatus according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例におけるドライエツチング装
置の装置断面図である。
FIG. 1 is a sectional view of a dry etching apparatus according to an embodiment of the present invention.

第1図において、9は真空チャンバー、1oは上部電極
、11は下部電極、12は通気性のある中間電極、13
および14は高周波電源、15はガス導入口、16はガ
ス排気口、17は被加工物、18は石英ガラス、19は
分光分析機能を備えたエツチングモニターである。18
の石英ガラスは上部電極1oと中間電極11の間に設置
されている0 以下に第1図を用いてその動作を説明する。
In FIG. 1, 9 is a vacuum chamber, 1o is an upper electrode, 11 is a lower electrode, 12 is an air-permeable intermediate electrode, and 13 is a vacuum chamber.
14 is a high frequency power supply, 15 is a gas inlet, 16 is a gas exhaust port, 17 is a workpiece, 18 is quartz glass, and 19 is an etching monitor equipped with a spectroscopic analysis function. 18
The quartz glass is placed between the upper electrode 1o and the intermediate electrode 11.The operation thereof will be explained below using FIG. 1.

まず被加工物17は、Si 基板上に熱酸化膜(S 1
02膜)を5000 人形成し、その上にレジストパタ
ーンを形成したものである。本発明ではこのSiO膜を
02F620sccm、CHCHF330scの混合ガ
スを使用し、下部電極11てはy6oW。
First, the workpiece 17 is a thermal oxide film (S 1
02 film) was formed by 5,000 people, and a resist pattern was formed thereon. In the present invention, a mixed gas of 02F620sccm and CHCHF330sc is used for this SiO film, and the lower electrode 11 is y6oW.

上部電極9には30oW印加し、チャンバー内圧力を5
00 mTor rにしてエツチングした。そしてその
エツチング状態を石英ガラス18を通してエツチングモ
ニター19で検知した。その結果を第2図に示す。検知
した00分子の発光スペクトルの波長は519.8膜m
  である。第2図に示されるように、高周波電力印加
にともなうプラズマ発生尾より、波長1519.8膜m
の00分子の発光強度は急激に増大し、一定水準を保っ
た後、高周波印加から約60秒後に発光強度は減少し始
め、高周波電力印加から約60秒後に比較的低い水準で
一定の強度となる。この時点で9102のエツチングは
終了する。さらに約10秒後に高周波電力の印加を停止
し、エツチング終了後、レジストを除去し被エツチング
部分エツチング部分の段差を段差計(テンニール社製α
ステンプ200)で測定した結果、段差は約5100人
であり、S IO2膜は完全にエツチングが終了してい
ることが確認できた。
30oW was applied to the upper electrode 9, and the pressure inside the chamber was increased to 5.
Etching was performed at 00 mTorr. Then, the etching state was detected by an etching monitor 19 through a quartz glass 18. The results are shown in FIG. The wavelength of the detected emission spectrum of 00 molecules is 519.8 membrane m.
It is. As shown in Figure 2, from the plasma generation tail due to the application of high frequency power, the wavelength of 1519.8 m
The luminescence intensity of 00 molecules increases rapidly, remains at a constant level, then begins to decrease approximately 60 seconds after high-frequency power is applied, and reaches a constant level at a relatively low level approximately 60 seconds after high-frequency power is applied. Become. At this point, the etching of 9102 is completed. After approximately 10 seconds, the application of high-frequency power is stopped, and after etching is complete, the resist is removed and the level difference between the etched area and the etched area is measured using a level difference meter (Ten-Niel α).
As a result of measurement using STEM 200), the height difference was approximately 5,100, and it was confirmed that the SIO2 film was completely etched.

なお第2図においてAは高周波電力印加時点、Bはエツ
チング終了時点、Cは高周波電力停止時点である。
In FIG. 2, A is the time point when high frequency power is applied, B is the time point when etching is finished, and C is the time point when high frequency power is stopped.

なお、上記の実施例と同様にしてSiO2膜を50oO
人 ドライエツチングを行ない、波長500 nmかC
) 62 !5 nmまでのエツチング終了点前後変化
を調べた。Si○2膜エツチング途中である3膜秒後の
波長を第3図に示す。またエツチングが完了している7
0秒後の波長を第3図と同一スケールで第4図に示す。
Note that the SiO2 film was heated to 50oO as in the above example.
People Perform dry etching and use a wavelength of 500 nm or C.
) 62! Changes before and after the etching end point up to 5 nm were investigated. FIG. 3 shows the wavelength after 3 seconds of Si○2 film etching. The etching has also been completed7
The wavelength after 0 seconds is shown in FIG. 4 on the same scale as FIG. 3.

第3図と第4図を比較してわかるように波長519.8
膜m 、 561.0膜m 、 608 、OnmのC
○分子スペクトル強弱がはっきりと見られた。このこと
から第1の実施例以外のCo分子の波長561.○nm
608、Onmを検知中ることも可能である。
As can be seen by comparing Figures 3 and 4, the wavelength is 519.8.
C of film m, 561.0 film m, 608, Onm
○The strength and weakness of the molecular spectrum were clearly seen. From this, it can be seen that the wavelength of Co molecules other than the first example is 561. ○nm
608, it is also possible that Onm is being detected.

以上、S iO2膜のドライエツチングについて述べて
来だが、重合物を生成しゃすい他の被加工物のエツチン
グあるいは重合物を全く生成しないエツチング条件にも
適用できる。
Although the dry etching of an SiO2 film has been described above, the present invention can also be applied to etching of other workpieces that generate polymers or to etching conditions that do not generate polymers at all.

発明の効果 以上のように本発明は、重合物の生成の少ない第2の電
極と中間電極間のプラズマ発光スペクトル強度を監視す
ることにより、エツチング中に生成する重合物から発散
する00分子の影響を受けずに、エツチング終了前後で
の00分子の発光スペクトル強度を検知できるため、エ
ツチング状態を正確に把握し、正しいエツチングの終点
を検出できる。
Effects of the Invention As described above, the present invention monitors the intensity of the plasma emission spectrum between the second electrode and the intermediate electrode, where less polymer is produced, thereby reducing the influence of 00 molecules emanating from the polymer produced during etching. Since the intensity of the emission spectrum of the 00 molecule before and after the end of etching can be detected without being affected, the etching state can be accurately grasped and the correct end point of etching can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるドライエツチング装
置の装置断面図、第2図は本発明に適用したドライエツ
チングのモニタ一方法により測定した波長519.8膜
mのCo分子発光強度とエツチング時間の関係を示すグ
ラフ、第3図は本発明のは従来のドライエツチング装置
の装置断面図である0 9・・・・・・真空チャンバー、10・・・・上部電極
、11・・・・・・下部電極、12・・・・・・中間電
極、13.14・・・高周波電源、17・・・・・・被
加工物、19・・・・・・エツチングモニター。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図   q−実字をヤッ2、・− イO−−・よif 弓艷グ3≦iヒ 1f−−−7をP  −・ 12−−9間・・ +3.+4−一偶用破電源 ず7一−−厳カσ工Tw ブq−−エッナンク゛tニゲ− f″? 第2図 第3図 汲&tnm) 第4図 傭炙tnm) 第5図
FIG. 1 is a cross-sectional view of a dry etching apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing Co molecule emission intensity and etching at a wavelength of 519.8 m, measured by a dry etching monitoring method applied to the present invention. A graph showing the relationship between time and FIG. 3 is a cross-sectional view of a conventional dry etching apparatus according to the present invention. ... lower electrode, 12 ... middle electrode, 13.14 ... high frequency power supply, 17 ... workpiece, 19 ... etching monitor. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure q-actual character ya 2, ・- iO-- yoif bowmangu 3≦ihi 1f--7 to P-- 12--9...+3. +4-Even broken power source 71--Strict force σ work Tw q--Ennan quart f″? Fig. 2 Fig. 3 Scroll & tnm) Fig. 4 Temperature tnm) Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)反応容器内に第1の電極とそれに対向する第2の
電極を有し、前記第1の電極上に被加工物を載置し、前
記第1の電極と前記第2の電極との間に通気性を有する
中間電極を設け、前記第1の電極または前記第2の電極
の一方もしくは両方に高周波電力を印加してプラズマを
発生させる手段を有し、さらに前記第2の電極と前記中
間電極との間で発生する発光スペクトルの強度変化を監
視することによってエッチング状態をモニターするため
のエッチングモニターを備えたドライエッチング装置。
(1) A reaction vessel includes a first electrode and a second electrode opposing the first electrode, a workpiece is placed on the first electrode, and the first electrode and the second electrode are connected to each other. an intermediate electrode having air permeability is provided between the electrodes, and means for generating plasma by applying high frequency power to one or both of the first electrode and the second electrode; A dry etching apparatus equipped with an etching monitor for monitoring an etching state by monitoring intensity changes in an emission spectrum generated between the intermediate electrode and the intermediate electrode.
(2)被加工物がシリコン酸化膜であり、発光スペクト
ルとしてCO励起分子の発光スペクトルを用いることを
特徴とする特許請求の範囲第1項記載のドライエッチン
グ装置。
(2) The dry etching apparatus according to claim 1, wherein the workpiece is a silicon oxide film and the emission spectrum of CO excited molecules is used as the emission spectrum.
JP18521985A 1985-08-23 1985-08-23 Dry etching device Pending JPS6245119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18521985A JPS6245119A (en) 1985-08-23 1985-08-23 Dry etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18521985A JPS6245119A (en) 1985-08-23 1985-08-23 Dry etching device

Publications (1)

Publication Number Publication Date
JPS6245119A true JPS6245119A (en) 1987-02-27

Family

ID=16166960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18521985A Pending JPS6245119A (en) 1985-08-23 1985-08-23 Dry etching device

Country Status (1)

Country Link
JP (1) JPS6245119A (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070120A (en) * 2014-10-14 2017-06-21 어플라이드 머티어리얼스, 인코포레이티드 Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9793104B2 (en) 2015-01-29 2017-10-17 Aixtron Se Preparing a semiconductor surface for epitaxial deposition
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
TWI672077B (en) * 2014-10-14 2019-09-11 美商應用材料股份有限公司 Systems and methods for internal surface conditioning assessment in plasma processing equipment
CN107078014A (en) * 2014-10-14 2017-08-18 应用材料公司 Assess the System and method for that inner surface is adjusted in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
KR20170070120A (en) * 2014-10-14 2017-06-21 어플라이드 머티어리얼스, 인코포레이티드 Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9793104B2 (en) 2015-01-29 2017-10-17 Aixtron Se Preparing a semiconductor surface for epitaxial deposition
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Similar Documents

Publication Publication Date Title
JPS6245119A (en) Dry etching device
US4182646A (en) Process of etching with plasma etch gas
JPH04130723A (en) Reactive ion etching apparatus
JPS6225757B2 (en)
JPS635532A (en) Plasma cleaning process
JP3015540B2 (en) Method for manufacturing semiconductor device
JPS6381929A (en) Detector for end point of dry etching
JPS62208635A (en) Detection of end point of dry etching
JP3415074B2 (en) X-ray mask manufacturing method and apparatus
JPH05102089A (en) Dry etching method
JPS62282435A (en) Method for detecting end point of etching
JPH05102087A (en) Method for monitoring plasma etching end point
JPS60148120A (en) Dry etching device
JPS6342124A (en) Terminal detection
Shabushnig et al. Applications of optical emission spectroscopy to semiconductor processing
JPS6245120A (en) Etching device
JPS62269318A (en) Etching of silicon oxide film
JPS58144476A (en) Reactive ion etching method
JPH01230236A (en) Dry etching method
JPH01301871A (en) Method for detecting end point of dry etching
JPS60247925A (en) End point detection of etching of oxide film
JPS6019139B2 (en) Etching method and mixture gas for plasma etching
JPH09205122A (en) Analytic method for semiconductor equipment and analytic equipment
JP2000231202A (en) Method for ashing resist
JPH08124911A (en) Method and system for dry etching