JPS6242080A - Fish egg detecting device - Google Patents

Fish egg detecting device

Info

Publication number
JPS6242080A
JPS6242080A JP60182318A JP18231885A JPS6242080A JP S6242080 A JPS6242080 A JP S6242080A JP 60182318 A JP60182318 A JP 60182318A JP 18231885 A JP18231885 A JP 18231885A JP S6242080 A JPS6242080 A JP S6242080A
Authority
JP
Japan
Prior art keywords
pulse
fish
attenuation
eggs
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60182318A
Other languages
Japanese (ja)
Inventor
Osamu Kato
修 加藤
Keisuke Yamane
山根 啓資
Masao Fujinaka
藤中 政雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyachi Systems Co Ltd
Original Assignee
Miyachi Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyachi Systems Co Ltd filed Critical Miyachi Systems Co Ltd
Priority to JP60182318A priority Critical patent/JPS6242080A/en
Publication of JPS6242080A publication Critical patent/JPS6242080A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

PURPOSE:To identify whether there are fish eggs or not stably with simple constitution by determining and deciding variation in attenuation characteristics due to a difference in organization structure among fish bodies on the basis of the waveform of a received ultrasonic pulse train. CONSTITUTION:The pulse train waveform of the 1st pulse reflected by fish and received by a receiving transducer 3 and many pulses which are reflected, delayed, and attenuated at the boundary between flesh and eggs, particle boundary parts of the eggs, etc., is written in a memory 11. The 1st pulse position detecting circuit 12 detects the propagation time of the 1st pulse from the storage contents of the memory 11 and an attenuation quantity calculating circuit 13 digitizes the quantity of attenuation of a received pulse train within a constant time after the 1st pulse. Then, the output numeral of the circuit 13 is normalized by a normalizing circuit 14 with the reciprocal of the propagation time sent out of the circuit 12 to determine the quantity of attenuation of the received ultrasonic wave train which varies according to the difference in organization structure among fish bodies which is not affected by the thickness of the eggs. This quantity of attenuation is compared with a threshold value and a decision circuit 15 identifies whether there are fish eggs or not with the simple constitution.

Description

【発明の詳細な説明】 〔概要〕 超音波パルスを送出する送信トランスデユーサと、この
送信トランスデユーサと対向する受信トランスデユーサ
の間に魚体を挿入し、魚体を伝播する超音波パルスが魚
体内で反射及び散乱することで、受信トランスデユーサ
に複数の超音波パルス系列が入力するが、この複数の超
音波パルス系列が形成する受信波形の減衰特性が、魚卵
の有無で相違するため、この減衰特性の特徴量を抽出し
、且つ魚体を伝播する超音波パルスの伝播時間により、
魚体の厚みに依存しない特徴量の数値を得て魚卵の有無
を検出する。
[Detailed Description of the Invention] [Summary] A fish body is inserted between a transmitting transducer that sends out ultrasonic pulses and a receiving transducer facing the transmitting transducer, and the ultrasonic pulses propagating through the fish body are Multiple ultrasonic pulse sequences are input to the receiving transducer by being reflected and scattered within the fish body, but the attenuation characteristics of the received waveform formed by these multiple ultrasonic pulse sequences differ depending on the presence or absence of fish eggs. Therefore, by extracting the feature quantity of this attenuation characteristic and the propagation time of the ultrasonic pulse propagating through the fish body,
The presence or absence of fish eggs is detected by obtaining numerical values of feature quantities that do not depend on the thickness of the fish body.

〔産業上の利用分野〕[Industrial application field]

本発明は魚体の腹部を透過する超音波パルスの伝播状態
により、魚卵の有無を検出する魚卵検出装置に係り、特
に超音波パルスが魚体を通過する伝播時間に基づき、こ
の超音波パルスが魚体中で反射されて生成されるパルス
系列の減衰特性を正規化することで、魚卵の検出を可能
とする魚卵検出装置に関する。
The present invention relates to a fish roe detection device that detects the presence or absence of fish eggs based on the propagation state of an ultrasonic pulse that passes through the abdomen of a fish. The present invention relates to a fish roe detection device that makes it possible to detect fish eggs by normalizing the attenuation characteristics of a pulse sequence generated by being reflected in a fish body.

水産業界においては、捕獲した魚から卵を取り出し、例
えば鱈子とか筋子等として販売している。
In the fisheries industry, eggs are removed from captured fish and sold as cod roe, shiko, etc.

従って捕獲した魚の雌雄を判別する必要があり、魚卵の
有無を簡易な方法で検出し得ることが望まれている。
Therefore, it is necessary to determine the sex of captured fish, and it is desired to be able to detect the presence or absence of fish eggs using a simple method.

〔従来の技術〕[Conventional technology]

従来、魚卵の有無を検出するためには、魚体の腹部を切
開して目視により魚卵の確認を行うか、魚体の非破壊魚
卵検出方法として、超音波ホログラム画像による識別に
基づき、魚卵の有無を検出する方法が検討されている。
Conventionally, in order to detect the presence or absence of fish eggs, the abdomen of the fish was incised and the fish eggs were visually confirmed. Methods to detect the presence or absence of eggs are being considered.

(魚介類の雌雄判別方法、特開昭54−29797号及
び特開昭57−37387号) 〔発明が解決しようとする問題点〕 魚体の腹部を切開する方法は、魚体に損傷を与えること
、及び魚卵の有無の検出を人手で行うため、処理時間と
労力を必要とするという問題がある。
(Method for determining the sex of fish and shellfish, JP-A-54-29797 and JP-A-57-37387) [Problems to be solved by the invention] The method of incising the abdomen of a fish does not damage the fish; Also, since the presence or absence of fish eggs is detected manually, there is a problem in that processing time and labor are required.

又超音波ホログラム画像による識別は、魚体を水中に介
在させる必要があるため、専用の水槽が必要となること
、及び画像処理が必要なため、二次元画像メモリ等が必
要となる等により、システムの規模が大きく、実用的で
ないという問題がある。
In addition, identification using ultrasonic hologram images requires the fish body to be placed in the water, which requires a dedicated aquarium, and image processing, which requires two-dimensional image memory, etc., making the system difficult to identify. The problem is that the scale of the project is large and it is not practical.

本発明はこのような問題点に鑑み、魚体Mi織を超音波
パルスが伝播する時、m織構造の違いにより反射されて
生成されるパルス系列の減衰特性に差のあることを利用
し、超音波パルスの受信波形から、魚卵の有無の識別に
安定な特徴量を抽出する比較的簡単な構成の魚卵検出装
置を提供することを目的としている。
In view of these problems, the present invention takes advantage of the fact that when an ultrasonic pulse propagates through the Mi weave of a fish body, there are differences in the attenuation characteristics of the pulse series that are reflected and generated due to differences in the M weave structure. It is an object of the present invention to provide a fish roe detection device with a relatively simple configuration that extracts stable feature quantities for identifying the presence or absence of fish eggs from the received waveform of a sound wave pulse.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理ブロック図である。 FIG. 1 is a block diagram of the principle of the present invention.

送信トランスデユーサ2と受信トランスデユーサ3は中
心軸を合わせ、この間に魚体の腹部7を挿入する。
The transmitting transducer 2 and the receiving transducer 3 have their central axes aligned, and the abdomen 7 of the fish body is inserted between them.

パルス発生回路lは電気パルスを一定間隔で繰り返し送
出し、この電気パルスは送信トランスデユーサ2と判定
部5に送出される。この電気パルスは送信トランスデユ
ーサ2で超音波パルスに変換され、魚体の腹部7に送出
される。 この超音波パルスは肉8と魚卵9を透過し、
受信トランスデユーサ3により受信され、電気信号に変
換されて受信増幅器4に入り、ここで増幅された受信波
形は判定部5に送出される。
The pulse generating circuit 1 repeatedly sends out electric pulses at regular intervals, and these electric pulses are sent to the transmitting transducer 2 and the determining section 5. This electric pulse is converted into an ultrasonic pulse by the transmitting transducer 2 and sent to the abdomen 7 of the fish body. This ultrasonic pulse passes through meat 8 and fish eggs 9,
The received waveform is received by the receiving transducer 3, converted into an electrical signal, and input to the receiving amplifier 4, where the received waveform is amplified and sent to the determining section 5.

送信トランスデユーサ2により腹部7に送出された超音
波パルスは、肉8及び魚卵9で減衰した最初のパルスと
、肉8及び魚卵9の生体組織の変化点で反射し、遅延す
ると共に減衰した複数のパルスとに分かれて受信トラン
スデユーサ3に受信される。
The ultrasonic pulse sent to the abdomen 7 by the transmitting transducer 2 is reflected at the first pulse attenuated by the meat 8 and the fish roe 9 and at the change point of the biological tissue of the meat 8 and the fish roe 9, and is delayed and The signal is divided into a plurality of attenuated pulses and received by the receiving transducer 3.

判定部5はパルス発生回路1の送出した電気パルスと、
受信増幅器4から入る超音波のパルス系列の最初に受信
された第1のパルスから、魚体の伝播時間を検出し、こ
の伝播時間に基づき、第1、のパルスに続き順次減衰す
ると共に遅延時間も順次長くなった複数のパルス系列の
減衰特性を正規化して、魚卵の有無を判定し、表示部6
に表示する構成とする。
The determination unit 5 uses the electric pulse sent out by the pulse generation circuit 1,
The propagation time of the fish body is detected from the first pulse received at the beginning of the ultrasonic pulse sequence input from the reception amplifier 4, and based on this propagation time, the pulse sequentially attenuates and the delay time is also determined following the first pulse. The attenuation characteristics of a plurality of sequentially longer pulse sequences are normalized, the presence or absence of fish eggs is determined, and the display unit 6
The configuration is such that it is displayed in

第2図は本発明の詳細な説明する図である。FIG. 2 is a diagram explaining the present invention in detail.

第2図(alは魚卵の有る魚を検査する場合を示す。FIG. 2 (al shows the case where fish with eggs are inspected.

送信トランスデユーサ2から送出された超音波パルスは
、矢印の如く生体組織が一様な部分では直進し、肉8と
魚卵9の境界や、魚卵9の各粒子の境界部分で一部は反
射又は散乱させられ、透過するエネルギーは減衰する。
The ultrasonic pulses sent out from the transmitting transducer 2 travel straight in areas where the biological tissue is uniform as shown by the arrow, and partially travel at the boundary between the meat 8 and the fish roe 9 or at the boundary between each particle of the fish roe 9. is reflected or scattered, and the transmitted energy is attenuated.

透過した超音波パルスは受信トランスデユーサ3で電気
信号に変換されるが、第2図fb)はこの受信信号の状
態を説明する図である。横軸を伝播時間t、縦軸を受信
信号の電圧■で表すと、最初に受信トランスデユーサ3
に到達する第1のパルス■は、腹部7の厚みに比例する
伝播時間1.を経て、第2図(blの■に示ず如く受信
トランスデューザ3に受信される。
The transmitted ultrasonic pulse is converted into an electrical signal by the receiving transducer 3, and FIG. 2 fb) is a diagram explaining the state of this received signal. If the horizontal axis is the propagation time t and the vertical axis is the voltage of the received signal, then first the receiving transducer 3
The first pulse ■ arriving at 1. has a propagation time 1. which is proportional to the thickness of the abdomen 7. After that, the signal is received by the receiving transducer 3 as shown in (■) in FIG. 2 (bl).

肉8と魚卵9の境界及び魚卵9の粒子により二度反射し
た超音波パルスが遅延し、第1のパルス■に続いて順次
複数受信されるが、魚卵粒子による散乱は大きいため、
受信パルスの減衰は大きく、遅延時間が長い程減衰最も
大きい。
The ultrasonic pulse reflected twice by the boundary between the meat 8 and the fish roe 9 and the particles of the fish roe 9 is delayed, and multiple pulses are received in sequence following the first pulse (■), but since the scattering by the fish roe particles is large,
The attenuation of the received pulse is large, and the longer the delay time, the greater the attenuation is.

第2図(C)は白子(雄)を検査する場合を示す。FIG. 2(C) shows a case where a milt (male) is examined.

送信トランスデユーサ2から送出された超音波パルスは
、矢印の如く生体組織が一様な部分で直進する。白子1
0は心太状の構造であるため、比較的散乱が少なく、第
2図[d)の■に示す如く、最初に到達する第1のパル
ス■は伝播時間t2を経て受信される。
The ultrasonic pulses sent out from the transmitting transducer 2 travel straight through areas where the living tissue is uniform, as shown by the arrow. Milt 1
Since pulse 0 has a thick core-like structure, there is relatively little scattering, and the first pulse ■ which arrives first is received after a propagation time t2, as shown by ■ in FIG. 2 [d].

第1のパルス■に続いて受信される二度反躬した複数の
超音波パルス系列は、白子10内での減衰が少なく、第
2図ib)とは異なる減衰特性を持っている。
The plurality of twice-repeated ultrasound pulse sequences received following the first pulse (2) are less attenuated within the milt 10 and have different attenuation characteristics from those in FIG. 2 ib).

ここでこの超音波パルス系列が形成する受信波形の減衰
特性を数量化することにより、魚卵の有無が判定出来る
。ところで、受信された超音波パルスの減衰量は魚の腹
部7の厚みに依存するため、この数値化L7た減衰特性
は魚の厚みで正規化する必要がある。
By quantifying the attenuation characteristics of the received waveform formed by this ultrasonic pulse sequence, the presence or absence of fish eggs can be determined. By the way, since the amount of attenuation of the received ultrasonic pulse depends on the thickness of the abdomen 7 of the fish, this numerical attenuation characteristic L7 needs to be normalized by the thickness of the fish.

超音波パルスの生体における伝播速度は略一定であると
いう性質から、前記時間1.及びむ2は腹部7の厚みに
比例する。従ってこの時間1.又はt2を抽出し、この
値で前記数値化した減衰特性を正規化すれば、魚の厚み
に依存しない数値を得ることが出来る。
Due to the property that the propagation velocity of an ultrasound pulse in a living body is approximately constant, the above-mentioned time 1. and 2 are proportional to the thickness of the abdomen 7. Therefore, this time 1. Alternatively, by extracting t2 and normalizing the numerically expressed attenuation characteristic with this value, it is possible to obtain a numerical value that does not depend on the thickness of the fish.

魚卵の有無はこの数値を一定の閾値と比較することで判
定出来る。即ち闇値より小さい時魚卵ありで、大きい時
は白子である。
The presence or absence of fish eggs can be determined by comparing this value with a certain threshold. That is, when it is smaller than the darkness value, there are fish eggs, and when it is larger than the darkness value, it is albino.

〔作用〕[Effect]

上記構成とすることにより、判定部5は受信した超音波
パルス系列が形成する受信波形の減衰特性を数値化し、
超音波パルスの伝播時間でこの数値を正規化することで
、魚体の厚みに無関係な値とし、一定の闇値より小さい
場合、魚卵がをると判定することが出来る。
With the above configuration, the determination unit 5 digitizes the attenuation characteristic of the received waveform formed by the received ultrasonic pulse sequence,
By normalizing this value with the propagation time of the ultrasonic pulse, it becomes a value that is independent of the thickness of the fish body, and if it is smaller than a certain darkness value, it can be determined that fish eggs are present.

〔実施例〕〔Example〕

第3図は本発明の一実施例を示す回路のブコノク図であ
る。
FIG. 3 is a block diagram of a circuit showing an embodiment of the present invention.

パルス発生回路l、送信l−ランスデューサ2、受信ト
ランスデユーサ3、受信増幅器4の動作は第1図と同様
である。判定部5のメモリ1)はパルス発生回路1の送
出するパルスで受信増幅器4の送出する受信波形の取込
みを開始する。
The operations of the pulse generating circuit 1, the transmitting transducer 2, the receiving transducer 3, and the receiving amplifier 4 are the same as in FIG. The memory 1) of the determining section 5 starts capturing the received waveform sent out by the receiving amplifier 4 using the pulse sent out by the pulse generating circuit 1.

第1パルス位置検出回路12はメモリ1)が記憶した受
信波形から、第1パルスの伝播時間、即ち第2図(bl
の伝播時間t1又は第2図(d)の伝播時間t2を検出
する。減衰量計算回路13は第1パルス以降の一定時間
内の受信パルス列における減衰量を数値化する。
The first pulse position detection circuit 12 determines the propagation time of the first pulse from the received waveform stored in the memory 1), that is, as shown in FIG.
The propagation time t1 in FIG. 2(d) or the propagation time t2 in FIG. 2(d) is detected. The attenuation amount calculation circuit 13 digitizes the amount of attenuation in the received pulse train within a certain period of time after the first pulse.

即ち第2図fb)又はfdlの点線で示す包路線に基づ
き、減衰量を計算して数値化する。正規化回路14は第
1パルス位置検出回路12の送出する伝播時間の逆数で
、減衰量計算回路13が送出する数値を正規化し、魚体
の厚みに依存しない正規化減衰量を計算する。
That is, the amount of attenuation is calculated and quantified based on the envelope indicated by the dotted line fb) or fdl in FIG. The normalization circuit 14 normalizes the numerical value sent out by the attenuation calculation circuit 13 with the reciprocal of the propagation time sent out by the first pulse position detection circuit 12, and calculates a normalized attenuation amount that does not depend on the thickness of the fish body.

判定回路15は正規化回路14の送出する正規化減衰量
を一定の闇値と比較し、この閾値より小さい時魚卵あり
と判定し、表示部6に表示する。
The determination circuit 15 compares the normalized attenuation amount sent by the normalization circuit 14 with a certain darkness value, and when it is smaller than this threshold value, it determines that there is a fish roe and displays it on the display section 6.

又閾値より大きければ魚卵無しと判定し、表示部6に表
示する。
If it is larger than the threshold value, it is determined that there are no fish eggs, and the result is displayed on the display section 6.

C発明の効果〕 以上説明した如く、本発明は送受信トランスデユーサの
間に魚体を挿入し、観測した超音波パルス系列の減衰特
性から、比較的単純で安定した魚卵識別を可能とする数
値を得ることが可能なため、簡易で効率の良い魚卵検出
装置を提供出来る。
C. Effects of the invention] As explained above, the present invention inserts a fish body between the transmitting and receiving transducer, and from the attenuation characteristics of the observed ultrasonic pulse sequence, numerical values that enable relatively simple and stable identification of fish eggs are obtained. Therefore, it is possible to provide a simple and efficient fish roe detection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、 第2図は本発明の詳細な説明する図、 第3図は本発明の一実施例を示す回路のブロック図であ
る。 図において、 1はパルス発生回路、 2は送信トランスデユーサ、 3は受信トランスデユーサ、 4は受信増幅回路、 5は判定部、 6は表示部、     7は魚体の腹部、8は肉、  
     9は魚卵、 10は白子、      1)はメモリ、12は第1パ
ルス位置検出回路、 13は減衰量計算回路、14は正規化回路、15は判定
回路である。 本発U月の)#、理フ”口・ンク菌 填5 1  図 本発明の詳細な説明する図 第 2 閃
FIG. 1 is a block diagram of the principle of the present invention, FIG. 2 is a diagram illustrating the present invention in detail, and FIG. 3 is a block diagram of a circuit showing an embodiment of the present invention. In the figure, 1 is a pulse generation circuit, 2 is a transmitting transducer, 3 is a receiving transducer, 4 is a receiving amplifier circuit, 5 is a determination section, 6 is a display section, 7 is an abdomen of a fish body, 8 is a meat,
9 is a fish roe, 10 is a milt, 1) is a memory, 12 is a first pulse position detection circuit, 13 is an attenuation calculation circuit, 14 is a normalization circuit, and 15 is a determination circuit. Figure 5 1 Figure Detailed explanation of the present invention 2nd Flash

Claims (1)

【特許請求の範囲】 電気パルスを超音波パルスに変換し魚体の腹部に送出す
る送信トランスデューサ(2)と、該送信トランスデュ
ーサ(2)に対向し魚体の腹部を伝播した超音波パルス
を受信し、電気信号に変換する受信トランスデューサ(
3)と、 前記送信トランスデューサ(2)に電気パルスを送出す
るパルス発生回路(1)と、 該パルス発生回路(1)の送出する電気パルスと前記受
信トランスデューサ(3)が受信する超音波パルス系列
から、前記魚体の腹部の魚卵を検出する判定部(5)と
を備えてなり、 前記受信トランスデューサ(3)が受信した超音波パル
ス系列から得られる受信波形の減衰特性を抽出し、この
抽出した減衰特性の特徴量を、超音波パルスが魚体の腹
部を伝播する時間により、該腹部の厚みに無関係な数値
とすることで魚卵の有無を判定することを特徴とする魚
卵検出装置。
[Claims] A transmitting transducer (2) that converts an electric pulse into an ultrasonic pulse and sends it to the abdomen of a fish body; Receiving transducer (to convert into electrical signal)
3), a pulse generation circuit (1) that sends an electric pulse to the transmission transducer (2), and an ultrasonic pulse sequence that combines the electric pulse sent by the pulse generation circuit (1) and the ultrasonic pulse sequence received by the reception transducer (3). a determination unit (5) for detecting fish roe in the abdomen of the fish body; A fish roe detection device characterized in that the presence or absence of fish roe is determined by determining the characteristic amount of the attenuation characteristic to be a value unrelated to the thickness of the abdomen of the fish body, based on the time it takes for the ultrasonic pulse to propagate through the abdomen of the fish body.
JP60182318A 1985-08-20 1985-08-20 Fish egg detecting device Pending JPS6242080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60182318A JPS6242080A (en) 1985-08-20 1985-08-20 Fish egg detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60182318A JPS6242080A (en) 1985-08-20 1985-08-20 Fish egg detecting device

Publications (1)

Publication Number Publication Date
JPS6242080A true JPS6242080A (en) 1987-02-24

Family

ID=16116206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60182318A Pending JPS6242080A (en) 1985-08-20 1985-08-20 Fish egg detecting device

Country Status (1)

Country Link
JP (1) JPS6242080A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022277A (en) * 2007-06-20 2009-02-05 Hamamatsu Photonics Kk Device for determining fish sex and method for determining fish sex

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429797A (en) * 1977-08-02 1979-03-05 Fuji Electric Co Ltd Male and female distinguishing of fish and shellfish
JPS6035253A (en) * 1983-08-01 1985-02-23 Nippon Steel Corp Method for measuring diameter of crystal grain by ultrasonic wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429797A (en) * 1977-08-02 1979-03-05 Fuji Electric Co Ltd Male and female distinguishing of fish and shellfish
JPS6035253A (en) * 1983-08-01 1985-02-23 Nippon Steel Corp Method for measuring diameter of crystal grain by ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022277A (en) * 2007-06-20 2009-02-05 Hamamatsu Photonics Kk Device for determining fish sex and method for determining fish sex

Similar Documents

Publication Publication Date Title
Lawson et al. Species identification of pelagic fish schools on the South African continental shelf using acoustic descriptors and ancillary information
Lammers et al. The spatial context of free-ranging Hawaiian spinner dolphins (Stenella longirostris) producing acoustic signals
US4817015A (en) High speed texture discriminator for ultrasonic imaging
EP2383584B1 (en) Method and device for detecting ultrasound wave, and method and device for detecting school of fish
AU2008327744B2 (en) Real-time robust method for determining the trajectory of one or more cetaceans by means of passive acoustics, using a laptop computer
DE59103375D1 (en) METHOD FOR MEASURING THE DURATION OF ULTRASONIC IN THE IMPULSE REFLECTION METHOD.
US20070110291A1 (en) Image processing system and method for editing contours of a target object using multiple sectional images
US6167759B1 (en) Ultrasonic system for grading meat
Stanton 30 years of advances in active bioacoustics: A personal perspective
Puig-Pons et al. Automatic Bluefin Tuna (Thunnus thynnus) biomass estimation during transfers using acoustic and computer vision techniques
Foote Correcting acoustic measurements of scatterer density for extinction
De Freitas et al. Echolocation parameters of Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the wild
EP1796037A2 (en) Image processing system and method for controlling gains for color flow images
Kimura et al. Apparent source level of free-ranging humpback dolphin, Sousa chinensis, in the South China Sea
Puig-Pons et al. Estimation of Bluefin Tuna (Thunnus thynnus) mean length in sea cages by acoustical means
Jech Interpretation of multi-frequency acoustic data: effects of fish orientation
US4452085A (en) Method and means for generating time gain compensation control signal for use in ultrasonic scanner and the like
JPS6242080A (en) Fish egg detecting device
Lilja et al. Simulation and experimental measurement of side-aspect target strength of Atlantic salmon (Salmo salar) at high frequency
Aubauer et al. Classification of electronically generated phantom targets by an Atlantic bottlenose dolphin (Tursiops truncatus)
JPS62138749A (en) Incubation detector for fish
De Robertis Validation of acoustic echo counting for studies of zooplankton behavior
JP2013174473A (en) Underwater detection device and program
André et al. Cetacean biosonar and noise pollution
Muller et al. Phantom echo highlight amplitude and temporal difference resolutions of an echolocating dolphin, Tursiops truncatus