JPS6237686B2 - - Google Patents

Info

Publication number
JPS6237686B2
JPS6237686B2 JP57157319A JP15731982A JPS6237686B2 JP S6237686 B2 JPS6237686 B2 JP S6237686B2 JP 57157319 A JP57157319 A JP 57157319A JP 15731982 A JP15731982 A JP 15731982A JP S6237686 B2 JPS6237686 B2 JP S6237686B2
Authority
JP
Japan
Prior art keywords
chromium
flux
dephosphorization
slag
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57157319A
Other languages
Japanese (ja)
Other versions
JPS5947316A (en
Inventor
Kenichi Kamegawa
Takeyoshi Sakane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57157319A priority Critical patent/JPS5947316A/en
Publication of JPS5947316A publication Critical patent/JPS5947316A/en
Publication of JPS6237686B2 publication Critical patent/JPS6237686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、クロムを含む溶融鉄合金の脱燐・
脱硫方法に関するものである。 一般に、高クロム鋼あるいはステンレス鋼中の
燐(P)は、鋼の機械的性質や応力腐食割れに悪
影響を及ぼす有害不純物であることが知られてお
り、このため、最近では原子力発電用パイプ材を
はじめとしてPに対して厳しい規制をとる鋼種が
増加する傾向にある。しかしながら、このような
クロムを含む溶融鉄合金の脱燐は、通常の鉄合金
に採用されている方法、即ちCaO―FeO系フラツ
クスや生石灰等を添加して酸素吹精するという強
い酸化精錬を適用しても、クロムが優先的に多量
に酸化されるのみでスラグが硬化しPの酸化が進
行しにくいということからほとんど不可能とされ
ており、低燐ステンレス鋼の製造には専ら高価な
低燐合金鉄の使用で対処するのが普通であつた。 このようなことから、従来、クロムを含む溶融
鉄合金を効率良く脱燐することを目的として、 エレクトロスラグ再溶融法にて、Ca−CaF2
系フラツクスを用いて脱燐する方法、 取鍋内で、CaC2−CaF2系フラツクスを用い
て脱燐する方法、 等が試みられていた。 この両者の方法とも、Caで脱燐を行うもので
あり、脱燐反応としては、 3(Ca)+2→(Ca3P2) で表わされる還元脱燐であつて、後者は、 CaC2+Ca+2 というCaC2の分解反応によつて生ずるCaを利用
したものである。 しかしながら、これらのいずれの方法を採用し
ても、脱燐処理後のスラグ中にCa3P2が存在する
ことになり、これが、 Ca3P2+3H2O→3CaO+2PH3 で示されるように、大気中のH2Oと反応し、にん
にく臭の強い有毒なフオスフイン(PH3)を発生
するという問題があり、脱燐後のスラグ処理に大
きな問題を残すものであつた。 そこで、本出願人は、先に、上述のような観点
に立つて見出された「クロムを3〜30重量%程度
含む脱炭前の溶融鉄合金に、酸化剤によつて酸化
されたP2O5を固定するためのCaOやBaOのよう
なアルカリ土類金属の酸化物と、媒溶剤としての
CaCl2、BaCl2、あるいはBaF2のようなアルカリ
土類金属のハロゲン化物とから成るフラツクスを
添加し、さらに、酸化剤を添加すると、前記クロ
ム含有鉄合金中のPが有効に除去され、同時に、
この高塩基性で比較的低い酸素ポテンシヤルのス
ラグにより脱硫も良好に進行する」という新しい
知見に基づいたところの、「鉄合金溶湯に、アル
カリ土類金属の酸化物とアルカリ土類金属のハロ
ゲン化物とで構成されるフラツクスを添加し、さ
らに所定量の酸化剤を添加することによつて、有
害スラグの発生を伴なうことなくクロム含有鉄合
金溶湯を脱燐・脱硫する方法」を、特願昭57―
33549号(特開昭58―151416号公報)として提案
した。 しかしながら、先に提案した前記特願昭57―
33549号(特開昭58−151416号公報)の方法で
は、確かに、従来試みられた還元脱燐法のような
格別のスラグ処理を必要とすることなく、クロム
含有鉄合金溶湯の脱燐・脱硫を達成することがで
きるけれども、処理対象溶湯によつては、まま、
脱燐・脱硫能率が極端に低下する場合のあること
が、その後の検討によつて明らかとなつたのであ
る。 本発明者等は、上述のような事項をふまえて、
先に提案の方法における脱燐・脱硫能率低下の原
因を究明し、有害スラグの発生を伴なわず、しか
も処理対象溶湯が変わつても脱燐・脱硫能率に変
化を来たすことのない、安定確実なクロム含有鉄
合金溶湯の脱燐・脱硫方法を見出すべく研究を重
ねた結果、 (a) 処理対象のクロム含有溶融鉄合金を構成する
元素のうち、クロムより酸素との親和力の強い
Siのような元素が多く存在すると、これがフラ
ツクスの酸素を消費し、生成したSiO2による
アルカリ土類金属酸化物の活量低下に対して、
当初認識されていた以上に大きな影響を与え、
第1図からも明らかなように、SiO2量が多く
なるに従つて脱燐能率が極端に低下すること。
なお、第1図は、スラグと鋼との燐分配比:
(P)/〔P〕と、(BaO)/(SiO2)との関係
を示す線図である。 (b) そして、通常の溶鉄中では、酸素との親和力
がクロムより強く、しかも含有量のとびぬけて
多い元素であるSiを所定量以下に抑えてさえお
けば、脱燐・脱硫処理において反応能率が低下
するのを確実に防止できること、 (c) 鉄合金の溶解、脱珪、及び脱燐・脱硫処理を
1つの電気炉中にて実施することによつて、高
品質クロム含有鋼の量産が極めて容易になるこ
と、 以上(a)〜(c)に示す如き確認を得るに至つたので
ある。 この発明は、上記の如き研究結果に基づいてな
されたものであつて、電気炉中において、溶鉄中
のSi含有量が0.20重量%以下となるように鉄合金
溶湯を予め脱珪処理し、除滓した後、該溶湯に、 アルカリ土類金属の酸化物の1種以上:30〜50
重量%、 アルカリ土類金属のハロゲン化物の1種以上:
残り、 とから成るフラツクスを添加するとともに、これ
らを撹拌しながらさらに添加剤を添加し、生成し
たスラグを除去することによつて、面倒な操作を
要することなくクロム含有鉄合金中のP及びS分
を、高能率で確実に除去するようにしたことに特
徴を有するものである。 この発明の方法において、脱珪処理の際にSi含
有量を特に0.20重量%以下と定めたのは、Si含有
量が0.20重量%を越えていると、前記したように
フラツクスのアルカリ土類金属酸化物の活量を低
下する度合が激しくなつて、脱燐・脱硫処理の効
率が悪くなるからであり、できれば0.10重量%以
下とすることが好適である。 そして、この脱珪処理としては、例えば、 ランスを用いて酸素ガスを吹込む方法、 スケール等の適当な酸化剤を添加する方法、 装入石灰を増加して塩基度を高める方法、 等を採用して実施することができる。 このような脱珪処理を施した後、脱燐・脱硫処
理の前に除滓を行う必要があるが、その理由を以
下に説明する。 通常、フラツクス中には各種の不純物が含まれ
ているが、この発明の方法において使用するフラ
ツクスの場合には、酸化鉄のようなクロム酸化物
より酸化力の強いものが含まれているとクロムを
酸化してしまうために、できるだけ低く(好適に
は全くフラツクスの5重量%以下に)抑えること
が必要であることはもちろんであるが、基本的に
は問題がないはずのクロム酸化物よりも酸化力の
弱い酸化物であつても、SiO2やAl2O3のような酸
性あるいは中性酸化物の場合にはスラグの塩基度
を低下させ、前述の第1図からも明らかなように
P2O5の安定化を阻害することとなる。そこで、
これらの不純物を全フラツクスの20重量%程度に
抑えて、前記不都合を生じないようにするため
に、脱燐フラツクスを添加する前には除滓工程が
必要となるのである。 塩基性物質としてのアルカリ土類金属の酸化物
としては、BaO,CaO,MgO,SrOのいずれであ
つても良いが、P2O5の安定化力や価格の面から
考慮すればBaOが最も適している。また、酸化剤
によつて酸化された燐、即ちP2O5を固定するた
めには、アルカリ土類金属酸化物の量が多い程
P2O5が安定化されやすくなるので好ましく、そ
の量が全フラツクスの30重量%未満ではP2O5
安定化が極めて悪くなり、一方、50重量%を越え
るとフラツクスが滓化しなくなる。従つて、フラ
ツクスが容易に滓化し、低い粘性で効果的な脱燐
を行うためには、アルカリ土類金属の酸化物量を
全フラツクスの30〜50重量%としなければならな
い。 アルカリ土類金属の酸化物は高融点であるの
で、これらを効果的に反応に寄与させるために
は、その塩基性能力を低下させることなく溶融さ
せるための媒溶剤を使用する必要がある。 この媒溶剤としては、塩基性物質と同族のアル
カリ土類金属のハロゲン化物が適しており、中で
もBaCl2,BaF2,CaCl2,CaF2等の塩化物やフツ
化物が一般的であつて、良好な結果が得られる。
そして、この媒溶剤は、例えばBaOを酸化物とし
て選択した場合には、BaCl2やBaF2といつた同じ
アルカリ土類金属の化合物が好ましい。 添加するフラツクス量は、多ければ多いほど脱
燐・脱硫効果があるが、処理時の作業性の問題か
ら、溶鉄トン当り300Kg以下で使用するのが良
く、それ以上のフラツクス量を使用しようとする
ならば、昇熱を行つて、2回あるいは3回処理を
行う必要がある。 使用する酸化剤としては、クロム酸化物、クロ
ム鉱石、酸化鉄、酸化モリブデン、酸化ニツケ
ル、酸化マンガン、あるいは酸素や空気等の酸化
性ガスの1種以上があげられるが、酸化剤として
クロム酸化物を使用すると、これはその酸化力が
あまり大きくないのでスラグを極端に硬化するこ
とがなく、また酸化剤として働いたクロム酸化物
は還元されてクロムとなるため、実質的なクロム
のロスを生じないということから、クロム酸化物
が最も好ましい酸化剤として推奨できる。 酸化剤の添加量は、生成するスラグが硬化する
ことのない程度の量に抑えることが効果的な脱
燐・脱硫のために重要なことである。なぜなら、
添加された酸化剤は、溶鉄中のPよりもCrを優
先的に酸化し、一部、FeやCを酸化するが、こ
のCrの酸化物は比較的高融点(例えば、Cr2O3
1990℃)であるので、その量が、添加したフラツ
クスによつて生成したスラグに溶解し得る(溶解
度)を越えると、該スラグは硬化してしまつて脱
燐反応が物理的に進行しなくなるからである。 そして、さらに効果的に脱燐・脱硫を行うため
には、酸化剤をフラツクスとともに一度に添加せ
ず、まず、BaOやBaCl2等を主成分とする混合あ
るいは合成フラツクスを添加し、撹拌しながらで
きるだけ粘性の小さいスラグを得、これに酸化剤
の小量ずつを徐々に、連続的または半連続的、あ
るいは断続的な添加状態で添加するのが良い。 撹拌方法としては、電気炉中で、アーク、スタ
ーラー、あるいは不活性ガス吹込み等、如何なる
方法でも採用することができ、このような撹拌に
よつて良好な反応速度を得ることができるのであ
る。 この発明の方法において、フラツクス成分であ
るアルカリ土類金属の酸化剤の代りに、BaCO3
のようなアルカリ土類金属の炭酸化塩を代替物と
して用いることもできる。なぜなら、アルカリ土
類金属の炭酸塩を対象とする溶融鉄合金に添加す
ると、これらが、 BaCO3→BaO+CO2 のように分解して、アルカリ土類金属の酸化物と
なるからである。そして、この場合には、発生す
るCO2ガスが酸化剤として重要な役割を果すの
で、酸化剤を使用しなくても脱燐・脱硫反応が進
行し、撹拌のみで所望の脱燐・脱硫処理を終了す
ることができる。 アルカリ土類金属炭酸塩を用いる場合は、CO2
ガスとしての分解量を考慮して、生成されるアル
カリ土類金属酸化物量が全フラツクスの30〜50重
量%となるように添加すれば、アルカリ土類金属
酸化物を使用した場合と同様の効果が得られる。 そのほか、脱燐・脱硫処理後にスラグが残存す
ると、復燐の原因となるので、これらの処理の後
の除滓工程も、この発明の方法においては欠くこ
とのできないものである。 以上述べたような本発明方法によつて脱燐・脱
硫されたクロム含有鉄合金溶湯を、ついで、その
まま通常の電気炉精錬に付して脱炭等の処理を施
せば、所望の高品質鋼を得ることができるのであ
る。 ついで、この発明を実施例によつて具体的に説
明する。 実施例 1 第1表に示す通りの成分組成を有するクロムを
含む鉄合金を、電気炉にて溶解し、ついで通常の
方法で脱珪して同じく第1表に示すような成分組
成の溶鉄を得た。生成したスラグを除滓した後、
同じ電気炉内にて引続き、1500℃の温度にて、
BaO:40重量%、BaCl2:60重量%から成る焼結
フラツクスを60Kg/tonの量で添加し、アークで
撹拌しながら、40Kg/tonのCr2O3を1Kg/tonず
つ分投し、この処理を30分続けた。このときの溶
鉄成分も第1表に併せて示した。 第1表に示される結果からも、脱燐・脱硫処理
の前後において、クロム成分に変化なく、32%の
脱燐と92%の脱硫を達成できたことが明らかであ
る。そして、同時に、73%の脱バナジウムが進行
したこともわかる。
This invention aims to dephosphorize and dephosphorize molten iron alloys containing chromium.
It relates to a desulfurization method. In general, phosphorus (P) in high chromium steel or stainless steel is known to be a harmful impurity that adversely affects the mechanical properties and stress corrosion cracking of steel. The number of steel types that have strict regulations regarding P, including P, is increasing. However, dephosphorization of such chromium-containing molten iron alloys requires the use of the method used for ordinary iron alloys, i.e., strong oxidation refining in which CaO-FeO fluxes, quicklime, etc. are added and oxygen blowing is carried out. However, it is considered almost impossible to produce low-phosphorus stainless steel because only a large amount of chromium is preferentially oxidized, hardening the slag, and making it difficult for oxidation of P to progress. The usual solution was to use ferrophosphorous alloys. For this reason, conventionally, with the aim of efficiently dephosphorizing molten iron alloys containing chromium, Ca-CaF 2 was produced using the electroslag remelting method.
Attempts have been made to dephosphorize using a CaC 2 -CaF 2 flux in a ladle. Both of these methods perform dephosphorization with Ca, and the dephosphorization reaction is reductive dephosphorization expressed as 3(Ca) + 2 P → (Ca 3 P 2 ), and the latter is CaC 2 +Ca+ 2C , which is produced by the decomposition reaction of CaC 2 , is used. However, no matter which of these methods is adopted, Ca 3 P 2 will be present in the slag after dephosphorization treatment, and as shown by Ca 3 P 2 + 3H 2 O → 3CaO + 2PH 3 , There is a problem in that it reacts with H 2 O in the atmosphere and generates toxic phosphin (PH 3 ) with a strong garlic odor, which poses a major problem in slag treatment after dephosphorization. Therefore, the present applicant previously discovered from the above-mentioned point of view that ``a molten iron alloy containing about 3 to 30% by weight of chromium before decarburization contains P oxidized by an oxidizing agent.'' 2 Alkaline earth metal oxides such as CaO and BaO to fix O 5 and as a solvent
By adding a flux consisting of an alkaline earth metal halide such as CaCl 2 , BaCl 2 , or BaF 2 and further adding an oxidizing agent, P in the chromium-containing iron alloy can be effectively removed. ,
Based on the new knowledge that desulfurization progresses well with this highly basic slag with a relatively low oxygen potential, it was discovered that alkaline earth metal oxides and alkaline earth metal halides were added to the molten iron alloy. A method for dephosphorizing and desulfurizing chromium-containing molten iron alloys without generating harmful slag by adding a flux consisting of Gansho 57-
It was proposed as No. 33549 (Japanese Unexamined Patent Publication No. 151416/1983). However, the aforementioned patent application filed in 1983--
The method of No. 33549 (Japanese Unexamined Patent Publication No. 151416/1983) does not require any special slag treatment like the conventional reduction dephosphorization method, and it is possible to dephosphorize and dephosphorize chromium-containing iron alloy molten metal. Although desulfurization can be achieved, depending on the molten metal being treated,
Subsequent studies revealed that dephosphorization and desulfurization efficiency may be extremely reduced. Based on the above-mentioned matters, the present inventors,
First, we investigated the cause of the decrease in dephosphorization and desulfurization efficiency in the proposed method, and found that it is a stable and reliable method that does not generate harmful slag and does not cause changes in dephosphorization and desulfurization efficiency even if the molten metal to be treated changes. As a result of repeated research to find a method for dephosphorizing and desulfurizing chromium-containing molten iron alloy, we found that (a) among the elements that make up the chromium-containing molten iron alloy to be treated, chromium has a stronger affinity for oxygen than chromium;
When there is a large amount of elements such as Si, this consumes oxygen in the flux, and the generated SiO 2 reduces the activity of alkaline earth metal oxides.
had a greater impact than was initially realized,
As is clear from Figure 1, as the amount of SiO 2 increases, the dephosphorization efficiency decreases extremely.
In addition, Figure 1 shows the phosphorus distribution ratio between slag and steel:
FIG. 2 is a diagram showing the relationship between (P)/[P] and (BaO)/(SiO 2 ). (b) In normal molten iron, as long as Si, which has a stronger affinity with oxygen than chromium and is by far the most abundant element, is kept below a certain amount, the reaction efficiency in dephosphorization and desulfurization treatment can be improved. (c) Mass production of high-quality chromium-containing steel is possible by performing melting of iron alloy, desiliconization, and dephosphorization/desulfurization treatment in one electric furnace. We have come to the confirmation as shown in (a) to (c) above that this becomes extremely easy. This invention was made based on the above research results, and the molten iron alloy is preliminarily desiliconized in an electric furnace so that the Si content in the molten iron is 0.20% by weight or less. After slaging, add one or more alkaline earth metal oxides to the molten metal: 30 to 50
Weight %, one or more alkaline earth metal halides:
P and S in the chromium-containing iron alloy can be removed without the need for troublesome operations by adding a flux consisting of the remainder, and adding additives while stirring them, and removing the generated slag. This method is characterized by the fact that it removes the components reliably and with high efficiency. In the method of this invention, the Si content is specifically set at 0.20% by weight or less during the desiliconization treatment because if the Si content exceeds 0.20% by weight, alkaline earth metals in the flux will be removed. This is because the degree of reduction in the activity of the oxide becomes severe and the efficiency of dephosphorization and desulfurization treatment deteriorates, so it is preferable to keep the content to 0.10% by weight or less if possible. For this desiliconization treatment, for example, a method of blowing oxygen gas using a lance, a method of adding an appropriate oxidizing agent such as scale, a method of increasing basicity by increasing the amount of lime charged, etc. are adopted. It can be implemented by After performing such desiliconization treatment, it is necessary to remove slag before dephosphorization and desulfurization treatment, and the reason for this will be explained below. Normally, flux contains various impurities, but in the case of the flux used in the method of this invention, it is said that the flux used in the method of this invention contains substances such as iron oxide, which have a stronger oxidizing power than chromium oxide. It goes without saying that it is necessary to keep the flux as low as possible (preferably below 5% by weight of the flux) because it oxidizes chromium oxide, but it is also necessary to keep it as low as possible (preferably below 5% by weight of the flux), but it is more important than chromium oxide, which should basically have no problems. Even if the oxide has weak oxidizing power, acidic or neutral oxides such as SiO 2 and Al 2 O 3 reduce the basicity of the slag, as is clear from Figure 1 above.
This will inhibit the stabilization of P 2 O 5 . Therefore,
In order to suppress these impurities to about 20% by weight of the total flux and prevent the above-mentioned disadvantages, a slag removal step is required before adding the dephosphorized flux. The alkaline earth metal oxide used as a basic substance may be BaO, CaO, MgO, or SrO, but BaO is the most suitable from the viewpoint of stabilizing power of P 2 O 5 and price. Are suitable. In addition, in order to fix phosphorus oxidized by an oxidizing agent, that is, P 2 O 5 , the larger the amount of alkaline earth metal oxide, the more
This is preferable because P 2 O 5 is easily stabilized. If the amount is less than 30% by weight of the total flux, stabilization of P 2 O 5 becomes extremely poor, while if it exceeds 50% by weight, the flux will not become slag. Therefore, in order for the flux to easily sludge and to perform effective dephosphorization with low viscosity, the amount of alkaline earth metal oxide must be 30 to 50% by weight of the total flux. Since alkaline earth metal oxides have high melting points, in order to make them effectively contribute to the reaction, it is necessary to use a solvent to melt them without reducing their basic ability. As this solvent, halides of alkaline earth metals in the same group as the basic substance are suitable, and among them, chlorides and fluorides such as BaCl 2 , BaF 2 , CaCl 2 , CaF 2 are common; Good results are obtained.
When BaO is selected as the oxide, the solvent is preferably a compound of the same alkaline earth metal such as BaCl 2 or BaF 2 . The greater the amount of flux added, the more effective it is for dephosphorization and desulfurization, but due to workability issues during processing, it is best to use less than 300 kg per ton of molten iron, and it is recommended to use a larger amount of flux. In that case, it is necessary to increase the temperature and perform the treatment two or three times. The oxidizing agent used includes one or more of chromium oxide, chromium ore, iron oxide, molybdenum oxide, nickel oxide, manganese oxide, or oxidizing gases such as oxygen and air. When using chromium, the oxidizing power is not so great that it does not harden the slag excessively, and the chromium oxide that acts as an oxidizing agent is reduced to chromium, resulting in substantial loss of chromium. Therefore, chromium oxide can be recommended as the most preferable oxidizing agent. It is important for effective dephosphorization and desulfurization to suppress the amount of oxidizing agent added to an amount that does not harden the generated slag. because,
The added oxidizing agent preferentially oxidizes Cr over P in the molten iron, and partially oxidizes Fe and C, but this Cr oxide has a relatively high melting point (for example, Cr 2 O 3
1990℃), so if the amount exceeds the amount that can be dissolved in the slag produced by the added flux (solubility), the slag will harden and the dephosphorization reaction will not physically proceed. It is. In order to perform dephosphorization and desulfurization even more effectively, instead of adding the oxidizing agent together with the flux all at once, first add a mixed or synthetic flux containing BaO, BaCl2, etc. as the main components, and then add the flux while stirring. It is preferable to obtain a slag with as low a viscosity as possible and to add the oxidizing agent in small amounts gradually, continuously, semi-continuously, or intermittently. Any stirring method can be used in an electric furnace, such as an arc, a stirrer, or inert gas injection, and a good reaction rate can be obtained by such stirring. In the method of this invention, BaCO 3 is used instead of the alkaline earth metal oxidizing agent as a flux component.
Alkaline earth metal carbonates such as alkaline earth metal carbonates can also be used as an alternative. This is because when alkaline earth metal carbonates are added to the target molten iron alloy, they decompose as BaCO 3 →BaO+CO 2 and become alkaline earth metal oxides. In this case, the generated CO 2 gas plays an important role as an oxidizing agent, so the dephosphorization/desulfurization reaction proceeds without using an oxidizing agent, and the desired dephosphorization/desulfurization treatment can be achieved with just stirring. can be terminated. When using alkaline earth metal carbonates, CO 2
If the amount of alkaline earth metal oxides produced is 30 to 50% by weight of the total flux, considering the amount of decomposition as a gas, the same effect as using alkaline earth metal oxides can be obtained. is obtained. In addition, if slag remains after dephosphorization and desulfurization treatments, it will cause rephosphorization, so a slag removal step after these treatments is also indispensable in the method of the present invention. If the chromium-containing iron alloy molten metal that has been dephosphorized and desulfurized by the method of the present invention as described above is then directly subjected to ordinary electric furnace refining for decarburization and other treatments, the desired high-quality steel can be obtained. can be obtained. Next, the present invention will be specifically explained with reference to Examples. Example 1 A chromium-containing iron alloy having a composition as shown in Table 1 is melted in an electric furnace, and then desiliconized by a conventional method to obtain molten iron having a composition as shown in Table 1. Obtained. After removing the generated slag,
Continuing in the same electric furnace at a temperature of 1500℃,
A sintered flux consisting of BaO: 40% by weight and BaCl 2 : 60% by weight was added in an amount of 60Kg/ton, and while stirring with an arc, 40Kg/ton of Cr 2 O 3 was dispensed in 1Kg/ton portions. This treatment continued for 30 minutes. The molten iron components at this time are also shown in Table 1. From the results shown in Table 1, it is clear that 32% dephosphorization and 92% desulfurization were achieved without any change in the chromium content before and after the dephosphorization/desulfurization treatment. At the same time, it can be seen that 73% of vanadium removal has progressed.

【表】 実施例 2 まず、クロムを含む鉄合金を用意し、これを電
気炉にて溶解後、引続いて同炉内で通常の方法で
脱珪し、第2表に示されるような成分組成の溶融
鉄合金を得た。生成したスラグを除滓した後、同
じ電気炉内にて、1570℃の温度下で、BaCO3
50重量%、BaCl2:50重量%から成るフラツク
ス:85Kg/tonを添加し、ランスよりArガスを吹
込んで10分間の撹拌を続けた。その後の溶鉄成分
組成を第2表に併せて示した。
[Table] Example 2 First, an iron alloy containing chromium is prepared, melted in an electric furnace, and then desiliconized in the same furnace by a normal method to obtain the components shown in Table 2. A molten iron alloy of the composition was obtained. After removing the generated slag, BaCO 3 :
A flux consisting of 50% by weight and 50% by weight of BaCl 2 was added at 85 kg/ton, and stirring was continued for 10 minutes by blowing Ar gas through a lance. The subsequent molten iron component composition is also shown in Table 2.

【表】 第2表に示される結果からも、脱燐・脱硫処理
の前後において、クロム成分にほとんど変化な
く、42%の脱燐と92%の脱硫が達成でき、同時に
88%の脱バナジウムも進行したことが明らかであ
る。 上述のように、この発明によれば、有害なスラ
グを生ずることもなく、簡単かつ安価に、しかも
高効率で、クロムを含む溶融鉄合金の脱燐及び脱
硫を行うことができ、高品質の高クロム鋼やステ
ンレス鋼を手軽に製造することができるなど、工
業上有用な効果がもたらされるのである。
[Table] From the results shown in Table 2, 42% dephosphorization and 92% desulfurization can be achieved with almost no change in the chromium content before and after dephosphorization/desulfurization treatment.
It is clear that 88% vanadium removal has also progressed. As described above, according to the present invention, it is possible to easily and inexpensively dephosphorize and desulfurize a molten iron alloy containing chromium without producing harmful slag, and with high efficiency, resulting in a high-quality product. This brings about industrially useful effects, such as the ability to easily produce high-chromium steel and stainless steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、溶鉄とスラグの燐分配比と
(BaO)/(SiO2)との関係を示す線図である。
FIG. 1 is a diagram showing the relationship between the phosphorus distribution ratio of molten iron and slag and (BaO)/(SiO 2 ).

Claims (1)

【特許請求の範囲】 1 電気炉中において、溶鉄中のSi含有量が0.20
重量%以下となるように鉄合金溶湯を予め脱珪処
理し、除滓した後、詳溶湯に、 アルカリ土類金属の酸化物の1種以上:30〜50
重量%、 アルカリ土類金属のハロゲン化物の1種以上:
残り、 とから成るフラツクスを添加するとともに、これ
らを撹拌しながらさらに酸化剤を添加し、生成し
たスラグを除去することを特徴とする、クロムを
含む溶融鉄合金の脱燐・脱硫方法。
[Claims] 1. In an electric furnace, Si content in molten iron is 0.20
After the molten iron alloy has been desiliconized in advance and the slag removed so that the amount is less than 30 to 50% by weight, one or more types of alkaline earth metal oxides are added to the molten metal.
Weight %, one or more alkaline earth metal halides:
A method for dephosphorizing and desulfurizing a molten iron alloy containing chromium, the method comprising: adding a flux consisting of the remainder, and further adding an oxidizing agent while stirring the flux, and removing the generated slag.
JP57157319A 1982-09-09 1982-09-09 Dephosphorizing and desulfurizing method of molten iron alloy containing chromium Granted JPS5947316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57157319A JPS5947316A (en) 1982-09-09 1982-09-09 Dephosphorizing and desulfurizing method of molten iron alloy containing chromium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57157319A JPS5947316A (en) 1982-09-09 1982-09-09 Dephosphorizing and desulfurizing method of molten iron alloy containing chromium

Publications (2)

Publication Number Publication Date
JPS5947316A JPS5947316A (en) 1984-03-17
JPS6237686B2 true JPS6237686B2 (en) 1987-08-13

Family

ID=15647089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57157319A Granted JPS5947316A (en) 1982-09-09 1982-09-09 Dephosphorizing and desulfurizing method of molten iron alloy containing chromium

Country Status (1)

Country Link
JP (1) JPS5947316A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101381856B1 (en) * 2011-12-27 2014-04-04 주식회사 포스코 Flux for dephosphorizing ferromanganese

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770219A (en) * 1980-10-21 1982-04-30 Nisshin Steel Co Ltd Method for dephosphorizing, desulfurizing and denitrifying iron alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770219A (en) * 1980-10-21 1982-04-30 Nisshin Steel Co Ltd Method for dephosphorizing, desulfurizing and denitrifying iron alloy

Also Published As

Publication number Publication date
JPS5947316A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
JP3428628B2 (en) Stainless steel desulfurization refining method
JPS58151416A (en) Dephosphorizing and desulfurizing method of molten ferro-alloy containing chromium
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JPS6237686B2 (en)
JPS6212301B2 (en)
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JPH07109507A (en) Method for pretreating molten iron
JPH08260015A (en) Pretreatment of molten iron
JP3508550B2 (en) Hot metal desulfurization method
JPH08134528A (en) Production of extra low carbon steel
JP2856106B2 (en) Hot metal desulfurization method
JPS6212300B2 (en)
JPS6121285B2 (en)
JP2002285217A (en) Dephosphorizing agent and desulfurizing agent for molten iron and molten steel
JPS636606B2 (en)
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JP2776188B2 (en) Hot metal pretreatment method
JP3345622B2 (en) Hot metal pretreatment method
JPS6031885B2 (en) Dephosphorization method for high chromium molten steel
JPH111714A (en) Steelmaking method
JP3704912B2 (en) Hot metal desiliconization and desulfurization methods
JP3147740B2 (en) Demanganese method for high chromium molten iron alloy
JPS6213426B2 (en)
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron