JPS6237148Y2 - - Google Patents

Info

Publication number
JPS6237148Y2
JPS6237148Y2 JP1981124135U JP12413581U JPS6237148Y2 JP S6237148 Y2 JPS6237148 Y2 JP S6237148Y2 JP 1981124135 U JP1981124135 U JP 1981124135U JP 12413581 U JP12413581 U JP 12413581U JP S6237148 Y2 JPS6237148 Y2 JP S6237148Y2
Authority
JP
Japan
Prior art keywords
temperature
difference
circuit
output
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981124135U
Other languages
Japanese (ja)
Other versions
JPS5830842U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12413581U priority Critical patent/JPS5830842U/en
Publication of JPS5830842U publication Critical patent/JPS5830842U/en
Application granted granted Critical
Publication of JPS6237148Y2 publication Critical patent/JPS6237148Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【考案の詳細な説明】 本考案は、集中冷暖房装置において各需要家へ
供給した熱量を温度と時間との積で表示する温度
積算計に関する。
[Detailed Description of the Invention] The present invention relates to a temperature integrator that displays the amount of heat supplied to each consumer in a central heating and cooling system as the product of temperature and time.

従来、集中冷暖房が行なわれているマンシヨン
等において、各テナントで消費される熱量を計測
するものとして熱量計が一般的に使用されてい
る。この熱量計は熱媒体の温度と流量とを検出し
て演算するものである。ところが、熱量を各テナ
ントに供給するフアンコイルは熱媒体の流量によ
つて容量が定められており、各フアンコイル共、
システム効率の必要性から流量が一定となる様調
整されている。したがつて、このような場所で消
費される熱量はフアンコイルの出入口温度差と運
転時間との積を求めることができれば、これが消
費熱量の代用単位となり得るのである。
Conventionally, in condominiums and the like where central heating and cooling is performed, calorimeters have been generally used to measure the amount of heat consumed by each tenant. This calorimeter detects and calculates the temperature and flow rate of a heat medium. However, the capacity of the fan coil that supplies heat to each tenant is determined by the flow rate of the heat medium, and each fan coil has a
Due to the need for system efficiency, the flow rate is adjusted to be constant. Therefore, if the product of the temperature difference between the entrance and exit of the fan coil and the operating time can be calculated as the amount of heat consumed in such a place, this can be used as a substitute unit for the amount of heat consumed.

本考案は上記したフアンコイルに流れる媒体の
流量が一定である所に使用する差温度と運転時間
との積を積算する計器を目的とする。
The object of the present invention is to provide an instrument for integrating the product of differential temperature and operating time, which is used where the flow rate of the medium flowing through the fan coil is constant.

以下添付図面に例示した本考案の好適な実施例
について詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below as illustrated in the accompanying drawings.

第1図において、集中冷暖房熱媒体配管2,4
があり、その間に分岐された配管があつて熱交換
器を有するフアンコイル6が接続されている。フ
アンコイル6の熱媒体入口8には温度センサ10
が備えられ、熱媒体出口12にも同様の温度セン
サ14が設けられている。各温度センサ10,1
4の出力は差温度検出回路16へ接続され、ここ
でフアンコイル6の出入口間の差温度が求められ
る。差温度検出回路16の出力はゲート18およ
び比較回路20の各一方の入力に接続され、ゲー
ト18の他方の入力は比較回路20の出力に、比
較回路20の他方の入力は動作温度設定回路22
にそれぞれ接続される。ゲート18の出力は温度
時間演算回路24へ接続され、更に集積回路26
および表示部28へ接続される。
In Fig. 1, central heating and cooling heat medium pipes 2 and 4
There is a fan coil 6 having a heat exchanger connected thereto with branched pipes between them. A temperature sensor 10 is installed at the heat medium inlet 8 of the fan coil 6.
A similar temperature sensor 14 is also provided at the heat medium outlet 12. Each temperature sensor 10,1
4 is connected to a temperature difference detection circuit 16, where the temperature difference between the entrance and exit of the fan coil 6 is determined. The output of the differential temperature detection circuit 16 is connected to one input of the gate 18 and one input of the comparison circuit 20, the other input of the gate 18 is connected to the output of the comparison circuit 20, and the other input of the comparison circuit 20 is connected to the operating temperature setting circuit 22.
are connected to each. The output of the gate 18 is connected to a temperature-time calculation circuit 24 and further to an integrated circuit 26.
and is connected to the display section 28.

第1図の実施例においては、温度センサ10,
14は水晶発振式温度センサとし、したがつて、
フアンコイル6の熱媒体入口8および出口12に
おける各温度は周波数に変換されたパルス信号の
形で出力される。この水晶発振式温度センサは、
第2図に示したとおり温度に対する発振周波数が
リニアに変化する特性を有し、発振周波数を高く
設定することにより非常に高い分解能を容易に得
ることができるものである。また第2図のよう
に、温度センサ10,14は共に熱媒体の温度が
T0のとき〔Hz〕の発振周波数を有するよう
調節されK〔Hz/℃〕の温度係数を持つものとす
る。今、暖房運転をしているとし、フアンコイル
6の入口8の温度をT0×t2〔℃〕、出口12の温
度をT0+t1〔℃〕とすると、入口側に設置されて
いる温度センサ10は+K×t2、出口側温度
センサ14は+K×t1の周波数信号を出力す
る。これらの出力から差温度を検出するにはいく
つかの方法が知られている。たとえば一旦−V
変換器を通してそれぞれアナログ信号に変換した
後差動増幅器でその差を得る方法、あるいは直接
周波数の差を検出して間接的に差温度を求める方
法等があるが、この実施例では差温度検出回路1
6において両温度センサの周波数差を検出するよ
うにしている。
In the embodiment of FIG. 1, temperature sensor 10,
14 is a crystal oscillation type temperature sensor, therefore,
Each temperature at the heat medium inlet 8 and outlet 12 of the fan coil 6 is output in the form of a pulse signal converted into a frequency. This crystal oscillation type temperature sensor is
As shown in FIG. 2, the oscillation frequency has a characteristic of changing linearly with respect to temperature, and by setting the oscillation frequency high, very high resolution can be easily obtained. Further, as shown in FIG. 2, both temperature sensors 10 and 14 detect the temperature of the heat medium.
It is assumed that it is adjusted to have an oscillation frequency of 0 [Hz] at T 0 and has a temperature coefficient of K [Hz/°C]. Assuming that heating operation is currently being performed, the temperature at the inlet 8 of the fan coil 6 is T 0 ×t 2 [℃], and the temperature at the outlet 12 is T 0 +t 1 [℃]. The temperature sensor 10 outputs a frequency signal of 0 +K×t 2 , and the outlet temperature sensor 14 outputs a frequency signal of 0 +K×t 1 . Several methods are known for detecting the temperature difference from these outputs. For example, once -V
There are methods such as converting each signal into an analog signal through a converter and then obtaining the difference using a differential amplifier, or directly detecting the frequency difference and indirectly determining the difference temperature, but in this example, the difference temperature detection circuit 1
6, the frequency difference between both temperature sensors is detected.

差温度検出回路16で受けた2つの入力信号は
次のようにして処理される。すなわち出力の周波
数差をΔで表わせば、 Δ=|(+Kt2)−(+Kt1)| =|K(t2−t1)| となり、ここで|t2−t1|は差温度であるので、
周波数差Δは温度差にKの比例定常を持つた比
例式で表わされる事が判る。
The two input signals received by the differential temperature detection circuit 16 are processed as follows. In other words, if the frequency difference of the output is expressed as Δ, then Δ=|( 0 +Kt 2 )−( 0 +Kt 1 )| = |K(t 2 −t 1 )|, where |t 2 −t 1 | is the difference Since the temperature is
It can be seen that the frequency difference Δ is expressed by a proportional equation in which the temperature difference has a proportional stationarity of K.

差温度検出回路16はたとえば2つの温度セン
サ10,14からのパルス信号を受けるようにし
た1つのANDまたはNANDゲートによつて実現
できる。
The differential temperature detection circuit 16 can be realized, for example, by one AND or NAND gate adapted to receive pulse signals from the two temperature sensors 10 and 14.

ここで差温度を1℃とした場合の1時間当りの
差温度検出回路16の出力パルス数nは、 n=Δ×3600〔秒〕 =|K(t2−t1)|×3600 =3600K となる。
Here, when the temperature difference is 1°C, the number of output pulses n of the temperature difference detection circuit 16 per hour is: n = Δ x 3600 [seconds] = |K (t 2 - t 1 ) | x 3600 = 3600K becomes.

次に、温度時間演算回路24はたとえば、分周
数Nの分周器で構成され、差温度検出回路16の
出力である単位量のnの値を分周する。すなわち
温度時間演算回路の出力は1パルス当り1℃×h
を表わす信号にされ、これが積算回路26に送ら
れて、表示部28でその積算量が表示されること
になる。
Next, the temperature/time calculating circuit 24 is constituted by, for example, a frequency divider with a frequency division number N, and divides the value of the unit quantity n which is the output of the differential temperature detection circuit 16. In other words, the output of the temperature time calculation circuit is 1°C x h per pulse.
This signal is sent to the integration circuit 26, and the integrated amount is displayed on the display section 28.

実際にはフアンコイル6を使用しない状態で
も、その出入口に温度差が必ず生じ、また同じく
構成した水晶発振式温度センサ10,14におい
ても検出誤差があるので、差温度がある一定の値
を越えるまでは積算しないようにするのがよい。
このため、差温度検出回路16の出力を動作温度
設定回路22からの設定温度差と比較回路20に
て比較し、この出力をゲート18に加えて差温度
検出回路16の出力信号を温度時間演算回路へ通
過させるためのイネーブル信号としている。
In reality, even when the fan coil 6 is not used, a temperature difference always occurs between its entrance and exit, and there is also a detection error in the crystal oscillation type temperature sensors 10 and 14, which have the same configuration, so the difference temperature exceeds a certain value. It is best not to integrate up to that point.
Therefore, the output of the temperature difference detection circuit 16 is compared with the set temperature difference from the operating temperature setting circuit 22 in the comparison circuit 20, and this output is applied to the gate 18, and the output signal of the temperature difference detection circuit 16 is used for temperature time calculation. It is used as an enable signal for passing to the circuit.

以上本考案はその好適な実施例について詳述し
たが本考案はこの特定の実施例に限定されるもの
ではない。たとえば、温度センサは他の感温素
子、たとえば測温抵抗体、熱電対等を採用するこ
とができる。また差温度検出回路と比較回路との
間に−V変換器を設けることにより、比較回路
はアナログ比較器が利用できる。さらに、温度時
間演算回路では分周数をNとして出力の1パルス
当り1℃・hの熱量表示信号を得ていたが、この
表示をたとえば表示最小単位として0.001℃・h
とするとすれば、分周数を1000Nに設定すればよ
い。またこの分周値はたとえばデジタルスイツチ
によつて自由に設定できるようにしておくと、温
度センサの相違による温度−周波数差の違いを補
正することもできる。
Although the present invention has been described above in detail with respect to a preferred embodiment thereof, the present invention is not limited to this specific embodiment. For example, the temperature sensor can employ other temperature sensing elements, such as a resistance temperature detector, a thermocouple, or the like. Further, by providing a -V converter between the differential temperature detection circuit and the comparison circuit, an analog comparator can be used as the comparison circuit. Furthermore, in the temperature-time calculation circuit, the frequency division number was set to N, and a heat amount display signal of 1°C/h was obtained per output pulse, but this display is set to, for example, 0.001°C/h as the minimum display unit.
If so, the frequency division number should be set to 1000N. Furthermore, if this frequency division value can be set freely using, for example, a digital switch, it is also possible to correct differences in temperature-frequency differences due to differences in temperature sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による温度積算計の一例を示す
ブロツク図、第2図は水晶発振式温度センサの特
性例を示す図である。 2,4……熱媒体配管、6……フアンコイル、
8……熱媒体入口、10……温度センサ、12…
…熱媒体出口、14……温度センサ、16……差
温度検出回路、18……ゲート、20……比較回
路、22……動作温度設定回路、24……温度時
間演算回路、26……積算回路、28……表示
部。
FIG. 1 is a block diagram showing an example of a temperature integrator according to the present invention, and FIG. 2 is a diagram showing an example of characteristics of a crystal oscillation type temperature sensor. 2, 4... Heat medium piping, 6... Fan coil,
8... Heat medium inlet, 10... Temperature sensor, 12...
...Heat medium outlet, 14...Temperature sensor, 16...Difference temperature detection circuit, 18...Gate, 20...Comparison circuit, 22...Operating temperature setting circuit, 24...Temperature time calculation circuit, 26...Integration Circuit, 28...display section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱媒体の流量が一定に調節された熱交換器の出
入口温度をそれぞれ検出する2つの温度センサ
と、これら温度センサの検出温度から差温度を求
める差温度検出回路と、検出された差温度の所定
値以下を無効にする回路と、所定値以上の差温度
と時間との積を求める温度時間演算回路と、この
温度時間演算回路の出力を積算して表示する回路
とを備えたことを特徴とする温度積算計。
Two temperature sensors each detecting the entrance and exit temperatures of a heat exchanger in which the flow rate of the heat medium is adjusted to be constant, a difference temperature detection circuit that calculates a difference temperature from the detected temperatures of these temperature sensors, and a predetermined value of the detected difference temperature. The present invention is characterized by comprising a circuit for disabling the temperature below a predetermined value, a temperature-time calculation circuit for calculating the product of a temperature difference greater than a predetermined value and time, and a circuit for integrating and displaying the output of the temperature-time calculation circuit. Temperature totalizer.
JP12413581U 1981-08-24 1981-08-24 temperature totalizer Granted JPS5830842U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12413581U JPS5830842U (en) 1981-08-24 1981-08-24 temperature totalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12413581U JPS5830842U (en) 1981-08-24 1981-08-24 temperature totalizer

Publications (2)

Publication Number Publication Date
JPS5830842U JPS5830842U (en) 1983-02-28
JPS6237148Y2 true JPS6237148Y2 (en) 1987-09-22

Family

ID=29918020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12413581U Granted JPS5830842U (en) 1981-08-24 1981-08-24 temperature totalizer

Country Status (1)

Country Link
JP (1) JPS5830842U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023741U (en) * 1983-07-26 1985-02-18 株式会社山武 Calorimeter error measurement prevention circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458458A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Digital numerical display method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458458A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Digital numerical display method

Also Published As

Publication number Publication date
JPS5830842U (en) 1983-02-28

Similar Documents

Publication Publication Date Title
US5026171A (en) Apparatus for flow rate and energy transfer measurements
US4482006A (en) Thermal energy meter
US4448545A (en) Non-intrusive thermal power monitor and method
EP1000323A1 (en) Gasmeter
JPS6237148Y2 (en)
CA1177277A (en) Electronic thermometer
JPH0119062Y2 (en)
JP4440420B2 (en) Flow measurement method and apparatus, and electronic flow meter
JP3410562B2 (en) Temperature / wind speed measurement device
JPS6142100Y2 (en)
JP2964186B2 (en) Thermal flow meter
JP2000039344A (en) Flowmeter and gas meter
SU970114A2 (en) Thermal flowmeter
SU1023211A1 (en) Digital thermometer
JPS5923369B2 (en) Zero-level heat flow meter
JPS634971Y2 (en)
SU796667A1 (en) Heat flux sensor
JPS6244352Y2 (en)
RU2001406C1 (en) Calorimetric microwave power meter
SU1030670A1 (en) Thermoconverter thermal lag index determination method
SU465551A1 (en) Heat flow meter
CN115165961A (en) Gas constant-pressure specific heat capacity measuring device and measuring method thereof
SU855401A1 (en) Thermal flow meter
JPS625293B2 (en)
JP2001241990A (en) Flow rate measuring device