JPS623113A - Multi-cylinder internal-combustion engine - Google Patents

Multi-cylinder internal-combustion engine

Info

Publication number
JPS623113A
JPS623113A JP14310085A JP14310085A JPS623113A JP S623113 A JPS623113 A JP S623113A JP 14310085 A JP14310085 A JP 14310085A JP 14310085 A JP14310085 A JP 14310085A JP S623113 A JPS623113 A JP S623113A
Authority
JP
Japan
Prior art keywords
lift
valve
intake
cam
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14310085A
Other languages
Japanese (ja)
Other versions
JPH0346644B2 (en
Inventor
Yasuo Matsumoto
松本 泰郎
Seinosuke Hara
誠之助 原
Hiromichi Bito
尾藤 博通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14310085A priority Critical patent/JPS623113A/en
Priority to US06/877,523 priority patent/US4759321A/en
Priority to DE3621080A priority patent/DE3621080C3/en
Publication of JPS623113A publication Critical patent/JPS623113A/en
Publication of JPH0346644B2 publication Critical patent/JPH0346644B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To improve output torque for a multi-cylinder internal combustion engine with two suction valves on each cylinder by providing a variable dynamic valve mechanism for making variable the operation cycle of each suction valve and the lift thereof, and forming a phase difference for the lift center angles of the two suction valves. CONSTITUTION:In an engine wherein main and sub-suction valves 29 and 30 for opening and closing main and sub-suction ports 25 and 26 open to the combustion chamber 24 of each cylinder are operated by the rotation of a drive cam 34 via a rocker arm 32, a variable dynamic valve mechanism 35 is fitted to each rocker arm 32. This mechanism 35 makes the curved top face 32A of the rocker arm 32 as fulcrum supported on the lower flat surface 36A of a lever 36. Also, a lift control cam 37 is made in contact with the top of one end of the lever 36 and a hydraulic pivot 39 as supported on a bracket 38 is coupled to the concave part 36B of the other end. And the control cam 37 for each lift related to the main and sub-suction valves 29 and 30 is so formed that the center angles of the lifts of said valves will be different from each other.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多気筒内燃機関、例えば車両に搭載される多気
筒内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-cylinder internal combustion engine, for example a multi-cylinder internal combustion engine mounted on a vehicle.

(従来の技術) 従来、機関の高出力、低燃費を達成するための多気筒内
燃機関としては、例えば第17図〜第21図に示すもの
が知られている(特開昭58−25537号公報)。
(Prior Art) Conventionally, as a multi-cylinder internal combustion engine for achieving high engine output and low fuel consumption, the ones shown in FIGS. Public bulletin).

これらの図に示すように、この内燃機関は、4気筒の各
気筒について主吸気弁1と副吸気弁2と       
゛の吸気2弁、及び、排気弁3を有している。ここに、
主吸気弁1が開閉する主吸気ボート4は吸気流により燃
焼室5内にスワールを形成するように、また、副吸気弁
2が開閉する副吸気ボート6は多量の吸気を燃焼室5に
送給可能に主吸気ボート4の流路面積よりも大きな流路
面積を有している。
As shown in these figures, this internal combustion engine has a main intake valve 1 and a sub-intake valve 2 for each of the four cylinders.
It has two intake valves and three exhaust valves. Here,
The main intake boat 4, which the main intake valve 1 opens and closes, sends a large amount of intake air to the combustion chamber 5 so that a swirl is formed in the combustion chamber 5 by the intake air flow, and the sub-intake boat 6, which the sub-intake valve 2 opens and closes, sends a large amount of intake air to the combustion chamber 5. It has a flow passage area larger than that of the main intake boat 4 so that air can be supplied.

これらの吸・排気弁はいずれもロッカアーム・7を介し
て駆動カム8により機関回転に同期して駆動されるが、
これらのロッカアーム7には、第19図及び第20図に
示すように、それぞれその作動を停止可能な作動停止機
構が設けられている。この作動停止機構は、そのロッカ
アーム7の背面に設けた油圧シリンダ8Aと、そのピス
トンロッド9に連結したフォーク状のストッパ10と、
を有しており、一端が駆動カム8に当接するロッカアー
ム7の他端に往復動自在に保持されて吸・排気弁のステ
ムエンド11に当接するプランジャ12を、シリンダ8
A非作動時ストッパ10に係止させてロッカア−ム7の
揺動を該プランジャ12を介して吸・排気弁に伝達する
とともに、図外の切換弁によりシリンダ室13に潤滑油
を供給してピストンロフト9を突出させることによりス
トッパIOによるプランジャ12の係止を解除して、プ
ランジャ12をロッカアーム7の揺動に対して非拘束と
する結果、該揺動を吸・排気弁に伝達しないようにして
いる。すなわち、シリンダ8Aの作動により吸・排気弁
の作動を停止するのである。
These intake and exhaust valves are all driven by a drive cam 8 via a rocker arm 7 in synchronization with engine rotation.
As shown in FIGS. 19 and 20, each of these rocker arms 7 is provided with an operation stopping mechanism capable of stopping its operation. This operation stop mechanism includes a hydraulic cylinder 8A provided on the back of the rocker arm 7, a fork-shaped stopper 10 connected to the piston rod 9,
A plunger 12, which is held reciprocatingly at the other end of the rocker arm 7 whose one end abuts the drive cam 8 and abuts the stem end 11 of the intake/exhaust valve, is connected to the cylinder 8.
A When not in operation, the rocker arm 7 is locked by the stopper 10 and the swinging motion of the rocker arm 7 is transmitted to the intake/exhaust valves via the plunger 12, and lubricating oil is supplied to the cylinder chamber 13 by a switching valve (not shown). By protruding the piston loft 9, the locking of the plunger 12 by the stopper IO is released and the plunger 12 is not restrained against the rocking motion of the rocker arm 7, so that the rocking motion is not transmitted to the intake/exhaust valves. I have to. That is, the operation of the intake and exhaust valves is stopped by the operation of the cylinder 8A.

また、この作動停止機構は機関の運転状態に応じて制御
手段14により駆動され、低速低負荷時はすべての吸・
排気弁1.2.3の作動が停止され、低速高負荷時は副
吸気弁2の作動のみが□停止されるよう制御される。
In addition, this operation stop mechanism is driven by the control means 14 according to the operating state of the engine, and at low speed and low load, all suction and
The operation of the exhaust valves 1.2.3 is stopped, and at low speed and high load, only the operation of the auxiliary intake valve 2 is controlled to be stopped.

(発明が解決しようとする問題点) しかしながら、このような従来の多気筒内燃機関にあっ
ては、吸・排気弁の弁開閉時期及び弁リフト量を可変と
するものではなく、その作動を完全に停止する構成であ
ったため、例えば第21図に示すように、低速域と高速
域との間の中速域(図中斜線)、すなわち過渡運転域で
は機関の出力トルクを充分に高めることができないとい
う問題点があった。また、主・副2つの吸気弁は、その
一方を低速向けの作動タイミング、リフトに、他方を高
速向きのそれに、構成していたため、高速時の吸気充填
効率を充分に高めることができないという問題点も有し
ていた。さらに、特定運転条件では一方の吸気弁の作動
を停止する構成のため、二系統の燃料供給装置を必要と
し、特に気筒毎に燃料供給を行うものでは該装置が複雑
化するという問題点を有していた。
(Problems to be Solved by the Invention) However, in such conventional multi-cylinder internal combustion engines, the valve opening/closing timing and valve lift amount of the intake and exhaust valves are not variable, but the operation is not completely controlled. For example, as shown in Figure 21, the engine's output torque cannot be sufficiently increased in the medium speed range (hatched in the figure), that is, in the transient operating range, as shown in Figure 21. The problem was that it couldn't be done. In addition, because the two main and sub intake valves were configured with one for low-speed operation timing and lift, and the other for high-speed operation, there was a problem in that the intake air filling efficiency at high speeds could not be sufficiently increased. It also had points. Furthermore, since the configuration stops the operation of one intake valve under specific operating conditions, a two-system fuel supply system is required, which poses the problem of complicating the system, especially in systems that supply fuel to each cylinder. Was.

(問題点を解決するための手段) 本発明に係る多気筒内燃機関は、1気筒について2つの
吸気弁を有し、これらの2つの吸気弁のそれぞれの弁開
閉時期及び弁リフト量を機関の運転条件に応じて段階的
に可変とする可変動弁機構を備え、この可変動弁機構に
よりこれらの2つの吸気弁のリフト中心角に位相差を設
けた構成である。
(Means for Solving the Problems) A multi-cylinder internal combustion engine according to the present invention has two intake valves for each cylinder, and the valve opening/closing timing and valve lift amount of each of these two intake valves is controlled by the engine. This configuration includes a variable valve mechanism that is variable in stages according to operating conditions, and uses this variable valve mechanism to provide a phase difference between the lift center angles of these two intake valves.

(作用) 本発明に係る多気筒内燃機関では、機関の運転条件に応
じて2つの吸気弁のそれぞれの弁開閉時期及び弁リフト
量を可変動弁機構により可変とするが、この場合、これ
らの2つの吸気弁のリフト中心角に位相差を設けて、主
・副吸気弁の閉弁時を低速時一致させることにより低速
時のスワール強化及びポンピングロスの低減を図ると共
に高速時は主・副吸気弁の開弁時期を一致させて出力向
上を達成するものである。
(Function) In the multi-cylinder internal combustion engine according to the present invention, the valve opening/closing timing and valve lift amount of each of the two intake valves are made variable by the variable valve mechanism according to the operating conditions of the engine. By setting a phase difference between the lift center angles of the two intake valves and making the closing times of the main and sub-intake valves coincide at low speeds, it is possible to strengthen the swirl at low speeds and reduce pumping loss, and at the same time to increase the swirl at low speeds and reduce pumping loss. This improves output by matching the opening timing of the intake valves.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図〜第16図は本発明の一実施例を示している。1 to 16 show an embodiment of the present invention.

まず、構成を説明する。First, the configuration will be explained.

第2図において、21は直列4気筒内燃機関におけるカ
ム軸であり、機関出力軸に同期して駆動回転される。ま
た、22は排気弁のロッカアームであり、ロッカシャフ
ト23に回転自在に支持されている。ここに、第3図に
示すように、各気筒の燃焼室24には、主、副2つの吸
気ボート25.26と、一つの排気ポート27が開口し
ている。28は点火プラグである。これらの主吸気ボー
ト25及び副吸気ボート26はいずれも直線状に延設し
、多量の混合気を吸入可能としている。また、主吸気ボ
ート25は上記点火プラグ28から離れて開口し、点火
プラグ28に向かって開口する副吸気ボート26よりも
その径(流路面積も)が小さく形成されている。
In FIG. 2, 21 is a camshaft in an in-line four-cylinder internal combustion engine, which is driven and rotated in synchronization with the engine output shaft. Further, 22 is a rocker arm of the exhaust valve, which is rotatably supported by a rocker shaft 23. As shown in FIG. 3, two main and sub intake boats 25, 26 and one exhaust port 27 are opened in the combustion chamber 24 of each cylinder. 28 is a spark plug. Both the main intake boat 25 and the sub-intake boat 26 extend in a straight line, and are capable of inhaling a large amount of air-fuel mixture. Further, the main intake boat 25 opens away from the spark plug 28 and has a smaller diameter (also flow path area) than the sub intake boat 26 that opens toward the spark plug 28.

これらの主、劇画吸気ポート25.26及び排気ポート
27をそれぞれ開閉する主、劇画吸気弁29.30及び
排気弁31は、それぞれロッカアーム32.33.22
を介して駆動カム34により駆動される。第1図に示す
ように、主吸気弁29のロッカアーム32には可変動弁
機構が装着されており、また、副吸気弁30にも図示し
ていないが同様の可変動弁機構が装着され、両吸気弁2
9.30はその弁開閉時期及び弁リフト量が可変とされ
る。なお、排気弁31は固定式の動弁機構を介して一定
の弁開閉時期及び弁リフト量で開閉駆動される。
These main bodies, the main bodies that open and close the graphic picture intake port 25.26 and the exhaust port 27, the graphic picture intake valve 29.30 and the exhaust valve 31, respectively, are connected to rocker arms 32, 33, and 22, respectively.
is driven by a drive cam 34 via. As shown in FIG. 1, the rocker arm 32 of the main intake valve 29 is equipped with a variable valve mechanism, and the sub-intake valve 30 is also equipped with a similar variable valve mechanism, although not shown. Both intake valves 2
9.30 has variable valve opening/closing timing and valve lift amount. Note that the exhaust valve 31 is driven to open and close at a constant valve opening/closing timing and valve lift amount via a fixed valve operating mechanism.

可変動弁機構35は、一端が駆動カム34に他端が主吸
気弁29のステムエンドにそれぞれ当接するロッカアー
ム32を有しており、このロッカアーム32の長手方向
に沿って湾曲形成した背面32Aはレバー36の長手方
向に沿って平坦に形成した下面36Aに支点接触(線接
触)している。すなわち、ロッカアーム32はレバー3
6に揺動自在に支持されている。また、レバー36の一
端部上面にはリフト制御カム37が当接するとともに、
その他端部の凹陥部、36B内にはブラケット38に支
持された油圧ピボット39が摺動自在に嵌合されている
。すなわち、レバー36は油圧ピボット39を中心とし
て揺動自在に設けられている。なお、ブラケット38は
シリンダヘッド40に固定されている。また、レバー3
6の凹溝41内にはロッカアーム32の中央部に挿通し
た支持軸42(第6図参照)が嵌装されており、この支
持軸42と凹溝41底壁との間にはスプリング43が縮
設されている。なお、このスプリング43のバネ定数は
バルブスプリング44のそれよりもかなり小さく設定し
である。38Aはブラケット38に形成した油路であり
、上記油圧ピボット39に圧油を供給してバルブクリア
ランスを一定値に保持させている。
The variable valve mechanism 35 has a rocker arm 32, which has one end abutting the drive cam 34 and the other end abutting the stem end of the main intake valve 29, and the back surface 32A of the rocker arm 32 is curved along the longitudinal direction. The lever 36 is in fulcrum contact (line contact) with a lower surface 36A formed flat along the longitudinal direction of the lever 36. That is, the rocker arm 32 is connected to the lever 3
6 is swingably supported. Further, a lift control cam 37 is in contact with the upper surface of one end of the lever 36, and
A hydraulic pivot 39 supported by a bracket 38 is slidably fitted into the concave portion 36B at the other end. That is, the lever 36 is provided so as to be swingable around the hydraulic pivot 39. Note that the bracket 38 is fixed to the cylinder head 40. Also, lever 3
A support shaft 42 (see FIG. 6) inserted through the center of the rocker arm 32 is fitted into the groove 41 of No. 6, and a spring 43 is inserted between the support shaft 42 and the bottom wall of the groove 41. It has been reduced. Note that the spring constant of this spring 43 is set to be considerably smaller than that of the valve spring 44. 38A is an oil passage formed in the bracket 38, which supplies pressure oil to the hydraulic pivot 39 to maintain the valve clearance at a constant value.

また、第4図及び第5図に示すように、上記リフト制御
カム37はカム制御軸45に遊嵌されており、カム制御
軸45に固着したホルダ46とリフト制御カム37の円
筒部37Aとの間に縮設したコイルスプリング47を介
してこれらは連結されている。さらに、第5図に示すよ
うに、カム制御軸45にはストッパピン48が突設され
、このストッパピン48はリフト制御カム37の円筒部
37Aの切欠きと当接可能とされ、コイルスプリング4
7に過大な力が作用しないようにしている。なお、第4
図中、49はカム制御軸45を回転自在に支持するキャ
ップである。
Further, as shown in FIGS. 4 and 5, the lift control cam 37 is loosely fitted to the cam control shaft 45, and the holder 46 fixed to the cam control shaft 45 and the cylindrical portion 37A of the lift control cam 37 are connected to each other. These are connected via a coil spring 47 contracted between them. Further, as shown in FIG. 5, a stopper pin 48 is provided protruding from the cam control shaft 45, and this stopper pin 48 can come into contact with a notch in the cylindrical portion 37A of the lift control cam 37, and the coil spring 4
7 to prevent excessive force from acting on it. In addition, the fourth
In the figure, 49 is a cap that rotatably supports the cam control shaft 45.

第7図及び第8図はそれぞれ主吸気弁29及び副吸気弁
30のリフト制御カム37.50のカムプロフィ   
    ゛−ルを示している。同図に示すように、リフ
ト制御カム37は、主吸気弁29の弁リフト量及び弁開
閉時期を異ならせる5個のカム面37a、37b、37
c37d、3713を有しており、リフト制御カム50
は副吸気弁30の弁リフト量及び弁開閉時期を異ならせ
る5個のカム面50a150b150cs 50d15
0eを有している。カム面37aは主吸気弁29の弁リ
フトfi l tmに、カム面37bは同じ<4.5n
に、カム面37c〜37eは同じ<8mに、それぞれ対
応している。また、カム面50aは副吸気弁30の弁リ
フト量0.5fiに、カム面50bは同じ<3mに、カ
ム面50Cは同じく8鶴に、カム面50dは同じ<9.
4flに、カム面50eは同じ< 10.8mmに、そ
れぞれ対応している。さらに、これらのリフト制御カム
37.50はその弁リフト中心角(最大リフト時をクラ
ンク角で示したもの)を互いに異ならせるようそれぞれ
のカム面のプロフィールを形成している。また、第2図
に示すように、これらのリフト制御カム37.50を支
持するカム制御軸45の一端には減速機構51を介して
ステッピングモータ52が連結されている。
7 and 8 show the cam profiles of the lift control cams 37 and 50 of the main intake valve 29 and the sub-intake valve 30, respectively.
It shows the direction. As shown in the figure, the lift control cam 37 has five cam surfaces 37a, 37b, 37 that vary the valve lift amount and valve opening/closing timing of the main intake valve 29.
c37d, 3713, lift control cam 50
are five cam surfaces 50a150b150cs 50d15 that vary the valve lift amount and valve opening/closing timing of the sub-intake valve 30.
It has 0e. The cam surface 37a has a valve lift fi l tm of the main intake valve 29, and the cam surface 37b has the same <4.5n.
The cam surfaces 37c to 37e respectively correspond to the same <8 m. Also, the cam surface 50a has the same valve lift amount of 0.5fi of the sub-intake valve 30, the cam surface 50b has the same <3 m, the cam surface 50C has the same 8 cranes, and the cam surface 50d has the same <9.
4fl and the cam surface 50e correspond to the same <10.8 mm. Furthermore, these lift control cams 37, 50 have respective cam surface profiles formed so that their valve lift center angles (maximum lift indicated by crank angle) are different from each other. Further, as shown in FIG. 2, a stepping motor 52 is connected to one end of a cam control shaft 45 that supports these lift control cams 37 and 50 via a deceleration mechanism 51.

なお、このステッピングモータ52は図外の制御手段(
例えば車載のマイクロコンピュータ)により駆動される
もので、この制御手段は、回転数センサ、水温センサ等
から入力された各種の検出信号に基づいて機関の運転条
件を判別し、この運転条件に応じて上記モータ52を駆
動するものである。
Note that this stepping motor 52 is controlled by a control means (not shown) (
This control means determines the operating conditions of the engine based on various detection signals input from the rotation speed sensor, water temperature sensor, etc., and adjusts the engine according to the operating conditions. It drives the motor 52 mentioned above.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

まず、機関のアイドリング時及び始動時にはステッピン
グモータ52によりカム制御軸45を駆動回転して各リ
フト制御カム37及び50をカム面37a、50aがそ
れぞれ主・劇画吸気弁29.30の各レバー36に当接
するように回動する。この結果、各レバー36はその一
端部(第1図中駆動カム34側の端部)がロッカアーム
32から離れた上方にあり、ロッカアーム32の揺動支
点(支点接触点)は主吸気弁29(副吸気弁30も同様
)側に移行する。従って、主吸気弁29及び副吸気弁3
0は、第10図に示すよう       、。
First, when the engine is idling and starting, the stepping motor 52 drives and rotates the cam control shaft 45 to control each lift control cam 37 and 50 so that the cam surfaces 37a and 50a are connected to the levers 36 of the main and comic intake valves 29 and 30, respectively. Rotate so that they touch. As a result, one end of each lever 36 (the end on the drive cam 34 side in FIG. Similarly, the sub-intake valve 30 also moves to the ) side. Therefore, the main intake valve 29 and the sub-intake valve 3
0, as shown in FIG.

に(実線Xが主吸気弁29のリフト特性を、破線Yが副
吸気弁30のそれを、実線2が排気弁31のそれを、そ
れぞれ示す)、それぞれ最小の弁リフト量で、主吸気弁
29のリフト中心角が進み側に(上死点側に)、副吸気
弁30のリフト中心角が遅れ側に      。
(The solid line X shows the lift characteristic of the main intake valve 29, the broken line Y shows that of the auxiliary intake valve 30, and the solid line 2 shows that of the exhaust valve 31.) With the minimum valve lift amount, the main intake valve The lift center angle of valve 29 is on the leading side (towards top dead center), and the lift center angle of sub-intake valve 30 is on the lag side.

(下死点側に)移行する。このため、吸・排気弁間のバ
ルブオーバラップはなくなり、燃焼室24内の残留ガス
が減少し、燃焼状態が安定化(アイドリングが安定化)
する。また、主・劇画吸気弁29、30の閉弁時期が共
に下死点前となる結果、第16図にこの場合のp−v線
図を示すように、機関のポンピング損失も大幅に低減さ
れる。
(towards bottom dead center). Therefore, there is no valve overlap between the intake and exhaust valves, the residual gas in the combustion chamber 24 is reduced, and the combustion state is stabilized (idling is stabilized).
do. Furthermore, as the main and dramatic intake valves 29 and 30 both close at a time before bottom dead center, the pumping loss of the engine is significantly reduced, as shown in the p-v diagram in this case in Fig. 16. Ru.

次に、機関の低速低負荷運転時は、カム制御軸45を回
転してリフト制御カム37.50のカム面37b150
bでレバー36の一端部を押し下げる。この結果、ロッ
カアーム32の支点接触点が駆動カム34側に移行し、
主吸気弁29及び副吸気弁30は、第11図に示すよう
に、小さな弁リフト量で異なるリフト中心角で駆動され
る。従って、吸気弁29.30の閉弁時期はアンドリン
グ時よりも下死点に近づくが機関のポンプ損失が低減さ
れて燃費低減効果が得られる。
Next, during low-speed, low-load operation of the engine, the cam control shaft 45 is rotated so that the cam surface 37b150 of the lift control cam 37.50
Push down one end of the lever 36 with b. As a result, the fulcrum contact point of the rocker arm 32 moves to the drive cam 34 side,
As shown in FIG. 11, the main intake valve 29 and the sub-intake valve 30 are driven at different lift center angles with a small valve lift amount. Therefore, although the timing of closing the intake valves 29 and 30 is closer to the bottom dead center than when the engine is idle, the pumping loss of the engine is reduced, and the effect of reducing fuel consumption can be obtained.

次に、機関の低速全開時は、リフト制御カム37.50
のカム面37c、50cでレバー36の一端部をさらに
押し下げる。この結果、ロッカアーム32の支点接触点
はさらに第1図中左方に移行し、主・劇画吸気弁29.
30のリフト特性は、第12図に示すように、弁リフト
量が増加する。従って、その閉弁時期も下死点近傍とな
り、吸入空気量が増加して出力トルクが向上することと
なる。
Next, when the engine is fully open at low speed, the lift control cam is 37.50
One end of the lever 36 is further pushed down using the cam surfaces 37c and 50c. As a result, the fulcrum contact point of the rocker arm 32 moves further to the left in FIG.
In the lift characteristic of No. 30, as shown in FIG. 12, the valve lift amount increases. Therefore, the valve closing timing is also near the bottom dead center, and the amount of intake air increases and the output torque improves.

また、機関速度がさらに上昇すると、カム面37d、5
0dでレバー36をさら番こ押し下げることとなり、主
吸気弁29のリフト量、開閉時期は変化しないが、副吸
気弁30はその弁リフト量が増し、閉弁時期は下死点よ
りさらに遅れる。第13図はこの場合のリフト特性を示
している。この結果、吸入空気量が増加して出力トルク
が向上する。なお、主吸気弁29の弁リフト量及び開閉
時期を変化させない理由は、オーバラップ量が過大とな
って新気の吹き抜けを防止するためである。
Furthermore, when the engine speed increases further, the cam surfaces 37d, 5
At 0d, the lever 36 is pushed all the way down, and the lift amount and opening/closing timing of the main intake valve 29 do not change, but the valve lift amount of the auxiliary intake valve 30 increases, and the valve closing timing is further delayed from bottom dead center. FIG. 13 shows the lift characteristics in this case. As a result, the amount of intake air increases and the output torque improves. The reason why the valve lift amount and opening/closing timing of the main intake valve 29 are not changed is to prevent fresh air from blowing through due to an excessive overlap amount.

さらに、機関回転速度が高められると、カム面37e、
50eでレバー36をさらに押し下げることになり、副
吸気弁30の弁リフト量が増し、その閉弁時期が主吸気
弁29のそれと同一となる。第14図はこの場合のリフ
ト特性を示している。この結果、吸入空気量がさらに増
加して出力トルクがさらに向上する。
Furthermore, when the engine rotation speed is increased, the cam surface 37e,
50e, the lever 36 is further pushed down, the valve lift amount of the sub-intake valve 30 increases, and its closing timing becomes the same as that of the main intake valve 29. FIG. 14 shows the lift characteristics in this case. As a result, the amount of intake air is further increased and the output torque is further improved.

以上の主・劇画吸気弁29.30のリフトの特性変化を
示したのが第9図である。図中、曲線XI、X2、X3
は主吸気弁29のリフト特性を、同じく曲線Y+ 、Y
z −Y:+ −Y4 、Y5が副吸気弁30のそれを
、さらに、曲線Zは排気弁31のそれを示している。な
お、図中WIは主吸気弁のリフト中心角を、W2は副吸
気弁のそれを示している。
FIG. 9 shows changes in the lift characteristics of the main/dramatic intake valves 29 and 30 as described above. In the figure, curves XI, X2, X3
is the lift characteristic of the main intake valve 29, and the curves Y+ and Y
z −Y:+ −Y4 , Y5 represents that of the sub-intake valve 30, and curve Z represents that of the exhaust valve 31. In the figure, WI indicates the lift center angle of the main intake valve, and W2 indicates that of the auxiliary intake valve.

また、第15図は、機関回転速度(lK軸)と機関負荷
(アクセル開度、縦軸)との関係におけるリフト制御カ
ム37.50のカム面の変化を示している。
Further, FIG. 15 shows changes in the cam surface of the lift control cam 37.50 in relation to the engine rotational speed (lK axis) and the engine load (accelerator opening, vertical axis).

すなわち、図中点Pで示すアイドル時はカム面37a、
5Qaに、図中領域Qの低速低負荷時はカム面37b、
50bに、領域Rの低速全開時はカム37c、50cに
、領域Sの中速時はカム面37d、50dに、領域Tの
高速時はカム面37e、50eに、それぞれ対応してい
る。なお、図中実線及び破線は各領域の切換条件を示す
が、実線で示す回転速度及び負荷の増加時よりも破線で
示すその減少時の切換条件値を低下させて、ヒステリシ
スを設け、機構のハンチングを防止している。
That is, at idle as indicated by point P in the figure, the cam surface 37a,
5Qa, at low speed and low load in region Q in the figure, cam surface 37b,
50b, cams 37c and 50c correspond to cams 37c and 50c when fully open at low speed in region R, cam surfaces 37d and 50d during medium speed in region S, and cam surfaces 37e and 50e during high speed in region T, respectively. Note that the solid lines and broken lines in the figure indicate the switching conditions for each region, and the switching condition value when the rotation speed and load decrease, shown by the broken line, is lower than when the rotation speed and load increase, shown by the solid line, to provide hysteresis and improve the mechanism. Prevents hunting.

なお、上記実施例にあってはリフト制御カムにより5段
階の制御を行ったが、これに限られないことはもちろん
である。また、上記5段階の制御に加えて機関空燃比を
適宜変化させることもできる。
In the above embodiment, the lift control cam performs five-stage control, but it is needless to say that the present invention is not limited to this. Furthermore, in addition to the five-stage control described above, the engine air-fuel ratio can also be changed as appropriate.

(効果) 以上説明してきたように、本発明によれば、機関の全運
転域において出力トルクを充分に高めることができ、ま
た、燃費の低減を達成できる。また、単一の燃料供給装
置で足り、該装置の複雑化を防止できる。さらに、特に
全開出力時の出力を全回転域で滑らかに向上させること
ができるという効果が得られる。
(Effects) As described above, according to the present invention, the output torque can be sufficiently increased in the entire operating range of the engine, and fuel consumption can be reduced. Moreover, a single fuel supply device is sufficient, and the complexity of the device can be prevented. Furthermore, the effect can be obtained that the output, especially when the engine is fully open, can be smoothly improved over the entire rotation range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多気筒内燃機関の一実施例を示す
その断面図、第2図は同じくその平面図、第3図はその
吸排気ポートのレイアウトを示す模式図、第4図はその
リフト制御カムの取付部を示す分解斜視図、第5図は同
じくリフト制御カムの取付部を示す斜視図、第6図はそ
の支持軸を示す斜視図、第7図はその主吸気弁用のリフ
ト制御カムのカムプロフィールを示す正面図、第8図は
その副吸気弁用のリフト制御カムのカムプロフィールを
示す正面図、第9図は主・劇画吸気弁の排気弁のリフト
特性の関係を示すグラフ、第10図〜第14図はリフト
制御カムの各カム面に対応したリフト特性をそれぞれ示
すグラフ、第15図はエンジン回転数とアクセル開度と
各カム面との対応関係を与えるグラフ、第16図は本実
施例におけるアイドル時のP−Vfi図である。 第17図〜第21図は従来の多気筒内燃機関を示すもの
で、第17図はその平面図、第18図はその正面断面図
、第19図はその作動停止機構を示す一部破断正面図、
第20図はその第19図のxx−xx矢視断面図、第2
1図はその機関回転数と出力トルクとの関係を示すグラ
フである。 29・・・・・・主吸気弁、 30・・・・・・副吸気弁、 35・・・・・・可変動弁機構。
FIG. 1 is a cross-sectional view showing an embodiment of a multi-cylinder internal combustion engine according to the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a schematic diagram showing the layout of its intake and exhaust ports, and FIG. An exploded perspective view showing the mounting part of the lift control cam, FIG. 5 is a perspective view showing the mounting part of the lift control cam, FIG. 6 is a perspective view showing its support shaft, and FIG. 7 is a perspective view showing the main intake valve. Fig. 8 is a front view showing the cam profile of the lift control cam for the sub-intake valve, Fig. 9 is a front view showing the cam profile of the lift control cam for the sub-intake valve, and Fig. 9 shows the relationship between the lift characteristics of the exhaust valve of the main/gekigai intake valve. Figures 10 to 14 are graphs showing the lift characteristics corresponding to each cam surface of the lift control cam, and Figure 15 shows the correspondence between engine speed, accelerator opening, and each cam surface. The graph in FIG. 16 is a P-Vfi diagram at idle in this embodiment. 17 to 21 show a conventional multi-cylinder internal combustion engine. FIG. 17 is a plan view thereof, FIG. 18 is a front sectional view thereof, and FIG. 19 is a partially cutaway front view showing its operation stop mechanism. figure,
Figure 20 is a sectional view taken along the line xx-xx in Figure 19, and the second
FIG. 1 is a graph showing the relationship between engine speed and output torque. 29...Main intake valve, 30...Sub-intake valve, 35...Variable valve mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1気筒について2つの吸気弁を備えた多気筒内燃機関に
おいて、これらの2つの吸気弁のそれぞれの弁開閉時期
及び弁リフト量を機関の運転条件に応じて段階的に可変
とする可変動弁機構を備え、これらの2つの吸気弁のリ
フト中心角に位相差を設けたことを特徴とする多気筒内
燃機関。
In a multi-cylinder internal combustion engine equipped with two intake valves per cylinder, a variable valve mechanism that changes the valve opening/closing timing and valve lift amount of each of these two intake valves in stages according to engine operating conditions. A multi-cylinder internal combustion engine characterized in that a phase difference is provided between lift center angles of these two intake valves.
JP14310085A 1985-06-24 1985-06-28 Multi-cylinder internal-combustion engine Granted JPS623113A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14310085A JPS623113A (en) 1985-06-28 1985-06-28 Multi-cylinder internal-combustion engine
US06/877,523 US4759321A (en) 1985-06-24 1986-06-23 Valve timing arrangement for internal combustion engine having multiple inlet valves per cylinder
DE3621080A DE3621080C3 (en) 1985-06-24 1986-06-24 Valve timing device for internal combustion engines with multiple intake valves per cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14310085A JPS623113A (en) 1985-06-28 1985-06-28 Multi-cylinder internal-combustion engine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP12399192A Division JPH05133212A (en) 1992-05-18 1992-05-18 Multiple cylinder internal combustion engine
JP5293754A Division JP2588362B2 (en) 1993-11-25 1993-11-25 Multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS623113A true JPS623113A (en) 1987-01-09
JPH0346644B2 JPH0346644B2 (en) 1991-07-16

Family

ID=15330906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14310085A Granted JPS623113A (en) 1985-06-24 1985-06-28 Multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS623113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369563A (en) * 1989-08-08 1991-03-25 Toyota Motor Corp Production of silicon nitride sintered body
US7041178B2 (en) 2000-02-16 2006-05-09 Ziptronix, Inc. Method for low temperature bonding and bonded structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027713A (en) * 1983-07-25 1985-02-12 Mazda Motor Corp Controller of valve timing of engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027713A (en) * 1983-07-25 1985-02-12 Mazda Motor Corp Controller of valve timing of engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369563A (en) * 1989-08-08 1991-03-25 Toyota Motor Corp Production of silicon nitride sintered body
US7041178B2 (en) 2000-02-16 2006-05-09 Ziptronix, Inc. Method for low temperature bonding and bonded structure

Also Published As

Publication number Publication date
JPH0346644B2 (en) 1991-07-16

Similar Documents

Publication Publication Date Title
JPS60113007A (en) Control device of intake and exhaust valve in internal- combustion engine
US5209201A (en) Internal combustion engine
JPH0914006A (en) Internal combustion engine valve movement controlling method
JPS6321809B2 (en)
JPS6213708A (en) Multicylinder internal-combustion engine
JPS60150459A (en) Engine with fuel injection device
JPS623113A (en) Multi-cylinder internal-combustion engine
JPS61164009A (en) Low noise and high output operated tappet valve system
JP4019492B2 (en) Spark ignition internal combustion engine
JP2936981B2 (en) Internal combustion engine with variable valve mechanism
JPS6213709A (en) Multicylinder internal-combustion engine
JPH05133212A (en) Multiple cylinder internal combustion engine
JP2588362B2 (en) Multi-cylinder internal combustion engine
JPS5910357Y2 (en) Intake air amount control device
JPS58190507A (en) Variable driving apparatus for internal-combustion engine
JPH0324835Y2 (en)
JPS6223510A (en) Multi-cylinder internal combustion engine
JPH059610B2 (en)
JPS61294109A (en) Multicylinder internal combustion engine
JPS6131145Y2 (en)
JPS6128002Y2 (en)
JPH08260925A (en) Intake system of engine
JPS5925008A (en) Valve operation switching device of internal combustion engine
JPS5951647B2 (en) engine
JPH03271519A (en) Exhaust timing controller of two-cycle engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term