JPS6230827B2 - - Google Patents

Info

Publication number
JPS6230827B2
JPS6230827B2 JP17534581A JP17534581A JPS6230827B2 JP S6230827 B2 JPS6230827 B2 JP S6230827B2 JP 17534581 A JP17534581 A JP 17534581A JP 17534581 A JP17534581 A JP 17534581A JP S6230827 B2 JPS6230827 B2 JP S6230827B2
Authority
JP
Japan
Prior art keywords
circuit
ultrasonic
transistor
constant current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17534581A
Other languages
Japanese (ja)
Other versions
JPS5876157A (en
Inventor
Masatoshi Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP17534581A priority Critical patent/JPS5876157A/en
Publication of JPS5876157A publication Critical patent/JPS5876157A/en
Publication of JPS6230827B2 publication Critical patent/JPS6230827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0623Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers coupled with a vibrating horn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • B05B17/0676Feeding means
    • B05B17/0684Wicks or the like

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Special Spraying Apparatus (AREA)

Description

【発明の詳細な説明】 本発明は、超音波振動によつて液体を噴霧せし
める吸入器の噴霧装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an atomizing device for an inhaler that atomizes a liquid using ultrasonic vibrations.

第1図は吸入器の噴霧装置Xの概略構成図を示
し、図中1は超音波を発生する超音波振動子で、
2は超音波振動子1による振動を機械的に共振さ
せて容器7内の液体8を吸水体9を介して噴霧せ
しめる超音波振動ホーンである。6は駆動電源で
ある。しかして駆動電源6にて超音波振動子1の
振動により超音波振動ホーン2が超音波振動し、
吸水体9の先端から液体8が噴霧される。今、噴
霧すべき液体8がなくなつたとき、若しくは液体
8を供給する吸水体9が外れた状態で超音波振動
ホーン2を駆動すると、振巾が増え、超音波振動
ホーン2の内部応力が増加して破損に至るため、
超音波振動ホーン2を常に定振巾にし、内部応力
が素材の許容応力を超えないようにしなければな
らない。
FIG. 1 shows a schematic configuration diagram of an inhaler spray device X, in which 1 is an ultrasonic vibrator that generates ultrasonic waves;
Reference numeral 2 denotes an ultrasonic vibration horn that mechanically resonates the vibrations produced by the ultrasonic vibrator 1 to atomize the liquid 8 in the container 7 through the water absorber 9. 6 is a driving power source. Then, the ultrasonic vibration horn 2 is ultrasonically vibrated by the vibration of the ultrasonic vibrator 1 in the drive power source 6,
Liquid 8 is sprayed from the tip of water absorbent body 9. If the ultrasonic vibration horn 2 is now driven when the liquid 8 to be sprayed is exhausted or the water absorber 9 that supplies the liquid 8 is removed, the amplitude will increase and the internal stress of the ultrasonic vibration horn 2 will increase. increase and lead to damage,
The ultrasonic vibration horn 2 must always have a constant vibration width so that the internal stress does not exceed the allowable stress of the material.

また、噴霧する際、液体の噴霧に至るまでには
次のような段階を経る。即ち、超音波振動子1の
振動を開始すると第2図aのように、超音波振動
ホーン2の先端部は図中の矢印方向に振動する。
次に第2図bのイに示すように超音波振動ホーン
2の先端の噴霧面に水膜ができ、その後同図cに
示すように定常噴霧に至る。かかる場合に以下の
ような問題を有している。即ち、超音波振動ホー
ン2を小さな電力で駆動するために、超音波振動
ホーン2の機械的共振周波数で駆動する。このた
め超音波振動ホーン2先端の霧化面の振巾が定常
的に噴霧できる値にするためには相当の時間がか
かり、噴霧すべき液体8は超音波振動ホーン2の
霧化面が振動を始めるとすぐに霧化面全体に広が
る。そして超音波振動ホーン2の先端の水膜のた
め、超音波振動子1の入力インピーダンスは増加
し、噴霧に必要な電力を与えるためには電圧を高
めてやる必要がある。反面、定常噴霧になつた後
は水膜は極めて狭い範囲となり、液体8が吸い上
げられるとすぐ噴霧するため、超音波振動子1の
入力インピーダンスは低下し、入力パワーが更に
大きくなり、上記と同様に超音波振動ホーン2の
内部応力が増加して超音波振動ホーン2が破損す
る恐れが生じる。このような特性を持つた超音波
振動ホーン2を使用して携帯に便利な吸入器を作
るとき、電池を電源として超音波振動ホーン2に
負荷状態に応じた電力を供給する必要がある。こ
のとき、電源が電池のためこの駆動はできるだけ
電力効率の良いことが要求される。
Furthermore, when spraying, the following steps are involved before the liquid is atomized. That is, when the ultrasonic vibrator 1 starts to vibrate, the tip of the ultrasonic vibration horn 2 vibrates in the direction of the arrow in the figure, as shown in FIG. 2a.
Next, a water film is formed on the spray surface at the tip of the ultrasonic vibrating horn 2, as shown in FIG. In such a case, there are the following problems. That is, in order to drive the ultrasonic vibration horn 2 with small electric power, it is driven at the mechanical resonance frequency of the ultrasonic vibration horn 2. Therefore, it takes a considerable amount of time to set the amplitude of the atomizing surface at the tip of the ultrasonic vibrating horn 2 to a value that allows constant atomization, and the liquid 8 to be atomized is vibrated by the atomizing surface of the ultrasonic vibrating horn 2. As soon as it starts, it spreads over the entire atomizing surface. Due to the water film at the tip of the ultrasonic vibrating horn 2, the input impedance of the ultrasonic vibrator 1 increases, and it is necessary to increase the voltage in order to provide the power necessary for spraying. On the other hand, after becoming a steady spray, the water film becomes extremely narrow and the liquid 8 is sprayed as soon as it is sucked up, so the input impedance of the ultrasonic transducer 1 decreases and the input power further increases, similar to the above. The internal stress of the ultrasonic vibration horn 2 increases, and there is a risk that the ultrasonic vibration horn 2 will be damaged. When making an inhaler that is convenient to carry using the ultrasonic vibrating horn 2 having such characteristics, it is necessary to supply electric power to the ultrasonic vibrating horn 2 according to the load state using a battery as a power source. At this time, since the power source is a battery, this drive is required to be as efficient as possible.

本発明は上述の点に鑑みて提供されたものであ
り、超音波振動ホーンは破損されることなく電力
効率の良い噴霧装置を提供することを目的とする
ものである。
The present invention has been provided in view of the above-mentioned points, and an object of the present invention is to provide a spraying device in which the ultrasonic vibration horn is not damaged and has good power efficiency.

以下本発明の実施例を図面により詳述する。第
3図はブロツク回路図を示し、Eは電源たる電池
電源、4はDC−DCコンバータを主として構成さ
れる昇圧定電流回路、5は昇圧定電流回路4の定
電流化された出力を駆動源として超音波振動子1
を振動させる発振回路である。また昇圧定電流回
路4は、2石のトランジスタQ1,Q2等からなる
発振制御回路11、チヨークコイルL1及びトラ
ンジスタQ3等からなるリンキングチヨーク昇圧
回路10、抵抗R8及びトランジスタQ4等からな
るフイードバツク回路12等から構成されてい
る。発振制御回路11はトランジスタQ1,Q2
抵抗R1,R2,R3,R4、コンデンサC1からなるDC
−DCコンバータで構成され、発振制御回路11
の出力を昇圧するリンキングチヨーク昇圧回路1
0のトランジスタQ3のベースに入力してある。
チヨークコイルL1によつて昇圧された電圧はコ
ンデンサC3に充電されて負荷たる発振回路5の
駆動源として供給される。フイードバツク回路1
2は抵抗R8に流れる負荷電流を検出して抵抗R9
を介してトランジスタQ4に入力せしめ、このト
ランジスタQ4にて発振制御回路11の発振周期
を変えるものである。R7は抵抗、C2はコンデン
サである。発振回路5はトランジスタQ5、トラ
ンスTR、チヨークコイルL2、コンデンサC5等か
らなりハートレー発振回路を構成し、前記昇圧定
電流回路4の出力を電源とし、超音波振動子1を
振動させる。即ち、昇圧定電流回路4は電池電源
Eの電圧を超音波振動ホーン2の噴霧に必要な電
圧まで昇圧し、更に発振回路5の入力電流を定電
流化することにより、超音波振動子1への駆動電
流をほぼ定電流化し、超音波振動子1の振巾を一
定とするためのものである。発振回路5は電歪型
の超音波振動子1をその機械的共振点近傍で駆動
するためのものである。第5図は超音波振動子1
の共振点付近の等価回路を示し、第6図は周波数
とインピーダンス、及び位相との関係を示したも
のであり、図中のfrは共振周波数、faは反共振周
波数を示している。第6図に示すように、超音波
振動子1が共振点付近でインダクタンス発振する
ことを利用し、前述のように発振回路5はハート
レー発振回路を構成している。
Embodiments of the present invention will be described in detail below with reference to the drawings. Fig. 3 shows a block circuit diagram, where E is a battery power source, 4 is a step-up constant current circuit mainly composed of a DC-DC converter, and 5 is a constant current output of the step-up constant current circuit 4 as a drive source. as ultrasonic transducer 1
This is an oscillation circuit that vibrates. Further, the boost constant current circuit 4 includes an oscillation control circuit 11 consisting of two transistors Q 1 and Q 2 , etc., a linking choke booster circuit 10 consisting of a choke coil L 1 , a transistor Q 3 , etc., a resistor R 8 , a transistor Q 4 , etc. It is composed of a feedback circuit 12 and the like. The oscillation control circuit 11 includes transistors Q 1 , Q 2 ,
DC consisting of resistors R 1 , R 2 , R 3 , R 4 and capacitor C 1
- Composed of a DC converter, oscillation control circuit 11
Linking chain booster circuit 1 that boosts the output of
It is input to the base of transistor Q3 of 0.
The voltage boosted by the choke coil L1 is charged in a capacitor C3 and is supplied as a driving source for the oscillation circuit 5, which is a load. Feedback circuit 1
2 detects the load current flowing through resistor R 8 and connects it to resistor R 9
The oscillation period of the oscillation control circuit 11 is changed by the transistor Q4 . R 7 is a resistor and C 2 is a capacitor. The oscillation circuit 5 is composed of a transistor Q 5 , a transformer TR, a chiyoke coil L 2 , a capacitor C 5 and the like, forming a Hartley oscillation circuit, and uses the output of the step-up constant current circuit 4 as a power source to vibrate the ultrasonic transducer 1 . That is, the step-up constant current circuit 4 boosts the voltage of the battery power source E to the voltage necessary for spraying the ultrasonic vibrating horn 2, and further makes the input current of the oscillation circuit 5 a constant current, thereby supplying the voltage to the ultrasonic vibrator 1. This is to make the drive current of the ultrasonic transducer 1 almost constant, and to make the amplitude of the ultrasonic transducer 1 constant. The oscillation circuit 5 is for driving the electrostrictive ultrasonic transducer 1 near its mechanical resonance point. Figure 5 shows ultrasonic transducer 1
Fig. 6 shows the relationship between frequency, impedance, and phase, and fr in the figure shows the resonant frequency and fa shows the anti-resonant frequency. As shown in FIG. 6, the oscillation circuit 5 constitutes a Hartley oscillation circuit as described above by utilizing the inductance oscillation of the ultrasonic transducer 1 near the resonance point.

今、第4図に示す具体回路図において、スイツ
チSWがオンされると、電池電源Eの極、スイ
ツチSW、抵抗R1、コンデンサC1、抵抗R3、抵抗
R4、抵抗R5、抵抗R6及び電池電源Eの極と電
流が流れてコンデンサC1を充電する。このと
き、抵抗R3の値は抵抗R1,R4,R5,R6に比して
大きくしてあり、トランジスタQ2,Q3のベー
ス・エミツタ間電圧VBEを超えないようにして電
圧が抵抗R4,R6に加わる。今、充電されたコン
デンサC1の電圧がトランジスタQ1のベース・エ
ミツタ間電圧を超えるとトランジスタQ1がオン
し、コレクタ電流が流れ始める。ここでフイード
バツク回路12からのフイードバツクがかからず
トランジスタQ4がオフ状態では、トランジスタ
Q2が即にオンして出力電圧がトランジスタQ3
ベースに印加される。このとき抵抗R1には
/R+R+RVの電圧がかかり、トランジス
タQ1 は完全にオンとなる。尚Vは電池電源Eの電圧で
ある。トランジスタQ1がオンとなると今度は電
池電源Eの極、トランジスタQ1、抵抗R2、コ
ンデンサC1、トランジスタQ2、抵抗R5、トラン
ジスタQ3及び電池電源Eの極へと電流が流
れ、コンデンサC1の電圧が低下する。ここで抵
抗R1とコンデンサC1にかかる電圧VC1とVR1との
和がトランジスタQ1のベース・エミツタ間電圧
BEより小さくなると、トランジスタQ1はオフ
となり、従つてトランジスタQ2もオフとなるた
め元の状態に戻る。従つて発振制御回路11から
の出力電圧は抵抗R6の両端に出力されて次段の
リンキングチヨーク昇圧回路10のトランジスタ
Q3に入力され、トランジスタQ3はオンオフさ
れ、チヨークコイルL1に電流が流れる。そして
トランジスタQ3がオフの際、チヨークコイルL1
の逆起電力によりダイオードD2が導通し、コン
デンサC3を充電し昇圧させる。このようにして
コンデンサC3に充電された電荷により次段の発
振回路5に電流が供給される。発振回路5の電流
が流れると、抵抗R8に流れる電流により電圧値
に変える。この電圧値によつてある電圧で抵抗
R9を介してトランジスタQ4がオンする。トラン
ジスタQ4がオンするとトランジスタQ2に流れる
ベース電流が減るため、トランジスタQ2がオン
しにくくなる。すなわち、トランジスタQ2のオ
フ期間つまり発振出力のオフ期間が伸びて発振周
期が変化することになる。またトランジスタQ3
がオンしている時間も入力電圧が上昇したときに
は少なくなるため、トランジスタQ3のコレクタ
電流も入力電圧によつて増加することなく、チヨ
ークコイルL1の飽和もすることなく、トランジ
スタQ3のベースドライブも少なくてすむ。この
ように負荷電流が多くなると、フイードバツク回
路12によつて発振制御回路11の発振周波数を
変化させ、リンキングチヨーク昇圧回路10のト
ランジスタQ3のオフ期間を長くして定電流を図
るものであり、そのため効率が良く電池寿命が長
くなるものである。
Now, in the specific circuit diagram shown in Fig. 4, when the switch SW is turned on, the poles of the battery power source E, the switch SW, the resistor R 1 , the capacitor C 1 , the resistor R 3 , the resistor
A current flows through R 4 , resistor R 5 , resistor R 6 and the poles of battery power source E to charge capacitor C 1 . At this time, the value of resistor R 3 is made larger than that of resistors R 1 , R 4 , R 5 , and R 6 so as not to exceed the base-emitter voltage V BE of transistors Q 2 and Q 3 . Voltage is applied to resistors R 4 and R 6 . Now, when the voltage of the charged capacitor C1 exceeds the base-emitter voltage of the transistor Q1 , the transistor Q1 turns on and collector current begins to flow. Here, if the feedback from the feedback circuit 12 is not applied and the transistor Q4 is in the off state, the transistor
Q 2 is immediately turned on and the output voltage is applied to the base of transistor Q 3 . At this time, a voltage of R 1 / R 1 +R 5 +R 6 V is applied to the resistor R 1 and the transistor Q 1 is completely turned on. Note that V is the voltage of the battery power source E. When the transistor Q 1 is turned on, current flows to the pole of the battery power source E, the transistor Q 1 , the resistor R 2 , the capacitor C 1 , the transistor Q 2 , the resistor R 5 , the transistor Q 3 and the pole of the battery power source E. The voltage on capacitor C1 drops. Here, when the sum of the voltages V C1 and V R1 applied to the resistor R 1 and the capacitor C 1 becomes smaller than the base-emitter voltage V BE of the transistor Q 1 , the transistor Q 1 is turned off, and therefore the transistor Q 2 is also turned off. Therefore, it returns to its original state. Therefore, the output voltage from the oscillation control circuit 11 is output across the resistor R 6 to the transistor of the linking choke booster circuit 10 in the next stage.
The current is input to Q 3 , transistor Q 3 is turned on and off, and current flows through chiyoke coil L 1 . And when transistor Q 3 is off, the chiyoke coil L 1
The back electromotive force causes diode D 2 to conduct, charging capacitor C 3 and boosting the voltage. A current is supplied to the next stage oscillation circuit 5 by the electric charge charged in the capacitor C 3 in this way. When the current of the oscillation circuit 5 flows, it is changed into a voltage value by the current flowing through the resistor R8 . Resistance at a certain voltage depends on this voltage value
Transistor Q4 is turned on via R9 . When transistor Q 4 turns on, the base current flowing to transistor Q 2 decreases, making it difficult for transistor Q 2 to turn on. That is, the off period of the transistor Q2 , that is, the off period of the oscillation output is extended, and the oscillation period changes. Also transistor Q 3
When the input voltage increases, the on-time time of transistor Q 3 decreases, so the collector current of transistor Q 3 does not increase with input voltage, and the base drive of transistor Q It also requires less. When the load current increases in this way, the oscillation frequency of the oscillation control circuit 11 is changed by the feedback circuit 12, and the off period of the transistor Q3 of the linking choke booster circuit 10 is lengthened to maintain a constant current. Therefore, the efficiency is high and the battery life is long.

ところで、昇圧定電流回路4の出力を駆動源と
して発振回路5が駆動する超音波振動子1の共振
点での等価電気回路は第7図のようになる。超音
波振動子1の機械側の振巾は共振周波数が殆んど
変化しないため振動速度と比例する。また振動速
度は負荷が軽ければ力係数Aがあまり変化しない
ため1次側の入力電流にほぼ比例する。いま電源
の出力電流を一定とすれば、負荷raが増えたとき
も振動速度v〓は一定となり、共振周波数変化も
0.2〜0.5%程度のため振巾を一定に保つことがで
きる。発振回路5の発振出力電流とDC入力電流
はほぼ比例することから、発振回路5の入力電流
を定電流化することは振巾を一定に保つことにな
る。即ち、昇圧定電流回路4の出力は定電流化さ
れているため、発振回路5への入力電流は定電流
であつて、上記のように超音波振動子1の振巾を
一定に保つことになる。また超音波振動子1の振
動により超音波振動ホーン2の先端面に吸水体9
が当接し、また水膜ができると第7図に示す負荷
抵抗raが増える。いま振動速度v〓が一定のため起
振力F〓が増えるよう1次入力電圧V〓が増加し、超
音波振動ホーン2に入る電力が増加して噴霧が始
まる。供水量が増大すると、それに伴ない超音波
振動ホーン2の入力電力が増大するため、極めて
安定した噴霧をさせることができる。
By the way, the equivalent electric circuit at the resonance point of the ultrasonic transducer 1 driven by the oscillation circuit 5 using the output of the boost constant current circuit 4 as a drive source is shown in FIG. The amplitude of the mechanical side of the ultrasonic vibrator 1 is proportional to the vibration speed because the resonance frequency hardly changes. Furthermore, if the load is light, the force coefficient A does not change much, so the vibration speed is approximately proportional to the input current on the primary side. Now, if the output current of the power supply is constant, the vibration speed v will remain constant even when the load ra increases, and the resonance frequency will also change.
Since it is about 0.2 to 0.5%, the amplitude can be kept constant. Since the oscillation output current of the oscillation circuit 5 and the DC input current are approximately proportional, making the input current of the oscillation circuit 5 a constant current keeps the amplitude constant. That is, since the output of the boost constant current circuit 4 is a constant current, the input current to the oscillation circuit 5 is a constant current, and as described above, the amplitude of the ultrasonic transducer 1 is kept constant. Become. Also, due to the vibration of the ultrasonic vibrator 1, the water absorbing body 9 is attached to the tip surface of the ultrasonic vibration horn 2.
When they come into contact and a water film is formed, the load resistance ra shown in Figure 7 increases. Since the vibration velocity v is now constant, the primary input voltage V is increased so that the excitation force F is increased, and the electric power input to the ultrasonic vibration horn 2 is increased to start spraying. As the amount of water supplied increases, the input power to the ultrasonic vibration horn 2 increases accordingly, making it possible to perform extremely stable spraying.

本発明は上述のように、電池電源を電源とする
昇圧定電流回路を設け、この昇圧定電流回路の昇
圧され且つ負荷電流を検出して定電流化された出
力を発振回路の駆動源とし、該発振回路の出力に
て超音波振動子を駆動するようにしたので、超音
波振動子の機械側の振巾は振動速度と比例し、こ
の振動速度は入力電流にほぼ比例するため、発振
回路に流入する電流を昇圧定電流回路により一定
にすれば超音波振動子の振巾も一定になり、従来
のように負荷の変動による振巾の増加による超音
波振動ホーンが超音波振動子の破壊を防止できる
効果を奏する。しかも電源を電池電源としての
で、本実施例の噴霧装置を用いて携帯で便利な吸
入器を提供できるものである。
As described above, the present invention provides a step-up constant current circuit using a battery as a power source, and uses the boosted and constant-current output of the step-up constant current circuit by detecting a load current as a drive source for an oscillation circuit. Since the ultrasonic vibrator is driven by the output of the oscillation circuit, the amplitude of the mechanical side of the ultrasonic vibrator is proportional to the vibration speed, and this vibration speed is approximately proportional to the input current, so the oscillation circuit If the current flowing into the circuit is made constant by a step-up constant current circuit, the amplitude of the ultrasonic vibrator will also be constant, and unlike conventional methods, the ultrasonic vibrating horn will destroy the ultrasonic vibrator due to the amplitude increase due to load fluctuations. This has the effect of preventing Moreover, since the power source is a battery power source, the spray device of this embodiment can be used to provide a portable and convenient inhaler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の噴霧装置の概略構成図、第2
図a〜cは同上の噴霧に至る状態を示す説明図、
第3図は本発明の実施例のブロツク回路図、第4
図は同上の具体回路図、第5図は同上の超音波振
動子の共振点付近の等価回路図、第6図a,bは
夫々同上の周波数とインピーダンス及び位相との
関係を示す特性図、第7図は同上の超音波振動子
の共振点での等価回路図で、1は超音波振動子、
2は超音波振動ホーン、4は昇圧定電流回路、5
は発振回路、Eは電池電源である。
Figure 1 is a schematic configuration diagram of a conventional spraying device;
Figures a to c are explanatory diagrams showing the state leading to the same spraying as above,
FIG. 3 is a block circuit diagram of an embodiment of the present invention;
The figure is a specific circuit diagram of the same as above, Figure 5 is an equivalent circuit diagram near the resonance point of the same as above ultrasonic transducer, and Figures 6 a and b are characteristic diagrams showing the relationship between frequency, impedance and phase as above, respectively. Figure 7 is an equivalent circuit diagram at the resonance point of the above ultrasonic transducer, where 1 is the ultrasonic transducer;
2 is an ultrasonic vibration horn, 4 is a step-up constant current circuit, 5
is an oscillation circuit, and E is a battery power source.

Claims (1)

【特許請求の範囲】 1 超音波振動子を振動せしめ、この超音波振動
により超音波振動ホーンを駆動せしめて液体の噴
霧を行なう噴霧装置において、電池電源を電源と
する昇圧定電流回路を設け、この昇圧定電流回路
の昇圧され且つ負荷電流を検出して定電流化され
た出力を発振回路の駆動源とし、該発振回路の出
力にて前記超音波振動子を駆動して成ることを特
徴とする噴霧装置。 2 前記昇圧定電流回路としてスイツチング式の
DC−DCコンバータも用いたことを特徴とする特
許請求の範囲第1項記載の噴霧装置。
[Scope of Claims] 1. In a spraying device that vibrates an ultrasonic vibrator and uses the ultrasonic vibration to drive an ultrasonic vibration horn to spray a liquid, a step-up constant current circuit using a battery as a power source is provided, The boosted constant current output of the boosted constant current circuit and the output that has been made constant by detecting the load current is used as a drive source for an oscillation circuit, and the ultrasonic transducer is driven by the output of the oscillation circuit. spray device. 2 A switching type of boost constant current circuit is used as the step-up constant current circuit.
The spraying device according to claim 1, characterized in that a DC-DC converter is also used.
JP17534581A 1981-10-31 1981-10-31 Spray apparatus Granted JPS5876157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17534581A JPS5876157A (en) 1981-10-31 1981-10-31 Spray apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17534581A JPS5876157A (en) 1981-10-31 1981-10-31 Spray apparatus

Publications (2)

Publication Number Publication Date
JPS5876157A JPS5876157A (en) 1983-05-09
JPS6230827B2 true JPS6230827B2 (en) 1987-07-04

Family

ID=15994436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17534581A Granted JPS5876157A (en) 1981-10-31 1981-10-31 Spray apparatus

Country Status (1)

Country Link
JP (1) JPS5876157A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295166A (en) * 1985-10-19 1987-05-01 Omron Tateisi Electronics Co Ultrasonic atomizer
JPH11165128A (en) 1997-12-04 1999-06-22 Namiki Precision Jewel Co Ltd Driving device of vibration actuator
WO2006009190A1 (en) * 2004-07-22 2006-01-26 Matsushita Electric Industrial Co., Ltd. Storage compartment and refrigerator using the same
JP2007046888A (en) * 2005-07-13 2007-02-22 Matsushita Electric Ind Co Ltd Refrigerator
JP2008049230A (en) * 2006-08-22 2008-03-06 Tamura Seisakusho Co Ltd Atomizer
JP2008089203A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator

Also Published As

Publication number Publication date
JPS5876157A (en) 1983-05-09

Similar Documents

Publication Publication Date Title
EP0230589B1 (en) Ultrasonic wave type fuel atomizing apparatus for internal combustion engine
JP2002537985A (en) Control system for atomizing liquid using piezoelectric vibrator
US4256987A (en) Constant current electrical circuit for driving piezoelectric transducer
JPS6230827B2 (en)
JPS6295166A (en) Ultrasonic atomizer
WO1999028052A1 (en) Device for driving vibration actuator
JP3398870B2 (en) Ultrasonic atomizer
JPH0221230B2 (en)
JP3111202B2 (en) Ultrasonic atomizer
JP2012049866A (en) Oscillator circuit and atomiser
US4510464A (en) LC-switched transistor oscillator for vibrator excitation
JPS5833822Y2 (en) Piezoelectric vibrator drive circuit for ultrasonic atomizer
JPH08281165A (en) Ultrasonic atomizing device
JPH0121020Y2 (en)
JP2011101072A (en) Oscillation circuit and atomization device
JPS6311936B2 (en)
JPS5830625Y2 (en) piezoelectric vibration device
JP3769735B2 (en) Ultrasonic exciter
JPS6122342Y2 (en)
JP3301491B2 (en) Reactant sensing device
JPS6119827Y2 (en)
JP2553593Y2 (en) Ultrasonic atomizer
JPS58122072A (en) Ultrasonic atomizer
JPH0517183Y2 (en)
JPS6211913B2 (en)