JPS62290205A - Light receiving circuit - Google Patents

Light receiving circuit

Info

Publication number
JPS62290205A
JPS62290205A JP61132731A JP13273186A JPS62290205A JP S62290205 A JPS62290205 A JP S62290205A JP 61132731 A JP61132731 A JP 61132731A JP 13273186 A JP13273186 A JP 13273186A JP S62290205 A JPS62290205 A JP S62290205A
Authority
JP
Japan
Prior art keywords
photodetector
optical
frequency
frequencies
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61132731A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61132731A priority Critical patent/JPS62290205A/en
Publication of JPS62290205A publication Critical patent/JPS62290205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To realize a high sensitivity circuit for detection by providing a photodetector, a transmission line connected to the photodetector in parallel and an amplifier element combined to the photodetector, and permitting the transmission line to resonate in parallel with an electrostatic capacity components that the photodetector and the amplifier element have and with plural frequencies. CONSTITUTION:At frequencies (f1, f2 and f3) in which the absolute value of an inductive reactance component in the transmission line 52 and that of a capacitive reactance component become equal, a parallel resonance occurs between the transmission line 52 and the electrostatic capacity C1. At these plural resonance frequencies, an impedance Zin which is viewed from the input level stage (terminals 53-53') of an amplifier A in an equiavalent circuit becomes a resistance equivalent to the negative resistance RL of the photodetector, and the impedance Zin at the time of resonance becomes the maximum value RL, compared to the impedance Zin at other frequencies. Consequently, at the resonance frequencies (f1, f2 and f3) a current arising in the photodetector is effectively converted into a voltage only by the negative resistance RL, therefore, noise in the photodetector can be reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は光通信システム、特に光ヘテロダイン検波方式
の光通信システム等に用いられる光受信回路に関するも
のである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical receiving circuit used in an optical communication system, particularly an optical heterodyne detection type optical communication system.

〔従来の技術〕[Conventional technology]

近年、半導体レーザの特性が向上し、単一軸モードで発
振し、かつスペクトル純度の高い半導体レーザが得られ
るようになってきた。このため、光の周波数や位相の情
報を用いる光ヘテロダイン検波方式の実現が可能になり
、高感度なシステムが実現されるようになってきた。
In recent years, the characteristics of semiconductor lasers have improved, and it has become possible to obtain semiconductor lasers that oscillate in a single-axis mode and have high spectral purity. For this reason, it has become possible to realize an optical heterodyne detection method that uses information on the frequency and phase of light, and highly sensitive systems have come to be realized.

光ヘテロダイン検波方式は、送信部において、情報信号
に対応して送イ3信号光の振幅1周波数あるいは位相を
変調することにより情報を伝送し、受信部において、局
部発振光源を用いて、送信信号光をヘテロダイン検波し
て信号を復調する。
In the optical heterodyne detection method, the transmitter transmits information by modulating the amplitude, frequency, or phase of three signal lights corresponding to the information signal, and the receiver uses a local oscillation light source to transmit information. The signal is demodulated by heterodyne detection of the light.

このような光ヘテロダイン検波方式の高感度化のために
は、光受信回路の低雑音化が重要である。
In order to increase the sensitivity of such an optical heterodyne detection method, it is important to reduce noise in the optical receiving circuit.

通常、光へテロゲイン検波では、信号光と局部発振光と
の周波数差、すなわち中間周波数を信号の伝送速度の2
倍以上に設定するのが望ましい。
Normally, in optical heterogain detection, the frequency difference between the signal light and the local oscillation light, that is, the intermediate frequency, is
It is desirable to set the value to at least double.

しかし、光受信回路の雑音は、光検出器及び増幅素子の
静電容量の影♂により、高周波数になる程、増加する。
However, the noise in the optical receiving circuit increases as the frequency becomes higher due to the influence of the capacitance of the photodetector and the amplifying element.

そのため、光ヘテロダイン検波においても光受信回路の
雑音の影百による感度劣化が生じやすいと言う欠点があ
った。
Therefore, even in optical heterodyne detection, there is a drawback that sensitivity degradation is likely to occur due to the influence of noise in the optical receiving circuit.

そこで、中間周波数付近で光受信回路の雑音を低下させ
る方法として、例えば治下らによる論文r400 M 
b / s光FSK長距離伝送実験」 (昭和60年度
電子通信学会情報・システム部門全国大会予稿集280
)に示されるように、光受信回路の光検出器に並列にイ
ンダクタンスを接続し、静電容量の影響をキャンセルし
た同調型光受信回路がある。この同調型光受信回路は、
光検出器に並列に接続したインダクタンスが、光検出器
と増幅素子に寄生する静電容量と中間周波数付近で並列
共振するようにしたもので、中間周波数付近で静電容量
成分が除去され、光ヘテロダイン検波用光受信回路とし
て十分な低雑音化がなされている。その結果、波長1.
5μm帯の伝送速度400 M b / sの光周波数
シフトキーイング(光FSX)方式により、光受信感度
−49dBmと言う高感度化を実現している。
Therefore, as a method to reduce the noise of the optical receiving circuit near the intermediate frequency, for example, the paper r400M by Harushita et al.
b/s Optical FSK Long Distance Transmission Experiment” (Proceedings of the 1985 IEICE Information and Systems Division National Conference 280
), there is a tunable optical receiver circuit in which an inductance is connected in parallel to the photodetector of the optical receiver circuit to cancel the influence of capacitance. This tunable optical receiver circuit is
The inductance connected in parallel to the photodetector resonates in parallel with the parasitic capacitance of the photodetector and amplification element near the intermediate frequency.The capacitance component is removed near the intermediate frequency, and the light The noise has been sufficiently reduced as an optical receiver circuit for heterodyne detection. As a result, wavelength 1.
It uses an optical frequency shift keying (optical FSX) method with a transmission rate of 400 Mb/s in the 5 μm band, achieving high optical reception sensitivity of -49 dBm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

さて、光ヘテロダイン検波通信方式では、光信号光の周
波数等の情報が利用できるため、光送信部において、多
数の光信号を高密度に周波数多重して送信し、光受信部
では、1つの光受信回路で光ヘテロダイン検波を行い、
各中間周波数ごとの信号成分を取り出し、各信号ごとに
復調する光の周波数多重通信が容易に行えると言う特徴
も有する。
Now, in the optical heterodyne detection communication system, since information such as the frequency of the optical signal light can be used, the optical transmitter transmits a large number of optical signals by high-density frequency multiplexing, and the optical receiver transmits one optical signal. Optical heterodyne detection is performed in the receiving circuit,
Another feature is that optical frequency division multiplex communication in which signal components for each intermediate frequency are extracted and demodulated for each signal can be easily performed.

一方、前述したインダクタンスを用いた同調型光受信回
路では、光検出器に寄生する静電容量とインダクタンス
との並列共振は、ある1点の周波数のみで生じる。
On the other hand, in the above-mentioned tunable optical receiver circuit using an inductance, parallel resonance between the parasitic capacitance of the photodetector and the inductance occurs only at one frequency.

従って、この同調型光受信回路では、光受信回路の低雑
音化は、ある特定の中間周波数帯においてのみなされ、
他の周波数帯においては、低雑音の効果は無い。
Therefore, in this tunable optical receiving circuit, the noise reduction of the optical receiving circuit is achieved only in a certain intermediate frequency band.
In other frequency bands, there is no effect of low noise.

−って、この同調型光受信回路を、光の周波数多重通信
を行う光ヘテロダイン通信用光受信回路に用いた場合、
ある特定の信号光に対しては高感度化が可能であるが、
その他の信号光に対しては高感度化は期待できず、通信
システムの性能は、感度の一番悪い信号光の特性で規定
されてしまい、同調型光受信回路を用いたことによる利
点は得られないと言う欠点があった。
- Therefore, when this tunable optical receiver circuit is used in an optical receiver circuit for optical heterodyne communication that performs optical frequency multiplex communication,
Although it is possible to increase the sensitivity to a certain specific signal light,
High sensitivity cannot be expected for other signal lights, and the performance of the communication system is determined by the characteristics of the signal light with the lowest sensitivity, so there is no advantage of using a tunable optical receiver circuit. There was a drawback that it could not be done.

本発明の目的は、光の周波数多重伝送を行った場合でも
、各中間周波数帯で光検出器及び増幅素子等の静電容量
の影響を除去して光受信回路の低雑音化を図り、各信号
光について高感度の光受信感度を得ることが可能な、光
周波数多重伝送に適した光ヘテロダイン検波用高域度光
受信回路を実現することにある。
An object of the present invention is to reduce the noise of an optical receiving circuit by eliminating the influence of capacitance of a photodetector and amplifying element in each intermediate frequency band even when frequency multiplexing transmission of light is performed. The object of the present invention is to realize a high-bandwidth optical receiver circuit for optical heterodyne detection suitable for optical frequency multiplexing transmission, which can obtain high optical reception sensitivity for signal light.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、送信部において、情報信号に対応して送信信
号光の振幅9周波数あるいは位相を変調することにより
情幸αを伝送し、受イ3部において、局部発振光源を用
いて、前記送信信号光をヘテロダイン検波して信号を復
調する光ヘテロダイン検波通信用の光受信回路において
、 光検出器と、前記光検出器に並列に接続した伝送線路と
、前記光検出器に結合した増幅素子とを備え、前記伝送
線路は、前記光検出器及び増幅素子のもつ静電容量成分
と複数の周波数で並列共振することを特徴としている。
In the present invention, the transmitter transmits the emotion α by modulating the amplitude 9 frequencies or the phase of the transmit signal light corresponding to the information signal, and the receiver transmits the transmit signal using a local oscillation light source. An optical receiving circuit for optical heterodyne detection communication that performs heterodyne detection of a signal light and demodulates the signal, comprising: a photodetector, a transmission line connected in parallel to the photodetector, and an amplification element coupled to the photodetector. The transmission line is characterized in that it resonates in parallel with capacitance components of the photodetector and amplification element at a plurality of frequencies.

〔作用〕[Effect]

以下、本発明の作用について述べる。 The effects of the present invention will be described below.

先受イ3回路の低雑音化のためには、光検出器及び増幅
素子等に寄生する静電容量による容量性リアクタンスを
誘導性リアクタンスで打ち消せばよい。
In order to reduce the noise of the pre-reception A3 circuit, it is sufficient to cancel the capacitive reactance caused by the parasitic capacitance of the photodetector, the amplifier element, etc. with the inductive reactance.

そこで本発明の光受信回路では、複数の周波数点で、容
量性リアクタンスを打ち消し、並列共振する誘導性リア
クタンスとして伝送線路を用いる。
Therefore, in the optical receiving circuit of the present invention, a transmission line is used as an inductive reactance that cancels the capacitive reactance and resonates in parallel at a plurality of frequency points.

第5図に、本発明の詳細な説明するための、光受信回路
の光検出器部の等価回路を示す。
FIG. 5 shows an equivalent circuit of a photodetector section of an optical receiving circuit for explaining the present invention in detail.

第5図の等価回路において、電流源■は光検出器Qこ光
が入射した際に生じる電流を示し、コンデンサC5は光
検出器、増幅素子等に寄生する容量成分、コンデンサC
2は容量値の大きなバイパスコンデンサ、抵抗RLは光
検出器の負荷抵抗、増幅器Aは入力1゛ンピーダンス無
限大、利得Gの理想増幅器である。また第5図中、52
で示したものが分布定数の伝送線路であり、この伝送線
路52の特性インピーダンスを20、位相定数をβ、線
路長をlとすると、端子51−51’から見た入力イン
ピーダンスZ、は ZR= J Zo tan β! となる。
In the equivalent circuit of Fig. 5, current source (■) indicates the current generated when light enters the photodetector Q, and capacitor C5 indicates the capacitance component parasitic to the photodetector, amplifier element, etc.
2 is a bypass capacitor with a large capacitance value, resistor RL is a load resistance of the photodetector, and amplifier A is an ideal amplifier with input 1 impedance infinite and gain G. Also, in Figure 5, 52
The line shown by is a distributed constant transmission line, and if the characteristic impedance of this transmission line 52 is 20, the phase constant is β, and the line length is l, the input impedance Z seen from the terminals 51-51' is ZR= J Zo tan β! becomes.

また第6図には、伝送線路52及びコンデンサC1、コ
ンデンサC!にょろりアクタンス成分Xの周波数特性を
示す。ここで、伝送線路52の位相定数βは周波数fに
対して、はぼ比例関係にあるので、伝送線路52のリア
クタンス成分は周波数の変化に対して、はぼ正接関数の
関係となる。
FIG. 6 also shows the transmission line 52, capacitor C1, capacitor C! The frequency characteristics of the Nyorori actance component X are shown. Here, since the phase constant β of the transmission line 52 has a roughly proportional relationship to the frequency f, the reactance component of the transmission line 52 has a roughly tangent function relationship with respect to a change in frequency.

さて、第6図において、伝送線路52の誘辺性のりアク
タンス成分とコンデンサCIによる容量性のりアクタン
ス成分の絶対値が等しくなる周波数(f+、f2+  
r3)では、伝送線路52と静電容量C1との間で並列
共振が生じる。このような複数の共振周波数においては
、第5図の等価回路の増幅器Aの入力段(端子53−5
3′)から見たインピーダンスZ inは、°はぼ光検
出器の負荷抵抗RLだけの抵抗分だけとなり、共振時の
インピーダンスZ、、、は他の周波数でのインピーダン
スZ inに比べ最大値RLとなる。
Now, in FIG. 6, the frequencies (f+, f2+
r3), parallel resonance occurs between the transmission line 52 and the capacitance C1. At such multiple resonant frequencies, the input stage (terminal 53-5) of amplifier A in the equivalent circuit of FIG.
The impedance Z in seen from 3') is only the resistance of the load resistance RL of the photodetector, and the impedance Z at resonance is the maximum value RL compared to the impedance Z in at other frequencies. becomes.

従って、この共振周波数(f+、fz、f*)において
、光検出器で生じた電流が、負荷抵抗RLのみで有効に
電圧に変換されるので、光受信回路の雑音は改善される
ことになる。
Therefore, at this resonant frequency (f+, fz, f*), the current generated in the photodetector is effectively converted into voltage only by the load resistor RL, so the noise in the optical receiving circuit is improved. .

そこで、この光受信回路を光周波数多重の光ヘテロダイ
ン用光受信回路として用いるには、各信号光と局部発振
光との光ヘテロダイン検波で得られる各中間周波数を、
第6図のf、、f、、f。
Therefore, in order to use this optical receiving circuit as an optical heterodyne optical receiving circuit for optical frequency multiplexing, each intermediate frequency obtained by optical heterodyne detection of each signal light and local oscillation light is
f, , f, , f in FIG.

等の共振周波数に設定すれば、各信号光に対して高感度
の光受信感度が得られることになる。
If the resonant frequency is set to a value such as , high optical reception sensitivity can be obtained for each signal light.

〔実施例〕〔Example〕

次に実施例を用いて本発明について説明する。 Next, the present invention will be explained using examples.

第1図は本発明の一実施例である光受信回路の回路図で
ある。
FIG. 1 is a circuit diagram of an optical receiving circuit which is an embodiment of the present invention.

第1図において、1は光検出器、2は光検出器1に結合
した増幅素子、3は光検出器lに並列に接続され、光検
出器1及び増幅素子2に寄生する静電容量と並列共振を
生じさせるための伝送線路、C3、C4、Cs 、Cb
は直流カットのためのバイパスコンデンサ、RL、RD
は負荷抵抗である。
In FIG. 1, 1 is a photodetector, 2 is an amplification element coupled to the photodetector 1, and 3 is connected in parallel to the photodetector l, and the electrostatic capacitance parasitic to the photodetector 1 and the amplification element 2 is Transmission lines for generating parallel resonance, C3, C4, Cs, Cb
are bypass capacitors for DC cut, RL, RD
is the load resistance.

この光受信回路では、光検出器1にInGaAS−PI
Nフォトダイオードを、増幅素子2にGaAs−FET
を用いた。光検出器1の負荷抵抗R,は10にΩとし、
バイパスコンデンサC’s、Ca、CS 、C,には静
電容i0.33μFのものを用いた。また、光(★出器
1及び増幅素子2に寄生する静電容量は29F程度であ
り、伝送線路3にはこの容量成分と300MHz及び1
GHz程度で並列共振が生じるように、アルミナ基板上
に特性インピーダンス100Ω、vA路長1001嘗の
マイクロストリップ線路を用いた。
In this optical receiving circuit, the photodetector 1 has InGaAS-PI.
N photodiode and GaAs-FET as amplifier element 2
was used. The load resistance R of the photodetector 1 is set to 10Ω,
Bypass capacitors C's, Ca, CS, and C had a capacitance of 0.33 μF. In addition, the parasitic capacitance of the light output device 1 and the amplification element 2 is about 29F, and the transmission line 3 has this capacitance component and 300MHz and 1
A microstrip line with a characteristic impedance of 100Ω and a vA path length of 1001 mm was used on an alumina substrate so that parallel resonance occurred at about GHz.

第2図にこの光受信回路の雑音特性を示す。第2図は、
横軸に周波数、縦軸に雑音特性の指標となる入力換算雑
音電流密度をとったものである。
Figure 2 shows the noise characteristics of this optical receiver circuit. Figure 2 shows
The horizontal axis represents frequency, and the vertical axis represents input equivalent noise current density, which is an index of noise characteristics.

この光受信回路は、周波数300 MHz 、 1.1
 GHzで並列共振が生じており、これらの周波数にお
いて入力換算雑音電流密度の値は、300MHzの周波
数で約2pA/斥]、1.1GHzの周波数で約2.5
 pA/ 口と小さくなっている。
This optical receiving circuit has a frequency of 300 MHz, 1.1
Parallel resonance occurs at GHz, and the input-referred noise current density at these frequencies is approximately 2 pA/pA at a frequency of 300 MHz and approximately 2.5 at a frequency of 1.1 GHz.
It is smaller than pA/mouth.

これらの値は、光検出器1の負荷抵抗RLの値10にΩ
で決まる熱雑音の値、1.3pA/J]にほぼ近い値で
あり、300MHz及び1.1GHzの並列共振点にお
いて、光検出器1等による容量の影習を除去することが
できた。
These values are 10Ω for the load resistance RL of photodetector 1.
This value is almost close to the thermal noise value determined by 1.3 pA/J], and it was possible to eliminate the influence of capacitance caused by the photodetector 1 and the like at the parallel resonance points of 300 MHz and 1.1 GHz.

ちなみに、共振器を用いない従来の光受信回路での雑音
は、300MHzで1opAi7Tli了、IGHzで
20p A / 口程度であり、本実施例の光受信回路
では、伝送線路3による共振回路を用いて、大幅な雑音
の低減が実現できた。
By the way, the noise in a conventional optical receiving circuit that does not use a resonator is about 1 opAi7Tli at 300 MHz and about 20 pA/unit at IGHz. , a significant reduction in noise was achieved.

、 さて、この光受信回路を用いて、波長1.55μm
, Now, using this optical receiver circuit, the wavelength is 1.55 μm.
.

伝送速度140 M b / sの2値の位相シフトキ
ーイング(PSK)方式による信号光を2波用いた光周
波数多重の光ヘテロダイン検波を行った。
Optical frequency multiplexed optical heterodyne detection was performed using two waves of signal light using a binary phase shift keying (PSK) method with a transmission rate of 140 Mb/s.

第3図に光ヘテロダイン検波系の簡単なブロック図を示
す。第3図のブロック図において、第1の光源4及び第
2の光源5は、波長1.55μmのフアプリ−ペロー型
半導体レーザダイオードに光帰還を施して、単一軸モー
ド発振、狭スペクトル幅化を図ったものであり、それぞ
れの光源4.5に半導体レーザの温度制御、注入電流の
制御を行うことにより、2つの光源4,5の発振周波数
差を800MHzに設定した。これらの光源の出射光を
第1及び第2の光変調器6.7で2値の位相シフトキー
イング(P S K)の変調を行い、第1の光合波器8
で合波したのち、単一モードファイバ10に入射させた
FIG. 3 shows a simple block diagram of the optical heterodyne detection system. In the block diagram of FIG. 3, the first light source 4 and the second light source 5 are Fupley-Perot type semiconductor laser diodes with a wavelength of 1.55 μm that undergo optical feedback to achieve single-axis mode oscillation and narrow spectrum width. The oscillation frequency difference between the two light sources 4 and 5 was set to 800 MHz by controlling the temperature of the semiconductor laser and controlling the injection current for each light source 4.5. The light emitted from these light sources is subjected to binary phase shift keying (PSK) modulation by first and second optical modulators 6.
After multiplexing, the signals were input into a single mode fiber 10.

一方、局部発振光源には、第1.第2の光源と同じ構成
の第3の光源11を用い、第2の光合波器12で局部発
振光と2つの信号光を合波した後、第1図で示した光受
信回路13を用い、光ヘテロダイン検波を行った。
On the other hand, the local oscillation light source has the first oscillation light source. Using the third light source 11 having the same configuration as the second light source, the second optical multiplexer 12 multiplexes the local oscillation light and the two signal lights, and then the optical receiver circuit 13 shown in FIG. , optical heterodyne detection was performed.

ここで局部発振光源として用いた第3の光源11の発振
周波数を調整して、光受信回路13で生じる2つの中間
周波数の出力14のピーク値がそれぞれ300 MHz
、1.1 GHzとなる様に設定した。
Here, by adjusting the oscillation frequency of the third light source 11 used as a local oscillation light source, the peak values of the two intermediate frequency outputs 14 generated in the optical receiving circuit 13 are each 300 MHz.
, 1.1 GHz.

これらの2つの中間周波数の出力14を増幅器15で十
分に増幅した後、分岐して、一方は中心周波数300 
M Hzのバンドパスフィルタ16、他方は中心JID
が1.1GHzのバンドパスフィルタ17に導き、それ
ぞれ、中間周波数が300 MHz 、 1.1GHz
の中間周波数成分を取り出した。
After the outputs 14 of these two intermediate frequencies are sufficiently amplified by the amplifier 15, they are split, and one is output at the center frequency 300.
MHz bandpass filter 16, the other center JID
is guided to a band pass filter 17 of 1.1 GHz, and the intermediate frequencies are 300 MHz and 1.1 GHz, respectively.
The intermediate frequency components were extracted.

その後、それぞれの中間周波数成分は、第1及び第2の
差動PSK復調器18.19により復調を行った。
Thereafter, each intermediate frequency component was demodulated by first and second differential PSK demodulators 18 and 19.

さて、以上のような構成で、伝送速度140Mb/Sに
対する光受信感度(符号誤り率10−’)を測定した結
果、中間周波数を300MHzに設定した第1の光源4
による信号光に対する光受信感度は59.5dBm、中
間周波数を1.1C;Hzに設定した第2の光源5によ
る信号光に対する光受信感度は−59,0dBmであり
、300MHzと1.IGHz付近で低雑音である光受
信回路により、それぞれの光信号に対して同等の高感度
化が実現できた。
Now, as a result of measuring the optical reception sensitivity (bit error rate 10-') at a transmission rate of 140 Mb/S with the above configuration, it was found that the first light source 4 with the intermediate frequency set to 300 MHz
The optical receiving sensitivity for the signal light from the second light source 5 with the intermediate frequency set to 1.1 C;Hz is -59.0 dBm, and the optical receiving sensitivity for the signal light from the second light source 5 whose intermediate frequency is set to 1.1 C;Hz is -59.0 dBm. Using an optical receiver circuit with low noise near IGHz, we were able to achieve equally high sensitivity for each optical signal.

第4図は、第1図に示した光受信回路を、変調方式の異
なる他の光ヘテロダイン検波系に応用した場合の光ヘテ
ロダイン検波系のブロック図を示したものである。
FIG. 4 shows a block diagram of an optical heterodyne detection system in which the optical receiving circuit shown in FIG. 1 is applied to another optical heterodyne detection system using a different modulation method.

ここで用いた光受信回路13は、第1図に示したものと
同様のものであるが、この応用例では、1つの光源を用
いた2値の周波数シフトキーイング(F S X)方式
によるデュアルフィルタ復調を行っている。
The optical receiver circuit 13 used here is similar to the one shown in FIG. 1, but in this application example, a dual frequency shift keying (F S Performing filter demodulation.

第4図のブロック図において、送信用の光源20及び局
部発振用の光源21には、波長1.55μmで単一軸モ
ード発振し、注入電流及び温度別1111により、発振
周波数の安定化を図った分布帰還型半導体レーザダイオ
ード(D F B −L D)を用いた。
In the block diagram of FIG. 4, the light source 20 for transmission and the light source 21 for local oscillation oscillate in a single axis mode at a wavelength of 1.55 μm, and the oscillation frequency is stabilized by adjusting the injection current and temperature according to 1111. A distributed feedback semiconductor laser diode (DFB-LD) was used.

また送信用の光′R20では、変調信号28によりバイ
アス電流を微少に変化させ、2値のFSX変調を行った
。この変調の際、2値の信号マーク“1”とスペース“
0″に対応した周波数偏移は800MH2とした。
Furthermore, in the transmission light 'R20, the bias current was slightly changed by the modulation signal 28 to perform binary FSX modulation. During this modulation, the binary signal mark “1” and the space “
The frequency shift corresponding to 0'' was set to 800 MH2.

このFSX信号光は単一モードファイバ10を通過した
後、光合波器12で局部発振光と合波して、光受信回路
13で光ヘテロダイン検波される。
After this FSX signal light passes through a single mode fiber 10, it is combined with local oscillation light by an optical multiplexer 12, and optically heterodyne detected by an optical receiver circuit 13.

ここで、光受信回路13の中間周波数の出力14におけ
るスペース“0”の中間周波数のピーク値が300MH
z、マーク“1”の中間周波数のピーク値が1.1GH
zとなる様に、局部発振用の光源21の発振周波数を調
整した。
Here, the peak value of the intermediate frequency of the space "0" in the intermediate frequency output 14 of the optical receiving circuit 13 is 300 MH
z, the peak value of the intermediate frequency of mark “1” is 1.1 GH
The oscillation frequency of the light source 21 for local oscillation was adjusted so that z.

これらの2つのピークをもつ中間周波数の出力14を増
幅器15で十分に増幅した後、分岐して、一方は中心周
波数300MHzのバンドパスフィルタ16、他方は中
心周波数1.1GHzのバンドパスフィルタ17に導き
、それぞれ、中心周波数が300MHzのスペース“0
”の信号成分、中心周波数が1.1GHzのマーク“l
”の信号成分を取り出した。
After the intermediate frequency output 14 having these two peaks is sufficiently amplified by the amplifier 15, it is branched, and one is sent to a band-pass filter 16 with a center frequency of 300 MHz, and the other is sent to a band-pass filter 17 with a center frequency of 1.1 GHz. space “0” with a center frequency of 300 MHz, respectively.
” signal component, center frequency is 1.1 GHz mark “l
” signal component was extracted.

その後、これらの信号成分を第1及び第2の包路線検波
器22.23で復調した後、第1及び第2の包路線検波
器22.23からの第1及び第2出力25゜26を差動
増幅器24にmき、2値FSK信号光の復二円を行った
After that, these signal components are demodulated by the first and second envelope detectors 22.23, and then the first and second outputs 25° 26 from the first and second envelope detectors 22.23 are A differential amplifier 24 was used to convert the binary FSK signal light.

さて以上のような構成で、伝送速度140Mb/Sに対
する2値のFSK信号光に対する光受信感度(符号誤り
率10−’)を測定した。その結果、中開用波数300
MHzのスペース“0”の信号成分である出力25のみ
を用いた光受信感度は一53dBm1中心周波数1.1
GHzのマークa1”の信号成分である出力26のみを
用いた光受信感度は−52,5dBmであり、両者の光
受信感度には、はとんど差が無かった。
Now, with the above configuration, the optical reception sensitivity (bit error rate 10-') for binary FSK signal light at a transmission rate of 140 Mb/s was measured. As a result, the wave number for medium opening is 300.
The optical receiving sensitivity using only the output 25, which is the signal component of the MHz space “0”, is -53 dBm1 with a center frequency of 1.1.
The optical reception sensitivity using only the output 26, which is the signal component of the GHz mark a1'', was -52.5 dBm, and there was almost no difference between the two optical reception sensitivities.

また、これら2つの出力25.26を差動増幅器24で
合成した2値の復調を行った出力27を用いた場合の光
受信感度は一56dBmとなり、FSXの光ヘテロダイ
ン検波方式としては、優れた光受信感度を得ることがで
きた。
In addition, when using the output 27 obtained by combining these two outputs 25.26 with the differential amplifier 24 and performing binary demodulation, the optical reception sensitivity is -56 dBm, which is excellent as an FSX optical heterodyne detection method. We were able to obtain optical reception sensitivity.

本発明には、以上の実施例の他にもいろいろな態様が可
能である。
The present invention can have various other embodiments in addition to the above-described embodiments.

たとえば、光受信回路の光検出器1としては、InGa
As−P INフォトダイオードの他にも、アバランシ
ェ・フォト・ダイオード(APD)、光導電検出器や光
電子増倍管等の利用が可能である。
For example, as the photodetector 1 of the optical receiving circuit, InGa
In addition to As-PIN photodiodes, avalanche photodiodes (APDs), photoconductive detectors, photomultiplier tubes, and the like can be used.

また、増幅素子2としてはGaAs−FETの他にも、
バイポーラトランジスタ等を用いてもよい。
In addition to GaAs-FET, as the amplification element 2,
A bipolar transistor or the like may also be used.

さらに、光検出器1等に寄生する静電容量成分を除去し
、並列共振する伝送線路としては、マイクロストリップ
線路の他にも、レフヘル線、同軸線路等を用いてもよい
Furthermore, as a transmission line that removes parasitic capacitance components in the photodetector 1 and the like and resonates in parallel, in addition to the microstrip line, a Levher line, a coaxial line, etc. may be used.

また、並列共振周波数を調整するために、光検出器1に
並列に、容量値の小さなコンデンサを接続してもよい。
Further, in order to adjust the parallel resonance frequency, a capacitor with a small capacitance value may be connected in parallel to the photodetector 1.

また、応用例で示した光周波数多重の光ヘテロダイン検
波方式は2つの信号光を用いた2波多重の場合であるが
、光受信回路の並列共振周波数は理論上無限に存在する
ので、2以上の光周波数多重も可能である。
In addition, the optical frequency multiplexing optical heterodyne detection method shown in the application example is a case of two-wave multiplexing using two signal lights, but since there are theoretically an infinite number of parallel resonant frequencies of the optical receiving circuit, Optical frequency multiplexing is also possible.

C発明の効果〕 以上のように本発明による光受信回路では、光検出器及
び増幅素子に寄生する静電容量成分を除去し、並列共振
する周波数が複数存在する。このため、各共振周波数で
光受信回路の低雑音化が図れ、光ヘテロダイン検波方式
による光周波数多重伝送を行った場合、各信号光に対し
て、それぞれ高感度の光受信感度を得ることができる。
C Effects of the Invention] As described above, in the optical receiving circuit according to the present invention, the parasitic capacitance component in the photodetector and the amplification element is removed, and there are a plurality of frequencies that resonate in parallel. Therefore, the noise of the optical receiving circuit can be reduced at each resonant frequency, and when optical frequency multiplexing transmission is performed using the optical heterodyne detection method, high optical receiving sensitivity can be obtained for each signal light. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である光受信回路の回路図、 第2図は第1図の光受信回路の雑音特性を示す図、 第3図は第1図の光受信回路を用いた光周波数1の光ヘ
テロダイン検波系のブロック図、第4図は第1図の光受
信回路を用いたFSX光ヘテロダイン検波方式のブロッ
ク図、 第5図は本発明の光受信回路の等価回路を示す図、 第6図は本発明の光受信回路の原理を説明するための図
である。 1・・・光検出器 2・・・増幅素子 3・・・伝送線路 、i、5.11,20.21・・・光源。 6.7・・・光変調器 8.12・・・光合波器 10・・・単一モードファイバ 13・・・光受信回路 14・・・出力 15・・・増幅器 16.17・・・バンドパスフィルタ 18、19・・・差動PSK復調器 22.23・・・包絡線検波器 24・・・差動増幅器 25.26.27・・・出力 28・・・変調信号 RL、Ro・・・負荷抵抗 C+、Cz・・・コンデンサ C3、C−、Cs 、Cb・・・バイパスコンデンサ A・・・増幅器 代理人弁理士   岩  佐  義  幸1−・−・・
光検出n 2−−−−−一増幅素子 3−−−−−−イ云送線3各 PL、RD・−−−一負荷抵抗 C3,C4,C5,C6−−−−− )’イノぐスコン
デ゛ンサ第 1図 しゞ 52−−・−・イテ送4i路 I ・−・・・電/史源 RL・・−it荷低抵 抗+、Cz−−・−コンデンサ A・−一−−・増幅器 第5図 ベ ニS+−べへ八ビ
Fig. 1 is a circuit diagram of an optical receiver circuit that is an embodiment of the present invention, Fig. 2 is a diagram showing the noise characteristics of the optical receiver circuit of Fig. 1, and Fig. 3 is a diagram showing the noise characteristics of the optical receiver circuit of Fig. 1. Figure 4 is a block diagram of the FSX optical heterodyne detection system using the optical receiver circuit of Figure 1, and Figure 5 is an equivalent circuit of the optical receiver circuit of the present invention. FIG. 6 is a diagram for explaining the principle of the optical receiving circuit of the present invention. 1... Photodetector 2... Amplifying element 3... Transmission line, i, 5.11, 20.21... Light source. 6.7... Optical modulator 8.12... Optical multiplexer 10... Single mode fiber 13... Optical receiving circuit 14... Output 15... Amplifier 16.17... Band Pass filters 18, 19... Differential PSK demodulator 22, 23... Envelope detector 24... Differential amplifier 25, 26, 27... Output 28... Modulation signals RL, Ro...・Load resistance C+, Cz...Capacitor C3, C-, Cs, Cb...Bypass capacitor A...Amplifier agent Yoshiyuki Iwasa 1--...
Photodetection n 2 ------- 1 Amplification element 3 ------- A Transmission line 3 each PL, RD --- 1 Load resistor C3, C4, C5, C6 ------- )' Ino Fig. 1 52---Item transmission 4i path I ---Electric/historical source RL--it load low resistance +, Cz----Capacitor A--1- -・Amplifier Figure 5 Beni S + - Behe Hachibi

Claims (1)

【特許請求の範囲】[Claims] (1)送信部において、情報信号に対応して送信信号光
の振幅、周波数あるいは位相を変調することにより情報
を伝送し、受信部において、局部発振光源を用いて、前
記送信信号光をヘテロダイン検波して信号を復調する光
ヘテロダイン検波通信用の光受信回路において、 光検出器と、前記光検出器に並列に接続した伝送線路と
、前記光検出器に結合した増幅素子とを備え、前記伝送
線路は、前記光検出器及び増幅素子のもつ静電容量成分
と複数の周波数で並列共振することを特徴とする光受信
回路。
(1) The transmitter transmits information by modulating the amplitude, frequency, or phase of the transmit signal light in accordance with the information signal, and the receiver performs heterodyne detection of the transmit signal light using a local oscillation light source. An optical receiving circuit for optical heterodyne detection communication that demodulates a signal by demodulating a signal, comprising: a photodetector; a transmission line connected in parallel to the photodetector; An optical receiving circuit characterized in that the line resonates in parallel with the capacitance components of the photodetector and the amplifying element at a plurality of frequencies.
JP61132731A 1986-06-10 1986-06-10 Light receiving circuit Pending JPS62290205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132731A JPS62290205A (en) 1986-06-10 1986-06-10 Light receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132731A JPS62290205A (en) 1986-06-10 1986-06-10 Light receiving circuit

Publications (1)

Publication Number Publication Date
JPS62290205A true JPS62290205A (en) 1987-12-17

Family

ID=15088273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132731A Pending JPS62290205A (en) 1986-06-10 1986-06-10 Light receiving circuit

Country Status (1)

Country Link
JP (1) JPS62290205A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012452A1 (en) * 1989-04-13 1990-10-18 Northern Telecom Limited Optical receivers
US5023951A (en) * 1989-04-14 1991-06-11 Northern Telecom Limited Optical receivers
US5046139A (en) * 1990-06-28 1991-09-03 Northern Telecom Limited Optical receiver for subcarrier frequency division multiplexing signals
EP0520308A2 (en) * 1991-06-27 1992-12-30 Alcatel SEL Aktiengesellschaft Amplifying circuit device
JPH07131426A (en) * 1993-09-24 1995-05-19 Tektronix Inc Light power converting circuit
JP2012015731A (en) * 2010-06-30 2012-01-19 Mitsubishi Electric Corp High frequency multistep active circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012452A1 (en) * 1989-04-13 1990-10-18 Northern Telecom Limited Optical receivers
US5023951A (en) * 1989-04-14 1991-06-11 Northern Telecom Limited Optical receivers
US5046139A (en) * 1990-06-28 1991-09-03 Northern Telecom Limited Optical receiver for subcarrier frequency division multiplexing signals
EP0520308A2 (en) * 1991-06-27 1992-12-30 Alcatel SEL Aktiengesellschaft Amplifying circuit device
EP0520308A3 (en) * 1991-06-27 1994-03-02 Sel Alcatel Ag
JPH07131426A (en) * 1993-09-24 1995-05-19 Tektronix Inc Light power converting circuit
JP2012015731A (en) * 2010-06-30 2012-01-19 Mitsubishi Electric Corp High frequency multistep active circuit

Similar Documents

Publication Publication Date Title
Darcie Subcarrier multiplexing for multiple-access lightwave networks
US7406269B2 (en) Feedback-controlled coherent optical receiver with electrical compensation/equalization
US4726011A (en) Coherent optical fiber communication with frequency-division-multiplexing
CA1292776C (en) Optical receiver circuit and method
JPH09186673A (en) Optical communication system using tandem fabry-perot etalon
US5784506A (en) Frequency-encoded optical CDMA transmission system and optical receiver therefor
JPH0385834A (en) Optical frequency multiplexer and optical frequency multiplex transmitter
JPH022232A (en) Subcarrier multiplex optical transmission system having optical channel selection
US5384651A (en) Optical transmission system
JPH0591047A (en) Optical balanced transmitter
JPS61261935A (en) Optical fiber communication method and system for local areanetwork by frequency division multiplexing
JPS6390725A (en) Optical mixer for up-conversion or down-conversion of optical signal
JPH02162330A (en) Method and device for receiving polarization diversity light and method for stabilizing intermediate frequency
JPS62290205A (en) Light receiving circuit
US7212748B2 (en) Frequency detection circuit, optical receiver and optical transmission system using the same
JPH05227103A (en) Optical communication method
JP4104821B2 (en) Reduce crosstalk in bidirectional optical links
JPS63114429A (en) Photodetecting circuit
US4793000A (en) Light signal receiver
Imai et al. A high sensitivity receiver for multigigabit-per-second optical CPFSK transmission systems
US5289480A (en) Triple-function semiconductor laser amplifier
JPS63198425A (en) Intermediate frequency stabilization method
JPS61222330A (en) Optical reception circuit
Naito et al. Optimum system parameters for multigigabit CPFSK optical heterodyne detection systems
CN105915290B (en) A kind of super-intensive channel-type light-carried wireless cut-in method based on soft filtering