JPS62284909A - Engine valve and manufacture thereof - Google Patents

Engine valve and manufacture thereof

Info

Publication number
JPS62284909A
JPS62284909A JP12571986A JP12571986A JPS62284909A JP S62284909 A JPS62284909 A JP S62284909A JP 12571986 A JP12571986 A JP 12571986A JP 12571986 A JP12571986 A JP 12571986A JP S62284909 A JPS62284909 A JP S62284909A
Authority
JP
Japan
Prior art keywords
valve
layer
valve body
alloyed
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12571986A
Other languages
Japanese (ja)
Inventor
Shinji Oishi
大石 真治
Joji Miyake
譲治 三宅
Haratsugu Koyama
原嗣 小山
Takaaki Kanazawa
孝明 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12571986A priority Critical patent/JPS62284909A/en
Publication of JPS62284909A publication Critical patent/JPS62284909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide excellent resistance to heat and resistance to wear at a low cost, by a method wherein an allowed layer consisting of a specified composition containing an Ni group alloy is alloyed integrally with a valve body on the valve face of the valve body formed by an austenite series heat resistant steel. CONSTITUTION:In a valve body 1 formed by an austenite series heat resistant steel, a shank part 1A and a bevel part 1B are formed integrally with each other, and a face surface 2 making contact with a matching valve seat material is formed to the bevel part 1B. In this case, an Ni group alloy is placed on the valve face 2, and is irradiated from a position above the Ni group alloy with high density energy. The Ni group alloy and the surface layer of its underlaying surface layer are rapidly molten and rapidly re-coagulated to form an alloyed layer 3 consisting of 70% or more Ni, 14-18% Cr, 5-10% Fe, 2-6% Fe, 2-6% Ti, 10.4-1.0% A, and remaining percent inevitable impurity. Thereafter, heat treatment is applied on the alloyed layer 3 at a temperature of 750-850 deg.C.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 この発明は自動車等のエンジンのエキゾーストバルブな
どに使用されるエンジンバルブに関し、特にバルブシー
トとの当り面(バルブフェース)に耐熱性、耐摩耗性の
優れた留を形成したバルブおよびその製造方法に関する
ものでおる。
[Detailed Description of the Invention] 3. Detailed Description of the Invention Industrial Field of Application This invention relates to an engine valve used for an exhaust valve of an engine such as an automobile, and particularly to an engine valve used for an exhaust valve of an engine such as an automobile. This invention relates to a valve having a stop having excellent heat resistance and wear resistance, and a method for manufacturing the same.

従来の技1ホi 周知のようにエンジンバルブには浸れた耐熱[生が要求
されるとともに、特にバルブシートに当接するバルブフ
ェースには高い耐摩耗性が要求され、このほか高温耐食
性、高温耐酸化性、1til熱衝撃性も要求される。特
にエンジンバルブのうちでもエキゾーストバルブは著し
い高温に曝されるため、高温下での優れた耐摩耗性が要
求される。
Conventional Techniques 1 As is well known, engine valves are required to be immersed in heat and have high wear resistance, especially for the valve face that contacts the valve seat, as well as high temperature corrosion resistance and high temperature acid resistance. chemical resistance and 1 til thermal shock resistance are also required. In particular, among engine valves, exhaust valves are exposed to extremely high temperatures and are therefore required to have excellent wear resistance under high temperatures.

従来のエキゾーストバルブとしては、オーステナイト系
耐熱鋼(例えばJIS 5UH35)を用いることが通
常であったが、近年は一層使用条件か苛酷になる傾向か
おり、そこでこれに対処するべく本体部分をオーステナ
イト系耐熱鋼で作り、バルブフェース面に特に耐熱性、
耐摩耗性の優れたステライト(Co−Cr−W系合金)
を肉盛した肉盛バルブが多用されつつある。またこのほ
か、例えば特開昭49−129016号公報に記載され
ているように、MOを必須成分とし、て含有するNi基
合金を耐熱鋼からなるバルブ本体のフェースへ肉盛(盛
金)したバルブ、あるいは特開昭49−129017号
公報に記載されているように、Moを必須成分として含
有するN i  CO基合金を同様に肉盛したバルブも
提案されている。
Conventional exhaust valves have typically been made of austenitic heat-resistant steel (for example, JIS 5UH35), but in recent years there has been a trend toward harsher usage conditions, and to cope with this, the main body has been made of austenitic heat-resistant steel. Made of steel, especially heat resistant on the valve face surface,
Stellite with excellent wear resistance (Co-Cr-W alloy)
Overlay valves with overlays are increasingly being used. In addition, as described in JP-A-49-129016, for example, a Ni-based alloy containing MO as an essential component is overlaid on the face of a valve body made of heat-resistant steel. A valve, or a valve similarly overlaid with a Ni CO-based alloy containing Mo as an essential component, has also been proposed, as described in JP-A-49-129017.

発明が解決すべき問題点 前述のようにステライト肉盛を施したエンジンバルブは
、ステライト自体が高価なCOを基本成分として0優に
含有する高価な合金であるにh口え、従来の一般的な肉
盛方法であるアセチレンガス肉弼ヤTIG肉拍では薄く
肉盛することが困難で、一本のエンジンバルブ当りのス
テライト使用間が多くならざるを1%ず、そのためバル
ブに要する費用が著しく高くならざるを得なかった。
Problems to be Solved by the Invention As mentioned above, engine valves with stellite overlays cannot be used in conventional general valves, since stellite itself is an expensive alloy containing more than zero CO as a basic component. It is difficult to build up thinly using acetylene gas build-up and TIG build-up, which requires more than 1% of Stellite use per engine valve, which significantly increases the cost of the valve. It had to be expensive.

また前記各公開公報に記載されているバルブも、高価な
Moを必須合金成分として相当量含有しているため、ス
テライト肉盛バルブと同様に高価なものとならざるを得
なかった。
In addition, the valves described in the above-mentioned publications also contain a considerable amount of expensive Mo as an essential alloying component, so they have to be expensive like the stellite overlay valves.

さらに従来のステライト肉盛バルブや前記各公開公報記
載の肉盛バルブにおいては、最良の耐熱・耐摩耗性を発
揮し得る肉@層の成分組成を定めて、その成分組成を有
する合金をバルブ本体のフェースに肉盛しており、母材
成分、特にFeの肉盛層への混入による成分組成変動に
よって所期の特性が得られなくなることを避けるため、
肉盛時にはできるだけ母材表面は溶融させないように肉
盛条件を定めているのが通常であった。このことから、
逆に肉m層と母材との冶金的結合が充分になされない事
態が生じがちとなって、肉需層が剥離し易くなるという
問題を招き易かった。
Furthermore, in the conventional Stellite build-up valves and the build-up valves described in the above-mentioned publications, the composition of the meat layer that can exhibit the best heat resistance and wear resistance is determined, and an alloy having that composition is used for the valve body. In order to avoid the inability to obtain the desired characteristics due to changes in the component composition due to the mixing of base material components, especially Fe, into the built-up layer,
During build-up, build-up conditions were usually set so as to prevent the surface of the base material from melting as much as possible. From this,
On the contrary, the metallurgical bond between the m meat layer and the base metal tends to be insufficient, which tends to cause the problem that the meat layer is likely to peel off.

この発明は以上の事情を背景としてなされたもので、低
コストでしかも従来のステライト内需バルブと同等以上
の優れた耐熱・耐摩耗性を示し、しかもバルブフェース
面を構成する優れた耐熱・耐摩耗性を有する苦の剥離を
ta<ことがないようにその層を母4,4と一体化した
エンジンバルブ、およびその製造方法を提供することを
目的とするものである。
This invention was made against the background of the above circumstances, and is low in cost and exhibits excellent heat and wear resistance equivalent to or better than conventional Stellite domestic valves. It is an object of the present invention to provide an engine valve in which the layer is integrated with the bases 4, 4 so as not to cause peeling due to the properties of the engine, and a method for manufacturing the same.

問題点を解決するための手段 この発明のエンジンバルブは、オーステナイト系耐熱!
閾からなるバルブ本体のバルブフェース面に、Ni 7
0%以上、Cr14〜18%、Fe5〜10%、Ti 
 2〜6%、Al 0.4〜1,0%、残部が不可避的
不純物よりなる合金化層が、バルブ本体と一体に合金化
された状態で形成されていることを特徴とするものであ
る。
Means to solve the problem The engine valve of this invention is austenitic heat resistant!
Ni 7 is applied to the valve face surface of the valve body consisting of a threshold.
0% or more, Cr14-18%, Fe5-10%, Ti
An alloyed layer consisting of 2 to 6% Al, 0.4 to 1.0% Al, and the remainder unavoidable impurities is formed integrally with the valve body. .

また第2発明のエンジンバルブ製造方法は、オーステナ
イト系耐熱鋼からなるバルブ本体のバルブフェース面に
Ni1合金を配置し、そのNi基合金の上から高密度エ
ネルギを照射してそのNi基合金およびその下側の母材
の表面層を急速溶融・急速再凝固させて、Ni70%以
上、Cr14〜18%、Fe 5〜10%、Ti  2
〜6%、Al0.4〜1.0%、残部が不可避的不純物
よりなる合金化層を形成し、そのQ% 750〜850
℃の範囲内の温度で前記合金化層を熱処理することを特
徴とするものである。
Further, in the engine valve manufacturing method of the second invention, a Ni1 alloy is placed on the valve face surface of a valve body made of austenitic heat-resistant steel, and high-density energy is irradiated from above the Ni-based alloy to remove the Ni-based alloy and its The surface layer of the lower base material is rapidly melted and rapidly resolidified to produce Ni 70% or more, Cr 14-18%, Fe 5-10%, Ti 2
~6%, Al0.4~1.0%, and the balance formed by unavoidable impurities, and its Q% 750~850
The method is characterized in that the alloyed layer is heat-treated at a temperature within a range of .degree.

作   用 先ずこの発明のエンジンバルブにおけるバルブフェース
面の合金化層の成分限定理由について説明する。
Function First, the reason for limiting the composition of the alloyed layer on the valve face surface of the engine valve of the present invention will be explained.

Ni: N1はバルブフェース面合金化層の基本成分であって、
高温硬さく高温耐摩耗性)を改善し、またCrとの共存
下において耐酸化鉛腐食性を向上させる作用があるが、
70%以下ではそれらの効果が充分に得られない。第1
図に920℃に加熱した酸化鉛(Pb0100%)に種
々のN1含有柴の試験片を1時間浸漬した後、その重量
減を測定する耐酸化鉛試験を行なった結果を示す。第1
図から、Ni70%以上で安定して優れた耐酸化鉛腐食
性を示すことが判る。したがってNiは70%以上とし
た。
Ni: N1 is the basic component of the valve face alloy layer,
It has the effect of improving high-temperature hardness and high-temperature wear resistance) and also improves lead oxide corrosion resistance in coexistence with Cr.
If it is less than 70%, these effects cannot be sufficiently obtained. 1st
The figure shows the results of a lead oxidation resistance test in which various N1-containing Shiba specimens were immersed in lead oxide (Pb0 100%) heated to 920° C. for 1 hour and the weight loss was measured. 1st
From the figure, it can be seen that when Ni is 70% or more, stable and excellent lead oxide corrosion resistance is exhibited. Therefore, Ni was set at 70% or more.

Cr: Crは炭化物を形成して高温硬さを向上させる作用があ
るか、14%未満では所望の効果が得られない。第2図
に、cr含有量を変化させた場合の800 ℃にあける
ビッカース硬さを調ぺた結果を示す。第2図から、Cr
ld%以上で安定したtlv 300程度以上の800
°C高温硬さが1qられることが判る。
Cr: Cr forms carbides and has the effect of improving high-temperature hardness, but if it is less than 14%, the desired effect cannot be obtained. Figure 2 shows the results of investigating the Vickers hardness at 800°C when the cr content was varied. From Figure 2, Cr
Stable tlv at ld% or above 300 or above 800
It can be seen that the high temperature hardness at °C is reduced by 1q.

一方Orが18%を越えれば耐熱衝撃性が低下する傾向
があられれる。したがってCrは14〜18%の範囲内
に限定した。
On the other hand, if Or exceeds 18%, thermal shock resistance tends to decrease. Therefore, Cr was limited to a range of 14 to 18%.

Fe: 「eは耐熱衝撃性を向上させる作用がおるが、5%未満
ではその効果が充分に得られず、一方10%を越えれば
高温硬さが低下する傾向が必られれる。したかってFe
は5〜10%の範囲内に限定した。
Fe: "E has the effect of improving thermal shock resistance, but if it is less than 5%, this effect cannot be sufficiently obtained. On the other hand, if it exceeds 10%, there is a tendency for high temperature hardness to decrease.
was limited within the range of 5 to 10%.

T1: T1は炭化物、窒化物、さらには金属間化合物を形成し
て、高温硬さおよび耐熱衝撃性を向上させるに有効な元
素であるが、2%未満ではそれらの効果が充分に1qら
れす、一方6%を越えれば炭化物の役が多くなりすぎ逆
に耐熱衝撃性が低下する。したがってTiは2〜6%の
範囲内に限定した。なおT1はこの範囲内でも特に2〜
3%が好ましい。
T1: T1 forms carbides, nitrides, and even intermetallic compounds, and is an effective element for improving high-temperature hardness and thermal shock resistance, but if it is less than 2%, these effects are sufficiently reduced by 1q. On the other hand, if it exceeds 6%, the role of carbides becomes too large and the thermal shock resistance decreases. Therefore, Ti was limited to a range of 2 to 6%. Note that T1 is within this range, especially from 2 to
3% is preferred.

Al: Alは耐酸化鉛腐食性を向上させるが、0.4%未満で
は所望の効果が得られず、一方1.0%を越えれば合金
化処理時におけるアロインク性が低下する傾向が生じる
。したがってAlは0.4〜1.0%の範囲内とした。
Al: Al improves lead oxide corrosion resistance, but if it is less than 0.4%, the desired effect cannot be obtained, while if it exceeds 1.0%, there is a tendency for the alloink property to deteriorate during alloying treatment. Therefore, Al was set within the range of 0.4 to 1.0%.

この発明のエンジンバルブにおいては、上述のような成
分組成を有する合金化層がオーステティ1〜系耐熱鋼か
らなるバルブ本体のフェース面に形成されている。その
−例を第3図に示す。第3図において、オーステナイト
系耐熱鋼からなるバルブ本体1は、軸部1Aおよび傘部
1Bとか一体に形成されており、その傘部1Bにあける
、相手バルブシート材と当接するフェース面2には、前
述の合金化層3か周方向に連続して形成されている。
In the engine valve of the present invention, an alloyed layer having the above-mentioned composition is formed on the face surface of the valve body made of Austety 1~ series heat-resistant steel. An example of this is shown in FIG. In FIG. 3, a valve body 1 made of austenitic heat-resistant steel is integrally formed with a shaft portion 1A and a cap portion 1B, and a face surface 2, which is made in the cap portion 1B and comes into contact with a mating valve seat material, has a , the aforementioned alloyed layer 3 is formed continuously in the circumferential direction.

ここで、バルブ本体を構成するオーステナイト系耐熱鋼
は、従来からエキゾーストバルブに用いられているもの
で良く、代表的にはJIS 5UH35(CO,48〜
0.58%、3i0.35%以下、Mn8.00〜10
.00%、PO,040%以下、30.030%以下、
N i  3.25〜4.50%、Cr 20.0〜2
2.00%、N O,35〜0.50%、残部Fe)や
その他5UH31、Sυト136.5UH37,5UH
38等を用いることができる。
Here, the austenitic heat-resistant steel constituting the valve body may be one conventionally used for exhaust valves, and is typically JIS 5UH35 (CO, 48~
0.58%, 3i 0.35% or less, Mn 8.00-10
.. 00%, PO, 040% or less, 30.030% or less,
Ni 3.25-4.50%, Cr 20.0-2
2.00%, NO, 35-0.50%, balance Fe) and other 5UH31, Sυt 136.5UH37,5UH
38 etc. can be used.

合金化層は、後述するような合金化処理によりバルブ本
体の母材と一体に合金化されて形成されたものでおり、
前述のような成分組成とすることによって、従来のステ
ライト肉盛バルブにあけるステライト層と同等もしくは
それ以上の耐熱性、耐摩耗性、高温耐食性、耐熱衝撃性
が19られる。
The alloyed layer is formed by being alloyed integrally with the base material of the valve body through alloying treatment as described below.
By having the above-mentioned composition, heat resistance, abrasion resistance, high temperature corrosion resistance, and thermal shock resistance are equal to or higher than those of the conventional stellite layer formed in a stellite overlay valve.

そしてこの合金化層は、合金化処理によって画材と一体
に形成されているため、母材との間で剥離を生じるよう
なおそれはない。また合金化層は、高価なCoやMOを
含有していないため、コスト的にも安flIiでおり、
また後述するようなレーザやTIGアーク、プラズマア
ーク等の高密度エネルギを用いた合金化処理によって必
要充分な厚さで薄く形成することかでき、このこともコ
スト低減に有効に作用している。
Since this alloyed layer is formed integrally with the art material through alloying treatment, there is no risk of peeling between it and the base material. In addition, since the alloyed layer does not contain expensive Co or MO, it is inexpensive in terms of cost.
In addition, it can be formed as thin as necessary by alloying treatment using high-density energy such as a laser, TIG arc, or plasma arc, which will be described later, and this is also effective in reducing costs.

ここで、合金化層の厚みはコスト面からは薄い方が好ま
しいか、通常は平均厚みで0.2mm以上とすることか
望ましい。0.2.rnm未満では前述のような合金化
層形成による効果か充分に1qられない。
Here, it is preferable that the thickness of the alloyed layer be thinner from the viewpoint of cost, or it is usually preferable that the average thickness be 0.2 mm or more. 0.2. If it is less than rnm, the effect of forming the alloyed layer as described above cannot be sufficiently achieved.

また合金化層の厚みの上限はコスト面や合金化処理の作
業性等の観点から定められるか、通常は2簡程度以下、
好ましくは1#以下とする。また合金化層が所期の機能
を発揮するためには、その硬さがllv 400以上で
おることが好ましい。このような硬さは、後述するよう
な熱処理を施すことによって達成される。
In addition, the upper limit of the thickness of the alloyed layer is determined from the viewpoint of cost and workability of alloying treatment, and is usually about 2 layers or less.
Preferably it is 1# or less. Further, in order for the alloyed layer to exhibit its intended function, it is preferable that its hardness be 11/400 or more. Such hardness is achieved by heat treatment as described below.

次にこの発明のエンジンバルブの製造方法について説明
する。
Next, a method for manufacturing an engine valve according to the present invention will be explained.

先ず常法にしたがってオーステナイト系耐熱鋼からなる
バルブ本体を作成しておく。このバルブ本体のフェース
面には、予め合金化材料を配置するための凹部を周方向
に連続して形成しておくことが望ましい。
First, a valve body made of austenitic heat-resistant steel is prepared in accordance with a conventional method. It is desirable that a concave portion for arranging the alloying material be formed continuously in the circumferential direction on the face surface of the valve body in advance.

次いでバルブ本体のフェース面に、合金化材料としてN
1基合金を配置し、その上から高密度エネルギビームを
照射してNi基合金およびその下側の母材(オーステナ
イト系耐熱鋼)表面層を急速溶融させる。斯くすればN
i基合金とその下側の母材とが溶融一体化、すなわち合
金化する。引続いて高密度エネルギビームの照射位置移
動もしくは照射停止により、熱が急速に母材側へ移動し
てその溶融した合金化層が急速冷却され、急速凝固され
る。
Next, N is applied to the face of the valve body as an alloying material.
A Ni-based alloy is placed, and a high-density energy beam is irradiated from above to rapidly melt the Ni-based alloy and the surface layer of the base material (austenitic heat-resistant steel) below it. In this way, N
The i-based alloy and the underlying base material are melted and integrated, that is, alloyed. Subsequently, by moving the irradiation position of the high-density energy beam or stopping the irradiation, heat is rapidly transferred to the base metal side, and the molten alloyed layer is rapidly cooled and rapidly solidified.

ここで、合金化材料として配置するN1基合金の成分組
成は、最終的に母材と合金化した状態でその成分組成が
前述の範囲となるように定めれば良い。すなわち、母材
のオーステナイト系耐熱鋼の成分組成と、母材表面の溶
融深さと、合金化材料の配置量とに応じて、合金化層目
標成分組成が前記範囲内となるように、合金化材料とし
て配置するNi基合金の成分組成を定めておけば良い。
Here, the component composition of the N1-based alloy disposed as the alloying material may be determined so that the component composition in the final alloyed state with the base material falls within the above-mentioned range. In other words, alloying is carried out so that the target composition of the alloyed layer falls within the above range, depending on the composition of the austenitic heat-resistant steel as the base material, the fusion depth of the surface of the base material, and the amount of alloying material arranged. It is sufficient to determine the composition of the Ni-based alloy to be used as the material.

また高密度エネルギとしては、レーザ、TIGア−り、
プラズマアーク、電子ビームなどを好適に用いることが
できる。ざらに、合金化材料としてのNi1合金の配置
方法としては、例えば粉末の混練物として配置したり、
あるいは粉末を溶射して配置したりすれば良く、その方
法は任意でおる。
Also, examples of high-density energy include laser, TIG,
Plasma arc, electron beam, etc. can be suitably used. In general, the Ni1 alloy as an alloying material can be arranged as a powder kneaded product, for example,
Alternatively, the powder may be placed by thermal spraying, and the method is arbitrary.

上述のようにして合金化層を形成した後、その合金化層
に対して熱処理を施す。この熱処理は析出硬化のための
時効処理であって、750〜850℃の温度範囲にて、
望ましくは4〜6時間加熱保持する。すなわち、合金化
層の成分組成の合金はT1およびAlを相当量含有する
Ni基の合金であって、析出硬化型合金に属し、時効析
出処理を施すことによって窒化物、炭化物、さらには金
属間化合物が析出し、これらが硬化に寄与する。ここで
、処理温度が750°C未満では充分な析出硬化が得ら
れず、一方850℃を越えれば析出物の粗大化が生じ、
高温強度が低下する。したがって処理温度は750〜8
50℃の範囲内とした。
After forming the alloyed layer as described above, the alloyed layer is subjected to heat treatment. This heat treatment is an aging treatment for precipitation hardening, and in the temperature range of 750 to 850°C,
Preferably, the mixture is heated and maintained for 4 to 6 hours. In other words, the alloy of the composition of the alloyed layer is a Ni-based alloy containing considerable amounts of T1 and Al, and belongs to a precipitation hardening type alloy, and is treated with aging precipitation to form nitrides, carbides, and even intermetallic materials. Compounds precipitate and these contribute to hardening. Here, if the treatment temperature is less than 750°C, sufficient precipitation hardening will not be obtained, while if it exceeds 850°C, coarsening of the precipitates will occur,
High temperature strength decreases. Therefore, the processing temperature is 750-8
The temperature was within the range of 50°C.

なお通常の析出硬化型合金の場合は時効処理の前に溶体
化処理を行なうのが通常であるが、この発明の方法の場
合は合金化処理時に合金化層が溶融状態から急冷凝固さ
れるため、その時点で溶体化処理と同様な効果か得られ
ており、したがって通常は溶体化処理は不要となる。
In the case of ordinary precipitation hardening alloys, solution treatment is usually performed before aging treatment, but in the case of the method of this invention, the alloyed layer is rapidly solidified from a molten state during alloying treatment. At that point, an effect similar to that of solution treatment has been obtained, and therefore solution treatment is usually unnecessary.

以上のようにして時効硬化のための熱処理を施すことに
よって、Hv 400以上の目的とする性能を有する合
金化層が19られる。なお熱処理後おるいは熱男理前に
は、適宜合金化層の表面に機械加工を施して所要のバル
ブフェース面に仕上げるのが通常である。
By performing the heat treatment for age hardening as described above, an alloyed layer 19 having the desired performance of Hv 400 or more is obtained. After the heat treatment or before the heat treatment, the surface of the alloyed layer is usually machined to obtain the desired valve face surface.

実施例 第3図に示すようなバルブを次のようにして作成した。Example A valve as shown in FIG. 3 was made in the following manner.

すなわらJIS 5IJH35のオーステナイト系耐熱
鋼を素材として常法にしたがってバルブ本体1を作成し
、そのフェース面2にNi基合金粉末をPVA(ポリビ
ニルアルコール)により混練した混練物を配置し、その
上からTIGアークを照射して合金化処理を行なった。
In other words, a valve body 1 is made from JIS 5IJH35 austenitic heat-resistant steel according to a conventional method, and a kneaded mixture of Ni-based alloy powder mixed with PVA (polyvinyl alcohol) is placed on the face surface 2 of the valve body 1. Alloying treatment was performed by irradiating TIG arc.

ざらにその合金化層に対して時効?A処理を施した後、
機械hロエによりフェース面形状に仕上げた。TIGア
ーク照射条件および熱処理条件は次の通りである。
Is it aging for that alloy layer? After applying A treatment,
The face shape was finished using the machine HROE. The TIG arc irradiation conditions and heat treatment conditions are as follows.

TIGアーク照射条件 出力120A/90A ;パルス時間合o、5sec送
り速度3mm/ SeC:シールドガス81 / ma
nアーク長2mm 熱処理条件 800℃x 5hr 1qられた合金化層の成分組成は、N i 75.0%
、Cr15.0%、Fe6.5%、Ti2.3%、Al
 016%、残部不可避的不純物であり、また熱処理後
の表面硬さはHv 450であった。また合金化層の厚
さは0.2〜1.0部程度であった。
TIG arc irradiation conditions Output 120A/90A; Pulse time o, 5sec feed rate 3mm/SeC: Shield gas 81/ma
n Arc length 2 mm Heat treatment conditions 800°C x 5 hours 1q The composition of the alloyed layer is Ni 75.0%
, Cr15.0%, Fe6.5%, Ti2.3%, Al
016%, the remainder being unavoidable impurities, and the surface hardness after heat treatment was Hv 450. Further, the thickness of the alloyed layer was about 0.2 to 1.0 parts.

一方、上記と同じ条件で別途S聞35からなる試験片に
合金化層を形成して、前記と同じ熱処理を施し、入超式
迅速摩耗試験に供した。また比較例としてS聞35から
なる試験片にステライト(AΔS規格 RCoCr−A
>を肉盛し、これを入超式迅速摩耗試験に供した。それ
らの試験結果を第4図に示す。
On the other hand, an alloyed layer was separately formed on a test piece made of S-35 under the same conditions as above, subjected to the same heat treatment as above, and subjected to a rapid abrasion test. In addition, as a comparative example, a test piece of S-35 was used with stellite (AΔS standard RCoCr-A
> was overlaid and subjected to an ultra-high speed rapid wear test. The test results are shown in FIG.

第4図から明らかなように、この発明の実施例のバルブ
は、ステライトを肉盛した従来の比較例によるバルブと
同等以上の耐摩耗性を有することが確認された。
As is clear from FIG. 4, it was confirmed that the valve according to the example of the present invention had wear resistance equal to or higher than that of the conventional comparative example valve which was overlaid with stellite.

発明の効果 この発明のエンジンバルブは、従来のステライト肉盛バ
ルブなどと比較して、耐熱性、耐摩耗性、耐熱衝撃性、
耐高温腐食性、耐高温酸化性など、フェース面に要求さ
れる性能がなんら遜色なく、しかもコスト的にはステラ
イト肉盛バルブなどと比較して格段に安価でおり、ざら
にはフェース面の合金化層が母材と合金化により一体化
されているため、剥離等の問題も生じないなど、優れた
長所を有するものである。またこの発明の方法によれば
上述のような優れた性能を有しかつ安価なエンジンバル
ブを実際的に容易に製造することかできる。
Effects of the Invention The engine valve of this invention has better heat resistance, wear resistance, thermal shock resistance, and
The performance required for the face, such as high-temperature corrosion resistance and high-temperature oxidation resistance, is comparable, and the cost is much lower than that of Stellite overlay valves. Since the coating layer is integrated with the base material by alloying, it has excellent advantages such as no problems such as peeling. Further, according to the method of the present invention, an engine valve having excellent performance as described above and being inexpensive can be manufactured easily in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金化層のN1含有棋と酸化鉛による腐食減量
との関係を示すグラフ、第2図は合金化層のOr含有量
と800 ℃における高温硬さとの関係を示すグラフ、
第3図はこの発明のエンジンバルブの一例を示す一部切
断側面図、第4図は実施例および比較例のエンジンバル
ブにおける摩耗試験結果を示すグラフでおる。 1・・・バルブ本体、 2・・・フェース面、 3・・
・合金化層。
Figure 1 is a graph showing the relationship between N1 content in the alloyed layer and corrosion loss due to lead oxide, Figure 2 is a graph showing the relationship between the Or content of the alloyed layer and high temperature hardness at 800 °C,
FIG. 3 is a partially cutaway side view showing an example of the engine valve of the present invention, and FIG. 4 is a graph showing the results of wear tests on the engine valves of the example and comparative example. 1...Valve body, 2...Face surface, 3...
・Alloyed layer.

Claims (2)

【特許請求の範囲】[Claims] (1)オーステナイト系耐熱鋼からなるバルブ本体のバ
ルブフェース面に、Ni70%(重量%、以下同じ)以
上、Cr14〜18%、Fe5〜10%、Ti2〜6%
、Al0.4〜1.0%、残部が不可避的不純物よりな
る合金化層が、バルブ本体と一体に合金化された状態で
形成されていることを特徴とするエンジンバルブ。
(1) On the valve face of the valve body made of austenitic heat-resistant steel, Ni is 70% or more (by weight, the same applies hereinafter), Cr is 14-18%, Fe is 5-10%, and Ti is 2-6%.
, 0.4 to 1.0% Al, the remainder being unavoidable impurities, and an alloyed layer formed integrally with the valve body.
(2)オーステナイト系耐熱鋼からなるバルブ本体のバ
ルブフェース面にNi基合金を配置し、そのNi基合金
の上から高密度エネルギを照射してそのNi基合金およ
びその下側の母材の表面層を急速溶融・急速再凝固させ
て、Ni70%以上、Cr14〜18%、Fe5〜10
%、Ti2〜6%、Al0.4〜1.0%、残部が不可
避的不純物よりなる合金化層を形成し、その後750〜
850℃の範囲内の温度で前記合金化層を熱処理するこ
とを特徴とするエンジンバルブの製造方法。
(2) A Ni-based alloy is placed on the valve face surface of the valve body made of austenitic heat-resistant steel, and high-density energy is irradiated from above the Ni-based alloy to remove the surface of the Ni-based alloy and the base material below it. Rapid melting and rapid resolidification of the layer results in over 70% Ni, 14-18% Cr, and 5-10 Fe.
%, Ti 2-6%, Al 0.4-1.0%, and the balance is formed by forming an alloyed layer consisting of unavoidable impurities.
A method for manufacturing an engine valve, characterized in that the alloyed layer is heat treated at a temperature within the range of 850°C.
JP12571986A 1986-06-02 1986-06-02 Engine valve and manufacture thereof Pending JPS62284909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12571986A JPS62284909A (en) 1986-06-02 1986-06-02 Engine valve and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12571986A JPS62284909A (en) 1986-06-02 1986-06-02 Engine valve and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62284909A true JPS62284909A (en) 1987-12-10

Family

ID=14917061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12571986A Pending JPS62284909A (en) 1986-06-02 1986-06-02 Engine valve and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62284909A (en)

Similar Documents

Publication Publication Date Title
US4219592A (en) Two-way surfacing process by fusion welding
EP0774015B1 (en) Method for repairing substrates
KR100196989B1 (en) Wear-resistant copper-based alloy
EP1717326B1 (en) Ni-based alloy member, method of producing the alloy member and turbine engine part
CA1090168A (en) Oxidation resistant cobalt base alloy
JP5742447B2 (en) High hardness overlaying alloy powder
US4675204A (en) Method of applying a protective layer to an oxide dispersion hardened superalloy
US2900715A (en) Protection of titanium
GB2063305A (en) Carbon Bearing MCrAlY Coatings, Coated Articles and Method for these Coatings
JPH11107720A (en) Manufacture of engine exhaust valve
DE3221884A1 (en) Wear-resistant part for use in an internal-combustion engine
JPS62284909A (en) Engine valve and manufacture thereof
JPH02185940A (en) Alloy foil for liquid-phase diffusion joining capable of joining in oxidizing atmosphere
JPS6310097A (en) Co base alloy for build-up welding
JP3196389B2 (en) Ni-base alloy for metallurgy
JPH1177375A (en) Cobalt base alloy for cladding hot forging die by welding
AU2011236054B2 (en) Composite plate and method of forming the same
JP4060072B2 (en) Coating interlayer to improve compatibility between substrate and aluminum-containing oxidation resistant metal coating
JPH06256886A (en) Ti alloy member excellent in wear resistance and its production
JPS62296984A (en) Manufacture of engine valve
JPH0375385A (en) Parts for machine sliding part made of tial-base alloy
US11732331B2 (en) Ni-based alloy, and Ni-based alloy product and methods for producing the same
JPS5933181B2 (en) Copper alloy for burner head
JPH06297188A (en) Fe base alloy for cladding by welding
JPS61166982A (en) Wear resistant al alloy member