JPS62284635A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS62284635A
JPS62284635A JP12815086A JP12815086A JPS62284635A JP S62284635 A JPS62284635 A JP S62284635A JP 12815086 A JP12815086 A JP 12815086A JP 12815086 A JP12815086 A JP 12815086A JP S62284635 A JPS62284635 A JP S62284635A
Authority
JP
Japan
Prior art keywords
endoscope
ultrasound
ultrasonic
diagnostic apparatus
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12815086A
Other languages
Japanese (ja)
Other versions
JPH0698132B2 (en
Inventor
塚谷 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP61128150A priority Critical patent/JPH0698132B2/en
Publication of JPS62284635A publication Critical patent/JPS62284635A/en
Publication of JPH0698132B2 publication Critical patent/JPH0698132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は被検体に超音波を照射して、その反射情報か
ら被検体の断層像を得る超音波診断装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to an ultrasonic diagnostic apparatus that irradiates an object with ultrasound and obtains a tomographic image of the object from the reflected information. .

〔従来の技術〕[Conventional technology]

従来の超音波診断装置としては特開昭58−70757
号公報に記載の超音波診断装置があった。この装置は被
検体の外部に設けられた電子走査式の超音波探触子によ
り超音波を被検体の横断面内において電子的に1次走査
させ、その反射情報から被検体の1枚の横断層像を得る
。そして、超音波探触子を被検体の縦方向に移動(2次
走査)し、各2次走査位置で被検体の横断層像を得て、
複数の横断層像を3次元表示している。
As a conventional ultrasonic diagnostic device, Japanese Patent Application Laid-Open No. 58-70757
There was an ultrasonic diagnostic device described in the publication. This device uses an electronic scanning ultrasound probe installed outside the subject to electronically scan ultrasonic waves within the cross section of the subject, and uses the reflection information to scan one side of the subject. Obtain a tomographic image. Then, the ultrasound probe is moved in the longitudinal direction of the subject (secondary scanning), and a cross-sectional image of the subject is obtained at each secondary scanning position,
Multiple cross-sectional images are displayed in three dimensions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に、超音波は空気や骨中を伝搬中に減衰される。従
来の超音波診断装置では超音波探触子は体外に設けられ
体外から超音波を被検体に照射しているので、肺の中の
空気や肋骨に邪魔されそ全での横断面内での心臓の断層
像は得られず、完全な3次元表示は不可能であった。
Generally, ultrasound waves are attenuated while propagating through air or bone. In conventional ultrasonic diagnostic equipment, the ultrasonic probe is installed outside the body and irradiates the subject with ultrasonic waves from outside the body. A tomographic image of the heart could not be obtained, and a complete three-dimensional display was not possible.

また、超音波探触子を2次走査させるための大型の走査
機構が必要である欠点もあった。
Another drawback is that a large scanning mechanism is required for secondary scanning of the ultrasonic probe.

さらに、体外から超音波を被検体に照射させるため、探
触子と被検体との距離があり、超音波の周波数を上げら
れず分解能が悪かった。
Furthermore, since ultrasound is irradiated onto the subject from outside the body, there is a distance between the probe and the subject, making it impossible to increase the frequency of the ultrasound and resulting in poor resolution.

この発明は上述した事情に対処すべくなされたもので、
その目的は超音波を高周波化でき、解像度の高い断層像
が得られる超音波診断装置を提供することである。
This invention was made to deal with the above-mentioned circumstances,
The purpose is to provide an ultrasonic diagnostic apparatus that can generate high-frequency ultrasonic waves and obtain high-resolution tomographic images.

また、この発明の他の目的は被検体の完全な3次元表示
が可能な超音波診断装置を提供することである。
Another object of the present invention is to provide an ultrasonic diagnostic apparatus capable of completely three-dimensionally displaying a subject.

〔問題点を解決するための手段〕[Means for solving problems]

この発明による超音波診断装置は超音波内視鏡1の先端
に内蔵された超音波送受信素子3と、超音波内視鏡1の
軸方向を中心に超音波送受信素子3を回転させ被検体の
横断面内で超音波を1次走査させるモータと、超音波内
視鏡1の挿入深さを変化させ超音波が1次走査される被
検体の横断面の位置を変化させる際の超音波内視鏡1の
挿入深さを検出する検知器11と、複数の挿入深さにお
ける各横断面情報を心電計の出力と同期して格納するメ
モリ9を具備する。
The ultrasonic diagnostic apparatus according to the present invention includes an ultrasonic transmitting/receiving element 3 built in the tip of an ultrasonic endoscope 1, and rotating the ultrasonic transmitting/receiving element 3 around the axial direction of the ultrasonic endoscope 1. A motor that performs primary scanning of ultrasound within a cross section, and a motor that performs primary scanning of ultrasound within a cross section, and a motor that performs primary scanning of ultrasound within a cross section, and a motor that performs primary scanning of ultrasound within a cross section, and a motor that performs primary scanning of ultrasound within the ultrasound endoscope 1 to change the insertion depth of the ultrasound endoscope 1 to change the position of the cross section of the subject that is primarily scanned with ultrasound. It includes a detector 11 that detects the insertion depth of the endoscope 1, and a memory 9 that stores cross-sectional information at a plurality of insertion depths in synchronization with the output of the electrocardiograph.

〔作用〕[Effect]

この発明による超音波診断装置によれば、従来の体外か
らの走査に代えて、体腔内から被検体に超音波を照射す
るので、空気や肋骨の影響を受けずに、被検体の全ての
横断面での断層像を得ることができ、その結果、完全な
3次元表示ができるとともに、被検体に近い部分から超
音波を照射するので、超音波の高周波化が実現でき、従
って分解能を上げることもできる。また、超音波の1次
走査断面を変化させる2次走査は操作者により内視鏡を
引抜くことにより行なわれるので、2次走査機構が簡単
で、かつ安全である。さらに、内視鏡の挿入深さを検出
する検知器により2次走査位置を検出し、心電計の出力
に同期して断層像を取込むので、正確な3次元情報が得
られる。
According to the ultrasonic diagnostic apparatus according to the present invention, instead of conventional scanning from outside the body, ultrasonic waves are irradiated to the subject from within the body cavity. It is possible to obtain a tomographic image in a plane, resulting in a complete three-dimensional display, and since the ultrasound is irradiated from a part close to the subject, it is possible to achieve a higher frequency of ultrasound, thus increasing the resolution. You can also do it. Further, since the secondary scanning which changes the primary scanning section of the ultrasound is performed by the operator pulling out the endoscope, the secondary scanning mechanism is simple and safe. Furthermore, since the secondary scanning position is detected by a detector that detects the insertion depth of the endoscope and a tomographic image is captured in synchronization with the output of the electrocardiograph, accurate three-dimensional information can be obtained.

〔実施例〕〔Example〕

以下図面を参照してこの発明による超音波診断装置の一
実施例を説明する。第1図はこの実施例のブロック図で
ある。この超音波診断装置は超音波内視鏡1と観測装置
(信号処理回路を内蔵する)を具備する。超音波内視鏡
1は先端に超音波送受信素子3が内蔵されているラアイ
バスコープである。超音波送受信素子3は図示しないモ
ータにより超音波内視鏡1の軸方向を中心として回転さ
れ、超音波送受信素子3から送信された超音波がラジア
ル走査(1次走査)される。超音波内視鏡1はマウスピ
ース4を介して食道5内に挿入され、食道壁を介して対
象部位、例えば心臓18に超音波を照射する。その反射
超音波は超音波送受信素子3で受信され、横断層像19
を表わす受信信号が超音波内視鏡1のコネクタ2を介し
て観測装置内の送受信回路6に送られる。送受信回路6
の出力が信号処理部7、アナログ/ディジタル(A /
 D )変換器8を介してメモリ9に供給される。
An embodiment of the ultrasonic diagnostic apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of this embodiment. This ultrasonic diagnostic apparatus includes an ultrasonic endoscope 1 and an observation device (with a built-in signal processing circuit). The ultrasonic endoscope 1 is a live scope with an ultrasonic transmitting/receiving element 3 built into its tip. The ultrasonic transmitting/receiving element 3 is rotated about the axial direction of the ultrasonic endoscope 1 by a motor (not shown), and the ultrasonic waves transmitted from the ultrasonic transmitting/receiving element 3 are radially scanned (primary scan). The ultrasound endoscope 1 is inserted into the esophagus 5 through the mouthpiece 4, and irradiates ultrasound to a target site, such as the heart 18, through the esophageal wall. The reflected ultrasound is received by the ultrasound transmitting/receiving element 3, and the transverse layer image 19
A received signal representing . . . Transmission/reception circuit 6
The output of the signal processing unit 7, analog/digital (A/
D) supplied to memory 9 via converter 8;

超音波内視鏡1の挿入部先端は第2図に示すように食道
壁に密着され、内視鏡の軸と食道の管軸が一致される。
The tip of the insertion section of the ultrasound endoscope 1 is brought into close contact with the esophagus wall, as shown in FIG. 2, and the axis of the endoscope and the tube axis of the esophagus are aligned.

第2図(a)に示す方法では、超音波内視鏡1の挿入部
先端に取付けられたバルーン21.22中に水を充填す
ることにより、挿入部先端が食道壁に密着される。超音
波送受信素子3から送信された超音波はバルーン22中
の水を介して被検体に照射される。第2図(b)に示す
方法では、超音波内視鏡1の挿入部先端に取付けられた
バルーン21.22間の間隙に水を充填することにより
、挿入部先端が食道壁に密着される。超音波送受信素子
3から送信された超音波はバルーン21.22間の間隙
に充填された水を介して被検体に照射される。
In the method shown in FIG. 2(a), the tip of the insertion portion of the ultrasound endoscope 1 is brought into close contact with the esophageal wall by filling water into balloons 21 and 22 attached to the tip of the insertion portion. The ultrasound transmitted from the ultrasound transmitting/receiving element 3 is irradiated onto the subject through the water in the balloon 22. In the method shown in FIG. 2(b), the tip of the insertion portion of the ultrasound endoscope 1 is brought into close contact with the esophageal wall by filling the gap between the balloons 21 and 22 attached to the tip of the insertion portion with water. . The ultrasound transmitted from the ultrasound transmitting/receiving element 3 is irradiated onto the subject through the water filled in the gap between the balloons 21 and 22.

信号処理回路7からの横断層像を心臓の動きと同期して
メモリ9に書込むために、心電計(ECG)13の出力
が制御回路12に供給される。
The output of an electrocardiograph (ECG) 13 is supplied to a control circuit 12 in order to write the cross-sectional image from the signal processing circuit 7 into a memory 9 in synchronization with the movement of the heart.

ここでは、メモリ9への横断層像の書込みは、例えば、
心電図のPSR,T、U波に同期して制御される。
Here, the writing of the cross-layer image to the memory 9 is, for example,
It is controlled in synchronization with the PSR, T, and U waves of the electrocardiogram.

超音波送受信素子3がモータにより回転されることによ
り、超音波がラジアル走査(1次走査)され1枚の横断
層像が得られるが、心臓を3次元表示させるには、複数
の横断面での断層像を得る必要がある。このため、この
実施例では操作者により超音波内視鏡1を引抜き超音波
内視鏡1の挿入深さを変えることにより、超音波を2次
走査している。超音波内視鏡1の挿入深さは、第3図に
示すように超音波内視鏡1の外側に印刷されたバーコー
ドをマウスピース4に組込んだ反射型の光センサ24に
より読取ることにより容易に検知できる。光センサ24
の出力が挿入深さ検知器11を介して制御回路12に供
給される。
When the ultrasonic transmitting/receiving element 3 is rotated by a motor, the ultrasonic waves are radially scanned (primary scan) and a single cross-sectional image is obtained, but in order to display the heart in three dimensions, it is necessary to It is necessary to obtain tomographic images of Therefore, in this embodiment, the operator pulls out the ultrasonic endoscope 1 and changes the insertion depth of the ultrasonic endoscope 1 to perform secondary ultrasound scanning. The insertion depth of the ultrasonic endoscope 1 can be determined by reading a barcode printed on the outside of the ultrasonic endoscope 1 using a reflective optical sensor 24 built into the mouthpiece 4, as shown in FIG. can be easily detected. Optical sensor 24
The output is supplied to the control circuit 12 via the insertion depth detector 11.

メモリ9に格納された異なる挿入深さでの横断層像はデ
ィジタルシグナルプロセッサ(DSP)10によって3
次元処理され立体像とされる。ディジタルシグナルプロ
セッサ10の出力がディジタル/アナログ(D/A)変
換器14、映像信号作成部15を介してCRTモニタ1
6で表示される。あるいは、ディジタルシグナルプロセ
ッサ10の出力情報は光デイスク装置17にファイルさ
れる。
The cross-layer images at different insertion depths stored in memory 9 are processed by a digital signal processor (DSP) 10 in three
Dimensional processing is performed to create a three-dimensional image. The output of the digital signal processor 10 is sent to the CRT monitor 1 via a digital/analog (D/A) converter 14 and a video signal generator 15.
6 is displayed. Alternatively, the output information of the digital signal processor 10 is filed in the optical disk device 17.

次にこの実施例の動作を説明する。超音波内視鏡1を引
抜きながら心臓の超音波像を取る場合を例にあげる。操
作者は超音波内視鏡1を食道5の最下部まで挿入する。
Next, the operation of this embodiment will be explained. An example will be given in which an ultrasound image of the heart is taken while the ultrasound endoscope 1 is being pulled out. The operator inserts the ultrasound endoscope 1 to the lowest part of the esophagus 5.

第2図(a)、(b)に示す方法で超音波内視rA1を
食道壁に密着させ、′内視鏡の軸と食道の管軸を一致さ
せる。その後、超音波送受信素子3を回転させ超音波を
ラジアル走査する。この反射信号から信号処理回路7は
心臓の最下部の横断層像を得る。横断層像は心電計13
の出力に基ずいて心臓の動きと同期してメモリ9に書込
まれる。ここでは、例えば第4図に示すように、心電図
のP、R,TSU波に同期したタイミングでの横断層像
71.72.73.74がメモリ9に格納される。
Using the method shown in FIGS. 2(a) and 2(b), the ultrasonic endoscope rA1 is brought into close contact with the esophagus wall, and the axis of the endoscope and the axis of the esophagus are aligned. Thereafter, the ultrasonic transmitting/receiving element 3 is rotated to radially scan the ultrasonic waves. From this reflected signal, the signal processing circuit 7 obtains a cross-sectional image of the lowest part of the heart. Cross-sectional image is electrocardiograph 13
is written into the memory 9 in synchronization with the heart's movement based on the output of the heart. Here, for example, as shown in FIG. 4, cross-sectional images 71, 72, 73, and 74 are stored in the memory 9 at timings synchronized with the P, R, and TSU waves of the electrocardiogram.

次に、挿入深さ検知器11の出力に基すいて距離dだけ
超音波内視鏡1を引抜き、同じ<P、R。
Next, the ultrasonic endoscope 1 is pulled out by a distance d based on the output of the insertion depth detector 11, and the same <P, R.

T、U波に同期して81.82.83.64の像を取込
み・メモリ9に格納する。以下、同様にして、距離dず
つ超音波内視鏡1を引抜きながら、P、RST、U波に
同期して51〜54.41〜44.31〜34.21〜
24.11〜I4の像を取込み、メモリ9に格納する。
The images of 81, 82, 83, and 64 are captured and stored in the memory 9 in synchronization with the T and U waves. Similarly, while pulling out the ultrasound endoscope 1 by distance d, 51~54.41~44.31~34.21~ in synchronization with P, RST, and U waves.
24. Capture the images 11 to I4 and store them in the memory 9.

メモリ9に取込んだ像11〜74は、例えば、P波に同
期した像を見たければ11.21.31.41.51.
61.71の像のみをディジタルシグナルプロセッサl
Oを使って3次元処理し、D/A変換器14の映像信号
作成部15を介して立体像をCRTモニタ1Bに表示す
ることができる。
Images 11 to 74 captured in the memory 9 are, for example, 11.21.31.41.51.
61. Only the image of 71 is processed by digital signal processor l.
Three-dimensional processing is performed using O, and a three-dimensional image can be displayed on the CRT monitor 1B via the video signal generating section 15 of the D/A converter 14.

R,TSU波に同期した立体像も同様にして作成できる
A stereoscopic image synchronized with the R and TSU waves can also be created in the same manner.

また、CRTモニタ16上でP−U波の表示の切換を速
くすると、あかたも心臓の収縮しているように表示され
る。
Furthermore, if the display of the P-U wave is switched quickly on the CRT monitor 16, the display will appear as if the heart is contracting.

この発明は上述した実施例に限定されずに、種々変更可
能である。例えば、−横断面当り4枚の像でなく、例え
ば30フレ一ム/秒で心電計に無関係に一横断面内の像
を取込めば、さらに詳細な情報が得られるし、dの間隔
を小さくしても同様の効果が得られる。1次走査はラジ
アル走査ではな(、セクタ走査でもよい。すなわち、超
音波を内視鏡の管軸に沿って上下方向に走査し、1次走
査により縦断層像を得てもよい。この場合は、2次走査
は超音波内視鏡を引抜くことにより行なうのではなく、
超音波内視鏡を軸方向を中心として回転することにより
行なう。
This invention is not limited to the embodiments described above, and can be modified in various ways. For example, if you capture images within one cross section at, say, 30 frames/second, independent of the electrocardiograph, instead of four images per cross section, more detailed information can be obtained, and the interval of d A similar effect can be obtained by reducing . The primary scan is not a radial scan (or may be a sector scan. In other words, the ultrasound may be scanned in the vertical direction along the tube axis of the endoscope, and a longitudinal tomographic image may be obtained by the primary scan. In this case, The secondary scan is not performed by pulling out the ultrasound endoscope, but
This is done by rotating the ultrasound endoscope around its axis.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明による超音波診断装置によ
れば、体腔内から被検体に超音波を照射するので、空気
や肋骨の影響を受けずに、被検体の全ての断面位置の断
層像を得ることができ、その結果、完全な3次元表示が
できるとともに、被検体に近い部分から超音波を照射す
るので、超音波の高周波化が実現でき、従って分解能を
上げることもできる。また、2次走査は内視鏡の挿入深
さを検出しながら操作者により内視鏡を引抜くことによ
り行なわれるので、走査機構が簡単で、かつ安全である
。さらに、心電計の出力に同期して断層像を取込むので
、正確な3次元情報が得られる。
As explained above, according to the ultrasonic diagnostic apparatus according to the present invention, since ultrasound is irradiated to the subject from within the body cavity, tomographic images of all cross-sectional positions of the subject are obtained without being affected by air or ribs. As a result, a complete three-dimensional display is possible, and since the ultrasonic waves are irradiated from a part close to the subject, it is possible to realize a higher frequency of the ultrasonic waves, thereby increasing the resolution. Further, since the secondary scanning is performed by the operator pulling out the endoscope while detecting the insertion depth of the endoscope, the scanning mechanism is simple and safe. Furthermore, since tomographic images are captured in synchronization with the output of the electrocardiograph, accurate three-dimensional information can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による超音波診断装置の一実施例のブ
ロック図、第2図(a)、(b)は内視鏡を食道の管軸
と一致させるように保持する機構を示す図、第3図は内
視鏡の挿入深さを検出する機構を示す図、第4図はこの
実施例による心臓の3次元表示の例を示す図である。 1・・超音波内視鏡 2・・・コネクタ 3・・・超音波送受信素子 4・・・マウスピース 9・・・メモリ 11・・・挿入深さ検知器 12・・制御回路 13・・・心電計 16・・・CRTモニタ
FIG. 1 is a block diagram of an embodiment of the ultrasonic diagnostic apparatus according to the present invention, and FIGS. 2(a) and 2(b) are diagrams showing a mechanism for holding the endoscope in alignment with the axis of the esophagus. FIG. 3 is a diagram showing a mechanism for detecting the insertion depth of the endoscope, and FIG. 4 is a diagram showing an example of a three-dimensional display of the heart according to this embodiment. 1... Ultrasonic endoscope 2... Connector 3... Ultrasonic transmitting/receiving element 4... Mouthpiece 9... Memory 11... Insertion depth detector 12... Control circuit 13... Electrocardiograph 16...CRT monitor

Claims (4)

【特許請求の範囲】[Claims] (1)体腔内に挿入可能な超音波送受信手段と、前記超
音波送受信手段から送信される超音波を第1の方向に1
次走査する手段と、前記第1の方向とは異なる第2の方
向に超音波が2次走査される際の2次走査位置を検出す
る手段と、前記検出手段により検出される複数の2次走
査位置における超音波の反射情報を被検体の生体信号と
同期して格納するメモリ手段を具備する超音波診断装置
(1) An ultrasonic transmitting/receiving means that can be inserted into a body cavity, and an ultrasonic wave transmitted from the ultrasonic transmitting/receiving means in a first direction.
means for performing a subsequent scan; means for detecting a secondary scanning position when the ultrasound is secondary scanned in a second direction different from the first direction; and a plurality of secondary scan positions detected by the detecting means. An ultrasound diagnostic apparatus comprising a memory means for storing ultrasound reflection information at a scanning position in synchronization with a biological signal of a subject.
(2)前記超音波送受信手段は内視鏡の挿入部先端に設
けられ、前記1次走査手段は内視鏡の軸方向を中心とし
て前記超音波送受信手段を回転させる手段からなり、前
記検出手段は内視鏡の挿入部の外側に記され内視鏡の挿
入深さを表わすバーコードと、マスウピースに設けられ
前記バーコードを検出する光センサからなることを特徴
とする特許請求の範囲第1項に記載の超音波診断装置。
(2) The ultrasonic transmitting/receiving means is provided at the tip of the insertion section of the endoscope, the primary scanning means includes means for rotating the ultrasonic transmitting/receiving means around the axial direction of the endoscope, and the detecting means Claim 1: comprises a bar code written on the outside of the insertion portion of the endoscope and indicating the insertion depth of the endoscope, and an optical sensor provided on the mass piece to detect the bar code. The ultrasonic diagnostic device described in Section 1.
(3)前記内視鏡の挿入部先端は水が充填されたバルー
ンを介して体腔管壁に密着されることを特徴とする特許
請求の範囲第2項に記載の超音波診断装置。
(3) The ultrasonic diagnostic apparatus according to claim 2, wherein the tip of the insertion portion of the endoscope is brought into close contact with the wall of the body cavity via a water-filled balloon.
(4)前記生体信号は心電図波形であることを特徴とす
る特許請求の範囲第1項に記載の超音波診断装置。
(4) The ultrasound diagnostic apparatus according to claim 1, wherein the biological signal is an electrocardiogram waveform.
JP61128150A 1986-06-04 1986-06-04 Ultrasonic diagnostic equipment Expired - Fee Related JPH0698132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128150A JPH0698132B2 (en) 1986-06-04 1986-06-04 Ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128150A JPH0698132B2 (en) 1986-06-04 1986-06-04 Ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPS62284635A true JPS62284635A (en) 1987-12-10
JPH0698132B2 JPH0698132B2 (en) 1994-12-07

Family

ID=14977622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128150A Expired - Fee Related JPH0698132B2 (en) 1986-06-04 1986-06-04 Ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JPH0698132B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131755A (en) * 1988-11-10 1990-05-21 Olympus Optical Co Ltd Ultrasonic probe device
JPH02239838A (en) * 1989-02-06 1990-09-21 Arzco Medical Electron Inc Fixable multi-electrode thin piece
JPH02291844A (en) * 1989-05-02 1990-12-03 Olympus Optical Co Ltd Ultrasonic diagnostic apparatus
JPH0556979A (en) * 1990-11-30 1993-03-09 Fuji Photo Optical Co Ltd Ultrasonic inspecting device
JP2000005178A (en) * 1998-06-17 2000-01-11 Fujitsu Ltd Ultrasonic probe and ultrasonograph
JP2005261857A (en) * 2004-03-22 2005-09-29 Yamamoto Hironori Ultrasonic endoscope apparatus
JP2015107268A (en) * 2013-12-05 2015-06-11 国立大学法人名古屋大学 Endoscope observation support device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837518U (en) * 1971-09-07 1973-05-08
JPS5670757A (en) * 1979-11-16 1981-06-12 Aloka Co Ltd Ultrasonic diagnosis apparatus
JPS5759525A (en) * 1980-09-30 1982-04-09 Tokyo Shibaura Electric Co Ultrasonic probe for inspecting inside of body cavity
JPS60179051A (en) * 1984-02-28 1985-09-12 富士通株式会社 Freeze time phase display system
JPS60199440A (en) * 1984-03-26 1985-10-08 富士通株式会社 Ultrasonic diagnostic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837518U (en) * 1971-09-07 1973-05-08
JPS5670757A (en) * 1979-11-16 1981-06-12 Aloka Co Ltd Ultrasonic diagnosis apparatus
JPS5759525A (en) * 1980-09-30 1982-04-09 Tokyo Shibaura Electric Co Ultrasonic probe for inspecting inside of body cavity
JPS60179051A (en) * 1984-02-28 1985-09-12 富士通株式会社 Freeze time phase display system
JPS60199440A (en) * 1984-03-26 1985-10-08 富士通株式会社 Ultrasonic diagnostic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131755A (en) * 1988-11-10 1990-05-21 Olympus Optical Co Ltd Ultrasonic probe device
JPH02239838A (en) * 1989-02-06 1990-09-21 Arzco Medical Electron Inc Fixable multi-electrode thin piece
JPH02291844A (en) * 1989-05-02 1990-12-03 Olympus Optical Co Ltd Ultrasonic diagnostic apparatus
JPH0556979A (en) * 1990-11-30 1993-03-09 Fuji Photo Optical Co Ltd Ultrasonic inspecting device
JP2000005178A (en) * 1998-06-17 2000-01-11 Fujitsu Ltd Ultrasonic probe and ultrasonograph
JP2005261857A (en) * 2004-03-22 2005-09-29 Yamamoto Hironori Ultrasonic endoscope apparatus
JP2015107268A (en) * 2013-12-05 2015-06-11 国立大学法人名古屋大学 Endoscope observation support device

Also Published As

Publication number Publication date
JPH0698132B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JP3144849B2 (en) Cardiovascular diagnostic device
JP3296193B2 (en) Ultrasound image generator
JP3354619B2 (en) Ultrasound diagnostic equipment
EP1543776B1 (en) Ultrasonograph
JPH08508895A (en) Method and apparatus for ultrasonic imaging and atherectomy
JP2008006108A (en) Intracavity probe apparatus
US20040249287A1 (en) Ultrasonic diagnosis apparatus
JP2010246767A (en) Three-dimensional image construction device and image processing method
JPH10137238A (en) Medical image processor
JPH05111488A (en) Ultrasonic diagnostic device
JP4119497B2 (en) Ultrasound diagnostic imaging equipment
JPS6244495B2 (en)
JPS62284635A (en) Ultrasonic diagnostic apparatus
JP4869197B2 (en) Medical guide device
JPH11113913A (en) Ultrasonograph
JP4119530B2 (en) Endoscope device and position detection catheter inserted into endoscope
JP3251631B2 (en) Ultrasonic diagnostic device in body cavity
JP2008036447A (en) Probe apparatus within body cavity
JP2000116655A (en) Diagnostic device
JPH10216127A (en) Ultrasonic diagnostic apparatus and adapter device for image processing
JP4077810B2 (en) Ultrasonic diagnostic equipment
JP2005006770A (en) Ultrasonic diagnostic device
JP2002177278A (en) Ultrasonic diagnostic device
JPH11113912A (en) Ultrasonograph
JP2005254024A (en) Ultrasonic diagnostic apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees