JPS62283666A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS62283666A
JPS62283666A JP61126469A JP12646986A JPS62283666A JP S62283666 A JPS62283666 A JP S62283666A JP 61126469 A JP61126469 A JP 61126469A JP 12646986 A JP12646986 A JP 12646986A JP S62283666 A JPS62283666 A JP S62283666A
Authority
JP
Japan
Prior art keywords
region
regions
drain
gate electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61126469A
Other languages
Japanese (ja)
Inventor
Atsushi Miura
厚 三浦
Takahiko Oma
隆彦 大麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61126469A priority Critical patent/JPS62283666A/en
Publication of JPS62283666A publication Critical patent/JPS62283666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To regulate the size of a sidewall in a semiconductor device by setting a plurality of MOS field-effect transistors in which drain and source regions by low density impurity diffusing through a gate electrode set region on the same substrate, and setting the widths of the low density impurity regions two types or more. CONSTITUTION:A photoresist 6 is formed only on the left side transistor setting region L of a silicon wafer 1, patterned, and a low density layer source, drain 7 is formed by ion implanting to a right side transistor setting reign R. Then, an oxygen plasma is emitted to separate the photoresist 6 in an atmosphere to which methyl alcohol is introduced, cleaned, and a silicon oxide film 8 is grown on the whole surface. Then, the thickness l1 of the region L: the thickness r1 of the region R becomes approx. 1:1.4. Then, when the whole surface is anisotropically etched, sidewalls Wl, Wr are formed on the regions L, R, and the bottom widths l2:r2 become approx. 1:1.4. Thereafter, high density layers 9, 10 are formed on the regions 4, 7 by ion implanting. Thus, transistors having different electric characteristics are formed on the same semiconductor substrate.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (イ)産業上の利用分野 この発明は半導体装置およびその製造方法に関する。さ
らに詳しくは高集積化されたMOS型電界効果トランジ
スタに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (a) Field of Industrial Application This invention relates to a semiconductor device and a method of manufacturing the same. More specifically, the present invention relates to highly integrated MOS field effect transistors.

(ロ)従来の技術 ゲート電極を介して設定されるソースおよびドレイン領
域のゲート電極近傍が低濃度化された、いわゆるLDD
型、DDD型等のMOS型電界効果トランジスタを同一
シリコン基板上に複数設定した半導体装置が知られてい
る。これらの半導体装置はシリコン基板上に各トランジ
スタ領域を設定しこれらの領域に各ゲート電極を設定し
た後該ゲート電極設定領域を介して低濃度不純物拡散に
よるドレインおよびソース領域を設け、その後これらの
基板面の表面全体に絶縁膜を気相成長し次いで該絶縁膜
に異方性エツチングを行って各ゲート電極の周縁に所定
幅の絶縁膜残存パターンを形成し、次いでさらに不純物
の拡散処理を行って上記絶縁膜残存パターン対応部分を
除く各ドレインおよびソース領域の不純物を高濃度化し
て、低濃度層のドレインおよびソース領域をゲート電極
近傍に所定幅で設定する方法により製造されている。
(b) Conventional technology A so-called LDD in which the concentration near the gate electrode of the source and drain regions set via the gate electrode is reduced.
2. Description of the Related Art Semiconductor devices are known in which a plurality of MOS type field effect transistors, such as MOS type, DDD type, etc., are set on the same silicon substrate. In these semiconductor devices, each transistor region is set on a silicon substrate, each gate electrode is set in these regions, and then drain and source regions are formed by diffusing low concentration impurities through the gate electrode setting region, and then these substrates are An insulating film is grown in a vapor phase over the entire surface of the surface, and then the insulating film is anisotropically etched to form an insulating film remaining pattern of a predetermined width around the periphery of each gate electrode, and then an impurity diffusion process is further performed. It is manufactured by increasing the impurity concentration of each drain and source region except for the portion corresponding to the remaining insulating film pattern, and setting a lightly doped drain and source region with a predetermined width near the gate electrode.

そして、上記各トランジスタ領域に同一濃度の低濃度層
を形成する場合は、シリコン基板面に一斉に低濃度不純
物拡散が行なわれるが、一方フオドレジスト等によりマ
スキングして個々に低濃度不純物の拡散を行い異なる濃
度の低濃度層を形成している場合もある。さらに絶縁膜
の気相成長面の清浄化や前記フォトレジストの除去の目
的にプラズマ照射処理等がしばしば行われている。
When a low concentration layer with the same concentration is formed in each transistor region, the low concentration impurity is diffused all at once on the silicon substrate surface, but on the other hand, the low concentration impurity is diffused individually by masking with a photoresist or the like. In some cases, low concentration layers with different concentrations are formed. Further, plasma irradiation treatment and the like are often performed for the purpose of cleaning the vapor phase growth surface of the insulating film and removing the photoresist.

(ハ)発明が解決しようとする問題点 しかしながら、半導体装置の高集積化に伴い同一シリコ
ン基板上に種々の異なったソースおよびドレイン構造か
らなる複数のトランジスタを有する半導体装置の作製が
試みられているが、上記半導体装置では各トランジスタ
に設定される低濃度不純物領域は、前述のごとく該低濃
度不純物領域全面に形成された絶縁膜を異方性エツチン
グにより除去する際ゲート電極の周縁に残存する該絶縁
膜パターン(以下サイドウオールという)が次いで行わ
れる不純物の高濃度拡散を遮蔽することにより形成され
るものであり、従ってこのサイドウオールの大きさ、ひ
いては絶縁膜の厚さにより設定される低濃度不純物領域
の大きさが制御されることになる。この点上記従来の技
術では形成される絶縁膜の厚さが一様なためサイドウオ
ールが画一的な大きさにしか形成されず、同一基板上に
種々の異なる電気特性のトランジスタを作製することが
困難であった。
(c) Problems to be solved by the invention However, as semiconductor devices become more highly integrated, attempts have been made to fabricate semiconductor devices having multiple transistors with various different source and drain structures on the same silicon substrate. However, in the semiconductor device described above, the low concentration impurity region set in each transistor is formed by removing the impurity remaining at the periphery of the gate electrode when the insulating film formed over the entire surface of the low concentration impurity region is removed by anisotropic etching as described above. An insulating film pattern (hereinafter referred to as a sidewall) is formed by blocking the subsequent high-concentration diffusion of impurities, and therefore the low concentration is set by the size of this sidewall and, by extension, the thickness of the insulating film. The size of the impurity region will be controlled. In this regard, in the conventional technique described above, since the thickness of the insulating film formed is uniform, the sidewall is formed only in a uniform size, making it difficult to fabricate transistors with various electrical characteristics on the same substrate. was difficult.

この発明の発明者らはかかる状況に鑑み鋭意研究を重ね
た結果、同一基板上に絶縁膜を形成する際、その成長膜
厚に選択性を有して形成できそれにより各サイドウオー
ルの大きさを調節しうる処理法を見いだし、この発明を
完成させるに至った。
In view of this situation, the inventors of the present invention have conducted intensive research and found that when forming an insulating film on the same substrate, it is possible to form the insulating film with selectivity in the thickness of the grown film, thereby reducing the size of each sidewall. We have discovered a processing method that can adjust the amount of water, and have completed this invention.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、ゲート電極設定領域を介し
て低濃度不純物拡散によるドレインおよびソース領域が
設定されたMOS型電界効果トランジスタを同一基板に
複数設定し、この表面全体に絶縁膜を気相成長した後該
絶縁膜の異方性エツチングによる除去をおこなって各々
のゲート電極の周縁に所定幅の絶縁膜残存パターンを形
成し、次いでさらに不純物の拡散処理を行って上記絶縁
膜残存パターン対応部分を除く各ドレインおよびソース
領域の不純物を高濃度化することにより、ドレインおよ
びソース領域のゲート電極近傍が所12血巨σ)tギf
艷αr)ぐシ訂ルーζ6輻tフ唱淑15う六す1ナーク
Iもケσ)にlnS型電界効果トランジスタを形成する
ことからなり、 上記絶縁膜形成訪に少なくともいずれかのMOS型電界
効果トランジスタの表面に選択的に炭素源供給下プラズ
マ照射処理することにより、ゲート電極近傍の低濃度不
純物領域の設定幅が2種以上に設定された複数のMOS
型電界効果トランジスタを得ることを特徴とする半導体
装置の製造方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a plurality of MOS field effect transistors having drain and source regions set by low concentration impurity diffusion through a gate electrode setting region are set on the same substrate. After an insulating film is grown in a vapor phase over the entire surface, the insulating film is removed by anisotropic etching to form an insulating film remaining pattern of a predetermined width around the periphery of each gate electrode, and then further impurity diffusion treatment is performed. By increasing the concentration of impurities in each drain and source region except for the portion corresponding to the remaining pattern of the insulating film, the concentration of impurities in the drain and source regions near the gate electrode is increased.
It consists of forming an lnS type field effect transistor in the insulating film formation process, and at least one of the MOS type electric field By selectively subjecting the surface of an effect transistor to plasma irradiation treatment while supplying a carbon source, a plurality of MOSs in which the setting width of the low concentration impurity region near the gate electrode is set to two or more types.
A method of manufacturing a semiconductor device is provided, which is characterized in that a type field effect transistor is obtained.

この発明の方法において、同一基板上への選択的なプラ
ズマ照射処理とは、プラズマ照射下で同一基板面にプラ
ズマが直接に照射される面と間接的に照射される面とが
生じて処理されることを意味する。上記間接的な照射と
は、例えばマスク等を介して照射する等の不十分な照射
または照射されないことを意味する。従ってプラズマ照
射処理を行う基板面に予めマスキング等により直接プラ
ズマ照射する面を除いてマスクしパターンを形成した後
この基板面にプラズマ照射する方法が用いられる。この
場合マスキングには当該分野で公知のマスクやフォトレ
ノスト等を用いることができる。ま1こ、各トランジス
タ領域に濃度を変えて低濃度層を作製するときの拡散マ
スクとなるフォトレジストを拡散後上記パターン形成の
マスキングとしてそのまま使用することができる。
In the method of this invention, selective plasma irradiation treatment on the same substrate means that during plasma irradiation, some surfaces of the same substrate are directly irradiated with plasma and others are irradiated indirectly. It means to do something. The above-mentioned indirect irradiation means insufficient irradiation or no irradiation, such as irradiation through a mask or the like. Therefore, a method is used in which the surface of the substrate to be subjected to plasma irradiation treatment is masked in advance by masking or the like, excluding the surface to be directly irradiated with plasma, to form a pattern, and then the surface of the substrate is irradiated with plasma. In this case, for masking, a mask, photorenost, etc. known in the art can be used. First, the photoresist, which serves as a diffusion mask when forming a low concentration layer with a different concentration in each transistor region, can be used as it is as a mask for the pattern formation described above after diffusion.

上記プラズマ照射には通常酸素プラズマが用いられ、プ
ラズマ照射条件は通常のプラズマエツチングに用いられ
る条件が適しており例えば100℃程度で0.5時間の
照射等が好ましい。
Oxygen plasma is usually used for the plasma irradiation, and suitable plasma irradiation conditions are those used for ordinary plasma etching, such as irradiation at about 100° C. for 0.5 hours.

この発明の方法の最も特徴とするところは、上記選択的
なプラズマ照射処理が炭素源供給下で行われることであ
る。すなわちこの処理を行った後、後述するごとくこの
プラズマ処理面に一斉に絶縁膜を成長させると、直接プ
ラズマ照射処理された面には間接的にプラズマ照射処理
された面に比べて該膜厚が厚く形成され、いわゆる選択
的な膜成長を実現しうろことになる。
The most distinctive feature of the method of the present invention is that the selective plasma irradiation treatment is performed while a carbon source is supplied. In other words, after performing this treatment, if an insulating film is grown all at once on this plasma-treated surface as described later, the film thickness will be greater on the directly plasma-treated surface than on the indirectly plasma-treated surface. The film is formed thickly, making it difficult to achieve so-called selective film growth.

上記炭素源としては、プラズマ照射条件下で炭素を構成
元素とするガス体になるものであれば特に限定されない
が、ガス化および供給の簡便さからメチルアルコールが
好ましい。またこの炭素源の供給量としては、プラズマ
中の炭素濃度が常にlO%程度となるように調節して供
給されることが好ましい。またこの炭素濃度は他のプラ
ズマ照射条件(温度、時間等)と共に絶縁膜の膜厚を調
節しうるものとなる。
The carbon source is not particularly limited as long as it becomes a gas containing carbon as a constituent element under plasma irradiation conditions, but methyl alcohol is preferred from the viewpoint of ease of gasification and supply. Further, it is preferable that the amount of the carbon source supplied is adjusted so that the carbon concentration in the plasma is always approximately 10%. Further, this carbon concentration can be used to adjust the thickness of the insulating film together with other plasma irradiation conditions (temperature, time, etc.).

この発明において、上記プラズマ照射処理後通常硝酸等
で該剥離面を洗浄し、その後絶縁膜形成に付す。
In the present invention, after the plasma irradiation treatment, the peeled surface is usually cleaned with nitric acid or the like, and then an insulating film is formed.

この発明に用いられる絶縁膜は通常のソリコン酸化膜が
用いられ、その形成は通常の気相成長法(CVD法)等
により前記処理面に一斉に行われる。このとき該絶縁膜
は上述のごとく膜厚に選択性を有して形成される。例え
ば前記プラズマ照射処理条件(温度100℃2時間30
分および炭素濃度10%)下では、直接のプラズマ照射
処理面上の形成膜厚:間接のプラズマ照射処理面上の形
成膜厚がほぼ1.4:1の割合で形成されることになる
The insulating film used in this invention is a normal silicon oxide film, which is formed all at once on the treated surface by a normal vapor phase growth method (CVD method) or the like. At this time, the insulating film is formed with selectivity in film thickness as described above. For example, the plasma irradiation treatment conditions (temperature 100°C 2 hours 30
(10% carbon concentration and 10% carbon concentration), the ratio of the thickness of the film formed on the directly plasma irradiated surface to that of the film formed on the indirect plasma irradiated surface is approximately 1.4:1.

なお、該膜は最低の膜厚においてもその領域に予め設定
されているゲート[極が埋まる程度に形成されることが
好ましい。
Note that it is preferable that the film is formed to such an extent that even at the minimum thickness, the gate [pole] set in advance in that region is buried.

上記操作の後上記のごとく形成された絶縁膜は全面エツ
チングに付されるが、この場合異方性エツチングが行わ
れ、これにより絶縁膜は各ゲート電橋の周縁に傾斜状に
残される残存パターン、いわゆるサイドウオールを形成
して他は除去される。
After the above operation, the insulating film formed as described above is subjected to etching on the entire surface, but in this case, anisotropic etching is performed, and as a result, the insulating film is left with a residual pattern that is left in an inclined manner at the periphery of each gate bridge. , forming a so-called sidewall, and the others are removed.

このサイドウオールの底面の幅は、絶縁膜の膜厚により
左右され、例えばこの幅が0.3μmのものを得たいと
きは絶縁膜の膜厚を0.4μ繭程度に形成しておけばよ
い。
The width of the bottom surface of this sidewall depends on the thickness of the insulating film. For example, if you want to obtain a width of 0.3 μm, the thickness of the insulating film should be about 0.4 μm. .

この後上記エツチングされた面にさらに不純物を拡散し
て高濃度不純物領域を形成するが、このとき上記のごと
く形成されたサイドウオールにより保護されて残る低濃
度不純物領域が該サイドウオールの底面幅に従って種々
異なる大きさに設定されることになり、このことから同
一基板上に低濃度不純物領域の設定幅を2種以上に設定
することが可能となる。なお、上記2種以上とは少なく
とも2つの異なる設定幅が存在することをいい、例テげ
Q−)本X、)−去は二のら1の1つが他のいずれかと
同種であってもよく、いずれとら異なる種類であっても
よいことを意味する。
After that, impurities are further diffused into the etched surface to form a high concentration impurity region, but at this time, the low concentration impurity region that remains protected by the sidewall formed as described above is spread according to the width of the bottom surface of the sidewall. The widths of the low concentration impurity regions can be set to two or more different sizes on the same substrate. Note that the above two or more types refers to the existence of at least two different setting widths, and even if one of the above is the same type as the other one, e.g. Often, it means that they can be of different types.

以上の方法により、同一基板上に異なる電気特性トラン
ジスタを有する半導体装置が得られるが、これはこの分
野で新規なものである。従ってこの発明はゲート電極設
定領域を介してドレインおよびソース領域を設定し、か
つドレインおよびソース領域のゲート電極近傍が所定幅
の低濃度不純物領域で構成されたM OS型電界効果ト
ランジスタを同一基板上に複数設定してなり、これらM
OS型電界効果トランジスタにおける低濃度不純物領域
の設定幅が2種以上に設定されてなることを特徴とする
半導体装置を提供するものである。
The above method provides a semiconductor device having transistors with different electrical characteristics on the same substrate, which is new in this field. Therefore, the present invention provides an MOS type field effect transistor in which drain and source regions are set through a gate electrode setting region, and a low concentration impurity region of a predetermined width is formed in the vicinity of the gate electrode of the drain and source regions on the same substrate. There are multiple settings for these M
The present invention provides a semiconductor device characterized in that a low concentration impurity region in an OS type field effect transistor has two or more set widths.

(ホ)作用 この発明によれば、炭素源供給下でのプラズマ未処理面
およびプラズマ処理面に同時に絶縁膜を気相成長させる
と、両者において絶縁膜の成長状態が異なりすなわち前
者の面よりも後者の面の方がより厚く形成され選択的に
膜成長する。従ってこの後異方性エツチングにより絶縁
膜の各膜厚に対応するそれぞれの底面幅を有するサイド
ウオールが形成され、この後不純物拡散時にサイドウオ
ールによって保護される領域の大きさがそれぞれ異なる
こととなる。
(E) Effect According to the present invention, when an insulating film is simultaneously grown in a vapor phase on a plasma-untreated surface and a plasma-treated surface while a carbon source is supplied, the growth state of the insulating film is different on both sides, that is, the growth state is different from that on the former side. The latter surface is formed thicker and selectively grows. Therefore, by anisotropic etching, sidewalls having different bottom widths corresponding to the respective thicknesses of the insulating film are formed, and the sizes of the regions protected by the sidewalls during subsequent impurity diffusion are different. .

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1〜6図は、この発明の方法の一実施例により作製さ
れるLDD構造のMOS型電界効果rランジスタの工程
説明図である。
(F) Embodiment FIGS. 1 to 6 are process explanatory diagrams of a MOS type field effect r transistor having an LDD structure manufactured by an embodiment of the method of the present invention.

第1図は、素子分離領域(5)により設定された複数の
トランジスタ設定領域(T)・・・の各領域上に、S 
iOtからなる絶縁膜(2)を介して各ゲート電極(3
)が設定されかつ左側トランジスタ設定領域(シ)には
既に低濃度に不純物が拡散(イオン注入)されて低濃度
層ソース・ドレイン領域(4)か形成されているシリコ
ンウェハ(厚さ0.5mm) (1)の部分構成説明図
である。
In FIG. 1, S
Each gate electrode (3) is connected via an insulating film (2) made of iOt.
) is set, and a silicon wafer (0.5 mm thick ) It is a partial configuration explanatory diagram of (1).

このシリコンウェハ(1)の右側トランジスタ設定領域
(R)に低濃度層ソース・ドレイン領域を形成するため
前記左側トランジスタ設定領域(L)上のみにフォトレ
ジスト(6)を形成しパターニングを行う(第2図)。
In order to form a low concentration layer source/drain region in the right side transistor setting area (R) of this silicon wafer (1), a photoresist (6) is formed and patterned only on the left side transistor setting area (L). Figure 2).

次に右側トランジスタ設定領域(R)にイオン注入によ
り低濃度層ソース・ドレイン(7)を形成する(第3図
)。ここで低濃度層のイオン注入が左側トランジスタ設
定領域と同条件であるならば最初に全面にイオン注入を
行っておいてもよい。
Next, a low concentration layer source/drain (7) is formed in the right transistor setting region (R) by ion implantation (FIG. 3). Here, if ion implantation into the low concentration layer is performed under the same conditions as in the left transistor setting region, ion implantation may be performed over the entire surface first.

次に上記フォトレジスト(6)でパターニングしたシリ
コンウェハに、メチルアルコール蒸気を酸素プラズマ中
に10%の割合で導入した雰囲気内で、該雰囲気温度を
100’C程度に設定して30分間酸素プラズマを照射
してフォトレジスト(6)を剥離する。この後上記シリ
コンウェハを洗浄し、常圧CVD装置(図示しない)を
用いて、該シリコンウェハの上記面金面にシリコン酸化
H(8)を成長させるがこの結果、左側トランジスタ設
定領域(I7)と右側トランジスタ設定領域(R)とで
は成長する膜厚が異なり、前記プラズマ照射の条件では
領域(L)の膜厚CQ、>:領域(R)の膜厚(r+)
= 1 : 1.4程度の割合でそれぞれ形成される(
第4図)。
Next, the silicon wafer patterned with the photoresist (6) was exposed to oxygen plasma for 30 minutes in an atmosphere where methyl alcohol vapor was introduced into oxygen plasma at a rate of 10%, and the temperature of the atmosphere was set to about 100'C. The photoresist (6) is peeled off by irradiating with. Thereafter, the silicon wafer is cleaned, and silicon oxide H (8) is grown on the metal surface of the silicon wafer using an atmospheric pressure CVD apparatus (not shown). As a result, the left transistor setting area (I7) is grown. The film thicknesses grown in the region (R) and the right transistor setting region (R) are different, and under the plasma irradiation conditions described above, the film thickness CQ of the region (L) is >: the film thickness (r+) of the region (R).
= 1: formed at a ratio of about 1.4 (
Figure 4).

この状態のノリコンウェハを、異方性をもつ1こシリコ
ン酸化膜(8)のエツチング装置(図示しない)で全面
エツチングを行うと、左側トランジスタ設定領域(シ)
と右側トランジスタ設定領域(R)とでそれぞれ異なっ
た大きさのサイドウオール(W&)(Yr)か形成され
、これらの各サイドウオールの底面幅(&!−)(r−
)は、(C,) : (r、)=約1:1.4となった
ものか得られる(第5図)。
When the entire surface of the Noricon wafer in this state is etched using an etching device (not shown) for a single silicon oxide film (8) with anisotropy, the left transistor setting area (shi) is etched.
Sidewalls (W&) (Yr) of different sizes are formed in the and right transistor setting region (R), and the bottom width of each sidewall (&!-) (r-
) can be obtained with a ratio of (C,): (r,)=approximately 1:1.4 (Figure 5).

この後上記シリコンウェハにさらにイオン注入を行って
、前記低濃度層ソース・ドレイン領域(4)(7)に高
濃度層(9)(to)を形成するが、このとき上記各サ
イドウオール(YN)(Yr)によって保護される低濃
度層(41X71)が互いにサイドウオール底面幅(f
f−)(r、)に相当する大きさで残ることになり、し
fこかつて同一シリコンウェハ上に低濃度層の幅が2種
以上存在するるしDDトランジスタが作製されることと
なる(第6図)。
Thereafter, ions are further implanted into the silicon wafer to form high concentration layers (9) (to) in the low concentration layer source/drain regions (4) and (7). At this time, each of the side walls (YN ) (Yr) and the low concentration layer (41×71) protected by the sidewall bottom width (f
f−)(r,), and since there are two or more widths of the low concentration layer on the same silicon wafer, a DD transistor is fabricated ( Figure 6).

(ト)発明の効果 −ハΔq1− し ← +J    Iヨー平ヨ丁汰=
に μ ?−雷慣蜂性の異なるトランジスタを作製する
ことが可能である。また絶縁膜の膜成長における成長速
度の選択性を調節することが可能でありこの選択性を上
げることにより同一半導体基板上の一部のみをLDD構
造のトランジスタに構成することも可能である。またフ
ォトマスクなしで高濃度層形成を行うことも可能となる
(g) Effect of the invention - Δq1- ← +J Iyohirayochota=
To μ? - It is possible to create transistors with different lightning habits. Furthermore, it is possible to adjust the selectivity of the growth rate in the growth of the insulating film, and by increasing this selectivity, it is also possible to configure only a portion of the same semiconductor substrate into an LDD structure transistor. It also becomes possible to form a high concentration layer without a photomask.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜6図は、この発明の方法の一実施例により作製さ
れるLDDIII造のMOS型電界効果トランジスタの
工程説明図である。 (1)・・・・・・シリコンウェハ、(2)・・・・・
絶縁膜、(3)・・・・・・ゲート電極、 (4)(7)・・・・・・低濃度層ソース・ドレイン領
域、(5)−・・・・・素子分離領域、 (6)・・・
・・・フォトレジスト、(8)・・・・・・シリコン酸
化膜、(9)(10)・・・・・・高濃度層、(L)・
・−・・・左側トランジスタ設定領域、(R)・・・・
・・右側トランジスタ設定領域、(マ12XVr)・・
・・・・サイドウオール、(f2.)(r、)・・・・
・・サイドウオール底面幅。 第1図 第2図 第3図 第5図 第6図 手続補正層 昭和61年6月23日 1、事件の表示 昭和61年5月31日提出の特許願(2)半導体装置お
よびその製造方法 3、補正をする者 事件との関係   特許出願人 住 所  大阪市阿倍野区長池町22番22号名 称 
  (504)シレープ株式会社代表者 佐 伯   
旭 4、代理人 〒530 住 所  大阪市北区西天満5丁目1−3クォーター・
ワンビル5、補正命令の日付     自 発 補正の内容 1.明m書第1頁第3行目の発明の名称「半導体装置お
よび製造方法」を「半導体装置およびその製造方法」と
補正する。 2、同門第8頁第8行目の「硝酸」をri酸」と補正す
る。
1 to 6 are process explanatory diagrams of a MOS type field effect transistor of LDD III structure manufactured by an embodiment of the method of the present invention. (1)...Silicon wafer, (2)...
Insulating film, (3)...Gate electrode, (4)(7)...Low concentration layer source/drain region, (5)--Element isolation region, (6 )...
... Photoresist, (8) ... Silicon oxide film, (9) (10) ... High concentration layer, (L)
・−・Left transistor setting area, (R)・・・・
・・Right transistor setting area, (Ma12XVr)・・
...Side wall, (f2.) (r,)...
... Sidewall bottom width. Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Procedure correction layer June 23, 1985 1. Indication of the case Patent application filed on May 31, 1986 (2) Semiconductor device and its manufacturing method 3. Relationship with the case of the person making the amendment Patent applicant address 22-22 Nagaike-cho, Abeno-ku, Osaka City Name
(504) Shirepe Co., Ltd. Representative Saeki
Asahi 4, Agent 530 Address 1-3 Quarter, 5-chome Nishitenma, Kita-ku, Osaka
One Bill 5, Date of Amendment Order Voluntary Contents of Amendment 1. The title of the invention "Semiconductor device and manufacturing method" in the third line of page 1 of the M specification is amended to "Semiconductor device and manufacturing method thereof." 2. Correct "nitric acid" on page 8, line 8 of Domen to read "ri acid".

Claims (1)

【特許請求の範囲】 1、ゲート電極設定領域を介してドレインおよびソース
領域を設定し、かつドレインおよびソース領域のゲート
電極近傍が所定幅の低濃度不純物領域で構成されたMO
S型電界効果トランジスタを同一基板上に複数設定して
なり、これらMOS型電界効果トランジスタにおける低
濃度不純物領域の設定幅が2種以上に設定されてなるこ
とを特徴とする半導体装置。 2、ゲート電極設定領域を介して低濃度不純物拡散によ
るドレインおよびソース領域が設定されたMOS型電界
効果トランジスタを同一基板に複数設定し、この表面全
体に絶縁膜を気相成長した後該絶縁膜の異方性エッチン
グによる除去をおこなって各々のゲート電極の周縁に所
定幅の絶縁膜残存パターンを形成し、次いでさらに不純
物の拡散処理を行って上記絶縁膜残存パターン対応部分
を除く各ドレインおよびソース領域の不純物を高濃度化
することにより、ドレインおよびソース領域のゲート電
極近傍が所定幅の低濃度不純物領域で構成された複数の
MOS型電界効果トランジスタを形成することからなり
、 上記絶縁膜形成前に少なくともいずれかのMOS型電界
効果トランジスタの表面に選択的に炭素源供給下プラズ
マ照射処理することにより、ゲート電極近傍の低濃度不
純物領域の設定幅が2種以上に設定された複数のMOS
型電界効果トランジスタを得ることを特徴とする半導体
装置の製造方法。
[Claims] 1. A MO in which a drain and source regions are set through a gate electrode setting region, and a low concentration impurity region of a predetermined width is formed in the vicinity of the gate electrode of the drain and source regions.
1. A semiconductor device comprising a plurality of S-type field-effect transistors set on the same substrate, and in which the set widths of low concentration impurity regions in these MOS-type field-effect transistors are set to two or more types. 2. A plurality of MOS field effect transistors in which drain and source regions are set by diffusion of low-concentration impurities through gate electrode setting regions are set on the same substrate, an insulating film is vapor-phase grown on the entire surface, and then the insulating film is grown. is removed by anisotropic etching to form an insulating film remaining pattern of a predetermined width around the periphery of each gate electrode, and then an impurity diffusion process is performed to remove each drain and source except for the portion corresponding to the above insulating film remaining pattern. By increasing the impurity concentration in the region, a plurality of MOS type field effect transistors are formed in which the drain and source regions near the gate electrode are composed of low concentration impurity regions of a predetermined width. By selectively subjecting the surface of at least one of the MOS field effect transistors to a plasma irradiation treatment while supplying a carbon source, a plurality of MOS transistors in which the setting width of the low concentration impurity region near the gate electrode is set to two or more types.
1. A method of manufacturing a semiconductor device, characterized by obtaining a type field effect transistor.
JP61126469A 1986-05-31 1986-05-31 Semiconductor device and manufacture thereof Pending JPS62283666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126469A JPS62283666A (en) 1986-05-31 1986-05-31 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126469A JPS62283666A (en) 1986-05-31 1986-05-31 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62283666A true JPS62283666A (en) 1987-12-09

Family

ID=14935990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126469A Pending JPS62283666A (en) 1986-05-31 1986-05-31 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62283666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036855A (en) * 1989-06-05 1991-01-14 Takehide Shirato Semiconductor device
US6569742B1 (en) 1998-12-25 2003-05-27 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having silicide layers
KR100487504B1 (en) * 1997-12-12 2005-07-07 삼성전자주식회사 A method of forming different gate spacers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036855A (en) * 1989-06-05 1991-01-14 Takehide Shirato Semiconductor device
KR100487504B1 (en) * 1997-12-12 2005-07-07 삼성전자주식회사 A method of forming different gate spacers
US6569742B1 (en) 1998-12-25 2003-05-27 Hitachi, Ltd. Method of manufacturing semiconductor integrated circuit device having silicide layers
US6576512B2 (en) 1998-12-25 2003-06-10 Hitachi, Ltd. Method of manufacturing an EEPROM device
US6908837B2 (en) 1998-12-25 2005-06-21 Renesas Technology Corp. Method of manufacturing a semiconductor integrated circuit device including a gate electrode having a salicide layer thereon
US7166893B2 (en) 1998-12-25 2007-01-23 Renesas Technology Corp. Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US20030205767A1 (en) Dual metal gate CMOS devices
JPH0434819B2 (en)
JPS63219152A (en) Manufacture of mos integrated circuit
JPH0312785B2 (en)
JPS62283666A (en) Semiconductor device and manufacture thereof
KR20090125422A (en) Method of manufacturing a semiconductor
JPS63205944A (en) Manufacture of mos integrated circuit
JP2859332B2 (en) Method for manufacturing semiconductor device
JPH0669439A (en) Manufacture of cmos semiconductor device
TWI303469B (en) Method for fabricating flash memory device
US20070148841A1 (en) Method for forming transistor in semiconductor device
JPH0779101B2 (en) Manufacturing method of semiconductor device
JP3196980B2 (en) Method for manufacturing semiconductor device
KR930007199B1 (en) Manufacturing method of planar type capacitor
KR100508661B1 (en) Method for forming a semiconductor device
KR0166812B1 (en) Method for forming isolation on a semiconductor device
TW323390B (en) The method for forming lightly doped drain on semiconductor device
JPS63144573A (en) Manufacture of mos type transistor
JPH05102181A (en) Manufacture of high-breakdown-strength semiconductor device
JPH03160728A (en) Manufacture of transistor
KR960026559A (en) Method for manufacturing inter-element separator of highly integrated semiconductor device
JPS6032990B2 (en) Manufacturing method of semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPH10177956A (en) Method for manufacturing semiconductor and semiconductor device
JPH02295131A (en) Manufacture of mos transistor