JPS62279612A - Transformer for ac to dc converter - Google Patents

Transformer for ac to dc converter

Info

Publication number
JPS62279612A
JPS62279612A JP12214286A JP12214286A JPS62279612A JP S62279612 A JPS62279612 A JP S62279612A JP 12214286 A JP12214286 A JP 12214286A JP 12214286 A JP12214286 A JP 12214286A JP S62279612 A JPS62279612 A JP S62279612A
Authority
JP
Japan
Prior art keywords
winding
side winding
transformer
voltage
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12214286A
Other languages
Japanese (ja)
Inventor
Shigeru Mogi
茂木 茂
Yasuhiko Taniguchi
安彦 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12214286A priority Critical patent/JPS62279612A/en
Publication of JPS62279612A publication Critical patent/JPS62279612A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a potential difference between an AC-side winding and a DC-side winding by a method wherein both windings wound on a core are formed by winding a sheet-shaped conductor and insulating paper and are disposed so that the low-potential sides thereof are opposite to each other. CONSTITUTION:The title transformer is formed by winding a tertiary winding 11 on a transformer core 10 formed of laminated electric iron plates, by winding an AC-side winding 22 further thereon and by winding further thereon a DC-side winding 23 connected to a thyristor valve. The AC-side winding 22 and the DC-side winding 23 are formed by winding a sheet-shaped conductor and insulating paper in a number of layers. In this sheet-shaped winding, the inner peripheral surface can be set as a neutral point potential N in a Y connection and the outer peripheral surface as a high-voltage potential element as is seen in the AC-side winding 22, for instance. In the DC-side winding 23, likewise, the inner peripheral surface can be set as a high potential element and the outer peripheral surface as a neutral point potential N. In such a state as described above, a voltage is not impressed substantially between the AC-side winding 22 and the DC-side winding 23.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は交直変換器用変圧器に係り、特に巻線絶縁構造
の改良に関する6 (従来の技術) 近年の電力需要の増加に伴い、大容量長距1離送電及び
異周波数系統間の電力融通等、系統運用上の多くのメリ
ットを有した直流送電が多方面に使用されている。現在
1国内においては、一部地域において系統を連系する2
50kVの直流送電が実施され、この直流送電は今後大
容量、高電圧化することが望まれている。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to a transformer for an AC/DC converter, and particularly relates to an improvement in the winding insulation structure. ) With the increase in demand for electricity in recent years, DC power transmission has been used in a wide range of applications, as it has many advantages in terms of system operation, such as large-capacity, long-distance, one-distance power transmission and power interchange between systems with different frequencies. At present, there are 1 domestic grid connections in some areas, and 2
50 kV DC power transmission has been implemented, and it is hoped that this DC power transmission will have a larger capacity and higher voltage in the future.

第4図は従来の直流送電における交直変換所の代表的な
結線図を示している。図の交直変換所は、単極性の12
相整流を行うもので3相交流電圧の系統1から開閉袋@
2、交直変換器用変圧器3,4を通じてサイスタバルブ
5.6に電圧が供給され、直流電圧に変換されて直流線
路7に送電されている。
FIG. 4 shows a typical connection diagram of an AC/DC converter station in conventional DC power transmission. The AC/DC converter station shown in the figure is a unipolar 12
It performs phase rectification and is an open/close bag from 3-phase AC voltage system 1.
2. Voltage is supplied to the Cysta valve 5.6 through the AC/DC converter transformers 3 and 4, converted to DC voltage, and transmitted to the DC line 7.

この交直変換所は、12相整流方式をとっているため交
直変換器用変圧器3,4は、高圧側Y−Y結線交直変換
器用変圧器3、低圧側Y−Δ結線交直変換・器用変圧器
402台から構成されている。これら交直変換器用変圧
器は、交流電圧をサイリスタバルブに供給するばかりで
なく、−次側の交流側と二次側の直流側を電気的に絶縁
するという大きな役割を果している。この交直変換器用
変圧器の従来の巻線構造の一例について第5図に示す。
This AC/DC converter station uses a 12-phase rectification system, so the AC/DC converter transformers 3 and 4 are a Y-Y connection AC/DC converter transformer 3 on the high voltage side, and a Y-Δ connection AC/DC converter transformer on the low voltage side. It consists of 402 machines. These AC/DC converter transformers not only supply AC voltage to the thyristor valves, but also play a major role in electrically insulating the secondary AC side and the secondary DC side. An example of a conventional winding structure of this AC/DC converter transformer is shown in FIG.

すなわち、一部分の鉄心及び巻線の一部の縦断面図であ
る。電気鉄板を積層してなる電圧器鉄心10に三次巻線
1工を巻回し、その上にサイリスタバルブに接続される
直流側巻線12を巻回し、さらにその最外側に交流側巻
線13を巻回する。夫々の巻線の端部に夫々の巻線端部
と同電位とし電界緩和を図るための静電シールド14a
、14b ; 15a、15bが取付けられる。また、
各巻線間には、夫々の運転電圧及び試験電圧に耐えうる
ように絶縁バーリヤが、 設けである。
That is, it is a vertical cross-sectional view of a part of the iron core and a part of the winding. A tertiary winding is wound around a voltage generator core 10 made of laminated electrical iron plates, a DC side winding 12 connected to a thyristor valve is wound thereon, and an AC side winding 13 is further wound on the outermost side of the tertiary winding. Wind. An electrostatic shield 14a is provided at the end of each winding to provide the same potential as the end of each winding in order to alleviate the electric field.
, 14b; 15a, 15b are attached. Also,
An insulating barrier is provided between each winding to withstand the respective operating voltage and test voltage.

この交直変換器用変圧器において、直流側巻線12は電
気的にサイリスタバルブを通じて直流系統に接続されて
いるため、運転時は常時直流電圧が加わり、−次側から
供給されている交流電圧に直流電圧がバイアスされた状
態になっている。従って直流側巻線12周囲においては
、従来の交流用変圧器にはない直流絶縁設計技術が必要
とされている。このように交直変換器用変圧器の絶縁設
計には直流電圧に対する考慮が必要であり、高電圧化に
伴って益々その必要性が顕著になってきている。
In this AC/DC converter transformer, the DC side winding 12 is electrically connected to the DC system through the thyristor valve, so a DC voltage is always applied during operation, and the DC voltage is added to the AC voltage supplied from the negative side. The voltage is in a biased state. Therefore, around the DC side winding 12, a DC insulation design technology that is not found in conventional AC transformers is required. As described above, the insulation design of AC/DC converter transformers requires consideration of DC voltage, and this necessity is becoming more and more prominent as voltages become higher.

(発明が解決しようとする問題点) 第5図において、直流側巻線12と交流側巻線13との
間の丸で囲ってハツチングした部分16には(直流十交
流)電圧が加わる。油浸紙で絶縁されたこの部分16に
おいて、直流電圧成分は油浸紙に加わり、交流電圧成分
は油と油浸紙にほぼ均等に加わる現象がある。つまり、
従来の交流用変圧器にはない電圧分担現象があり、絶縁
方法が運かしかった。また、直流側巻線12のリード1
8の引出し部における絶縁された部分17においても上
記と同様なことが云える。これらの部分16.17の絶
縁は高電圧化する程難かしくなる。従ってこれらの絶縁
された部分16.17を無くすることが必要であった。
(Problems to be Solved by the Invention) In FIG. 5, a (DC/AC) voltage is applied to a circled and hatched portion 16 between the DC side winding 12 and the AC side winding 13. In this portion 16 insulated by the oil-impregnated paper, there is a phenomenon in which the DC voltage component is applied to the oil-impregnated paper, and the AC voltage component is applied almost equally to the oil and the oil-impregnated paper. In other words,
There was a voltage sharing phenomenon that conventional AC transformers did not have, and the insulation method was unlucky. In addition, lead 1 of the DC side winding 12
The same thing can be said about the insulated portion 17 in the drawer section 8. Insulating these portions 16, 17 becomes more difficult as the voltage increases. It was therefore necessary to eliminate these insulated parts 16,17.

本発明は上記の点を考慮してなされたもので、その目的
とするところは、巻線構成を変えることにより、従来の
ように絶縁が難かしい部分を構成しないようにして、高
電圧化が可能な、絶縁安定性のすぐれた交直変換器用変
圧器を提供することにある。
The present invention has been made in consideration of the above points, and its purpose is to change the winding configuration so that it does not include parts that are difficult to insulate as in the past, thereby increasing the voltage. An object of the present invention is to provide an AC/DC converter transformer with excellent insulation stability.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)鉄心に巻装する
交流側巻線と直流側巻線との少なくとも一方をシート状
の導体と絶縁紙とを巻回して形成するか、あるいは交流
側巻線と直流側巻線との一方をシート状の導体と絶縁紙
とを巻回して形成し、これと対応する他方を平角銅線を
巻回して形成し、交流側巻線と直流側巻線の低電位側を
対向するように配置することにより、両巻線間の電位差
を少なくし、また加わる電圧波形の複雑さをなくし、雅
しい絶縁個所を形成しないようしこしたことを特徴とす
る。
(Means and effects for solving the problem) At least one of the AC side winding and the DC side winding to be wound around the iron core is formed by winding a sheet-like conductor and insulating paper, or the AC side One of the windings and the DC side winding is formed by winding a sheet-like conductor and insulating paper, and the corresponding other side is formed by winding a rectangular copper wire, and the AC side winding and the DC side winding are formed by winding a sheet-like conductor and insulating paper. By arranging the low potential sides of the wires to face each other, the potential difference between both windings is reduced, the complexity of the applied voltage waveform is eliminated, and the formation of elegant insulation spots is avoided. do.

(実施例) 以下本発明の交直変換器用変圧器の一実施例を第1図を
参照して説明する。第1図は一部分の鉄心及び巻線の一
部の縦断面図である。すなわち、電気鉄板を積層して形
成した変圧器鉄心10に三次巻線11を巻回し、さらに
交、流側巻線22を巻回し、さらにサイリスタバルブに
接続される直流側巻線23を巻回して形成する。
(Embodiment) An embodiment of the AC/DC converter transformer of the present invention will be described below with reference to FIG. FIG. 1 is a longitudinal sectional view of a portion of the core and a portion of the winding. That is, a tertiary winding 11 is wound around a transformer iron core 10 formed by laminating electrical iron plates, an AC/current side winding 22 is further wound, and a DC side winding 23 connected to a thyristor valve is further wound. to form.

また、夫々の巻線端部と同電位とし電界緩和を図るため
の静電シールド20a、20b ; 2La、21bが
設置されている。又、各巻線間には運転電圧、試験電圧
に耐えるように絶縁バーリヤが設けられている。
Further, electrostatic shields 20a, 20b; 2La, 21b are installed to set the end portions of the windings at the same potential and to alleviate the electric field. Further, an insulating barrier is provided between each winding to withstand the operating voltage and test voltage.

これらは絶縁油26とともに接地タンク19内に収納さ
れている。
These are housed in the grounded tank 19 together with the insulating oil 26.

そして、上記した交流側巻線22と直流側巻線23はシ
ート状の導体と絶縁紙を多重に巻回して形成されている
。このシート状の巻線においては、例えば交流側巻線2
2に見られるように内周面をY結線しこおける中性点電
位N、例えば接L(!!電位とし、外周面を高圧電位部
とすることができる。
The AC side winding 22 and the DC side winding 23 described above are formed by winding sheet-like conductors and insulating paper in multiple layers. In this sheet-like winding, for example, the AC side winding 2
As shown in Figure 2, the inner circumferential surface can be connected to a Y-connected neutral point potential N, for example, a contact L (!! potential), and the outer circumferential surface can be a high voltage potential section.

同様に直流側巻線23において、内周面を高電位部、外
周面を中性点電位N4、例えば接地電位にすることがで
きる。このような状態において、交流側巻線22と直流
側巻線23間にはほとんど電圧が印加されない。つまり
、従来運かしいとされていた(交流+直流)電圧に対す
る絶縁がほとんど不要になる。したがって、絶縁の不安
個所がなくなる。
Similarly, in the DC side winding 23, the inner peripheral surface can be set to a high potential portion, and the outer peripheral surface can be set to a neutral point potential N4, for example, a ground potential. In this state, almost no voltage is applied between the AC side winding 22 and the DC side winding 23. In other words, insulation against voltages (AC + DC), which was considered unlucky in the past, is almost unnecessary. Therefore, there are no areas where insulation is insecure.

また直流側巻線23を最外周に配置することによって、
巻線の最外側から電位線25を引き出し易く、絶縁はタ
ンクに対してだけ配慮すればよい。交流側巻線22は外
部へ引き出しり−ド24を上部へ引き出すことが可能で
ある。このような巻線配置、リード引き出し方法は第3
図に示すような交直変換所における交直変換器用変圧器
37において良策である。
In addition, by arranging the DC side winding 23 at the outermost periphery,
The potential wire 25 can be easily drawn out from the outermost side of the winding, and insulation only needs to be considered for the tank. The AC side winding 22 can be pulled out to the outside and the door 24 can be pulled out to the top. This kind of winding arrangement and lead extraction method is the third
This is a good idea for an AC/DC converter transformer 37 in an AC/DC converter station as shown in the figure.

第3図において、壁貫ブッシング29により直流電圧を
屋外へ引き出し、避雷器30、ブロッキングリアクトル
31を設け、交直変換器用変圧器27の直流側巻線から
リードをバルブホール34内のサイリスタバルブ28に
ブッシング装@32によって結合し、ブッシング装@3
3によって交流側巻線からリードを交流系統に結合する
。このように第3図の機器配置から考えると上記第1図
のような本発明の巻線配置およびリード引き出し方法は
無理がなく行えることが判る。
In FIG. 3, the DC voltage is drawn outside through a through-wall bushing 29, a lightning arrester 30 and a blocking reactor 31 are provided, and a lead from the DC side winding of the AC/DC converter transformer 27 is connected to the thyristor valve 28 in the valve hole 34 through the bushing. Connected by bushing @32, bushing @3
3 connects the lead from the AC side winding to the AC system. As described above, considering the equipment arrangement shown in FIG. 3, it can be seen that the winding arrangement and lead extraction method of the present invention as shown in FIG. 1 can be carried out without difficulty.

次に本発明の他の実施例を第2図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

第1図と同一部分及び同一機能を有する部分は同符号を
付しである。交流側巻線22はシート状の導体と絶縁紙
を多重に巻回することで形成し、直流側巻線23は平角
導線を例えば円板状に巻回して形成している。
The same parts and parts having the same functions as those in FIG. 1 are given the same reference numerals. The AC side winding 22 is formed by multiple windings of a sheet-like conductor and insulating paper, and the DC side winding 23 is formed by winding a rectangular conducting wire into, for example, a disk shape.

この構成において、シート状巻線の特長を生かして、交
流側巻線22の直流側巻線23に対向する側をY結線に
おける中性点電位N、例えば接地電位とし、三次巻線1
1側を高圧電位部とした。また直流側巻線23は巻線中
央からリードを取り出す方式、すなわち巻線中央が最高
電位にし、接地タンク19側壁からリードを導出するよ
うにした。このような巻線構成配置にすることにより、
交流側巻線22と直流側巻線23との間の絶縁は容易に
なる。
In this configuration, by taking advantage of the features of the sheet-shaped winding, the side of the AC side winding 22 facing the DC side winding 23 is set to a neutral point potential N in a Y connection, for example, a ground potential, and the tertiary winding 1
The first side was made into a high voltage potential section. Further, the DC side winding 23 has a lead taken out from the center of the winding, that is, the center of the winding has the highest potential, and the lead is taken out from the side wall of the grounding tank 19. By arranging the windings in this way,
Insulation between the AC side winding 22 and the DC side winding 23 becomes easy.

例えば画線間には直流側巻線23は対接タンク間とほぼ
同じ電圧が加わるため、対接地タンク絶縁とほぼ同様に
することで、巻線間絶縁が行れる。
For example, since substantially the same voltage is applied to the direct current side winding 23 between the drawing lines as that between the opposing tanks, the insulation between the windings can be performed in substantially the same manner as the tank insulation to the ground.

この点、従来は(交流+直流)電圧のような複 7雑な
電圧が加わり、絶縁方法は対タンクと別に考えなければ
ならなかったのと、その絶縁方法も難かしく、絶縁上の
不安個所になっていた。
In this respect, in the past, complex voltages such as (AC + DC) voltages were added, and the insulation method had to be considered separately from that for tanks, and the insulation method was also difficult, leading to concerns about insulation. It had become.

また交流側巻線を内側、直流側巻線を外側に配置し、外
側の直流側巻線は巻線の中央からリードを取り出せるた
め、第3図に示すような交直変換所における交直変換器
用変圧器37においては前述のように都合のよい構成に
なっている。
In addition, the AC side winding is placed on the inside and the DC side winding is placed on the outside, and the leads of the outside DC side winding can be taken out from the center of the winding, so that it can be used as a transformer for AC/DC converters at AC/DC converting stations as shown in Figure 3. The container 37 has a convenient configuration as described above.

またさらに、直流側巻線をシート状巻線とし、交流側巻
線を例えば平角銅線を用いた円板巻線を使用してもよい
。さらに上記ではタンク内に封入する絶縁媒体として絶
縁油を指定したが、 SF、ガスあるいは窒素ガスでも
よい。
Furthermore, the DC side winding may be a sheet-like winding, and the AC side winding may be a disk winding using, for example, a rectangular copper wire. Furthermore, although insulating oil was specified as the insulating medium to be sealed in the tank above, SF, gas, or nitrogen gas may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、交流側巻線と直流
側巻線間および各々の巻線からのリードのまわりの絶縁
方法が容易になり、確実となる。
As explained above, according to the present invention, the insulation method between the AC side winding and the DC side winding and around the leads from each winding becomes easy and reliable.

これにより、絶縁の安定した交直変換器用変圧器を提供
することができる。
Thereby, it is possible to provide an AC/DC converter transformer with stable insulation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の交直変換器用変圧器の断面図、第2図
は本発明の他の実施例の断面図、第3図は交直変換所の
交直変換器用変圧器周辺機器を示す斜視図、第4図は従
来の交直変換所の結線図、第5図は従来の交直変換器用
変圧器の断面図である。 19・・・接地タンク。 20a、20b ; 21a、21b−静電シールド、
22・・・交流側巻線、   23・・・直流側巻線。
Fig. 1 is a sectional view of a transformer for an AC/DC converter of the present invention, Fig. 2 is a sectional view of another embodiment of the invention, and Fig. 3 is a perspective view showing peripheral equipment of the transformer for an AC/DC converter of an AC/DC converting station. , FIG. 4 is a wiring diagram of a conventional AC/DC converter station, and FIG. 5 is a sectional view of a conventional AC/DC converter transformer. 19...Grounded tank. 20a, 20b; 21a, 21b - electrostatic shield,
22...AC side winding, 23...DC side winding.

Claims (4)

【特許請求の範囲】[Claims] (1)交流側巻線と直流側巻線を絶縁媒体とともに接地
タンク内に収納封入してなる交直変換器用変圧器におい
て、交流側巻線と直流側巻線との少なくとも一方をシー
ト状の導体と絶縁紙とを鉄心の周囲に同心状に巻回して
形成することを特徴とする交直変換器用変圧器。
(1) In an AC/DC converter transformer in which an AC side winding and a DC side winding are enclosed together with an insulating medium in a grounded tank, at least one of the AC side winding and the DC side winding is made of a sheet-like conductor. A transformer for an AC/DC converter, characterized in that it is formed by concentrically winding and insulating paper around an iron core.
(2)交流側巻線と直流側巻線との何れか一方が平角銅
線を巻回して形成された特許請求の範囲第1項記載の交
直変換器用変圧器。
(2) The transformer for an AC/DC converter according to claim 1, wherein either the AC side winding or the DC side winding is formed by winding a rectangular copper wire.
(3)鉄心の周囲に巻回した巻線のうち、内側に交流側
巻線を、外側に直流側巻線を配設した特許請求の範囲第
1項記載の交直変換器用変圧器。
(3) The transformer for an AC/DC converter according to claim 1, wherein among the windings wound around the iron core, an AC side winding is arranged on the inside and a DC side winding is arranged on the outside.
(4)交流側巻線と直流側巻線との夫々の低電位側を対
向するように配置した特許請求の範囲第1項記載の交直
変換器用変圧器。
(4) The transformer for an AC/DC converter according to claim 1, wherein the AC side winding and the DC side winding are arranged so that their respective low potential sides are opposed to each other.
JP12214286A 1986-05-29 1986-05-29 Transformer for ac to dc converter Pending JPS62279612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12214286A JPS62279612A (en) 1986-05-29 1986-05-29 Transformer for ac to dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12214286A JPS62279612A (en) 1986-05-29 1986-05-29 Transformer for ac to dc converter

Publications (1)

Publication Number Publication Date
JPS62279612A true JPS62279612A (en) 1987-12-04

Family

ID=14828650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12214286A Pending JPS62279612A (en) 1986-05-29 1986-05-29 Transformer for ac to dc converter

Country Status (1)

Country Link
JP (1) JPS62279612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747100B1 (en) * 2018-01-30 2022-03-16 Hitachi Energy Switzerland AG Surge arrestor dimensioning in a dc power transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3747100B1 (en) * 2018-01-30 2022-03-16 Hitachi Energy Switzerland AG Surge arrestor dimensioning in a dc power transmission system

Similar Documents

Publication Publication Date Title
TW414836B (en) A wind power plant and an electric generator for high voltage
US8416052B2 (en) Medium / high voltage inductor apparatus and method of use thereof
US8373530B2 (en) Power converter method and apparatus
US8624702B2 (en) Inductor mounting apparatus and method of use thereof
BG63442B1 (en) Dc transformer/converter
SE515883C2 (en) Power capacitor, capacitor battery and use of one or more power capacitors
UA54485C2 (en) Power transformer or inductor
JP2771505B2 (en) DC bushing
US11370314B1 (en) Insulation system for reducing partial discharge in medium voltage power converter
JP3533252B2 (en) Transformer
JPS62279612A (en) Transformer for ac to dc converter
JPS6036085B2 (en) Three-phase on-load tap-changing transformer
TW470977B (en) Electricity supply system
JP2023521204A (en) transformer
US4382276A (en) AC-DC Electric power converting station
JPS60165707A (en) Transformer for ac-dc conversion
CN216819405U (en) Mixed type active filter arrangement structure applied to direct current converter station
CN215267650U (en) Low-frequency power transmission system based on grounding structure
JPS59127511A (en) Ac/dc substation
JPS58204704A (en) Ac/dc conversion station
JPH06260354A (en) High voltage electric equipment
EA002726B1 (en) Traction motor and drive system
CN116566214A (en) Isolation converter
JPS5936910A (en) External connector for transformer
JPS5910169A (en) Ac/dc converter